-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample.go
108 lines (95 loc) · 2.84 KB
/
sample.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/*
Package sample implements some useful functions to process samples from
statistical populations. The standard Go `float64` type is used in all
computations.
*/
package sample // import "github.com/alcortesm/sample"
import (
"errors"
"math"
)
// ErrSampleTooSmall is returned when the provided data sample set is too small
// for a computation.
//
// ErrInvalidConfidenceLevel is returned when the confidence level
// passed to MeanConfidenceIntervals is not in the valid range.
var (
ErrSampleTooSmall = errors.New("too few sample points")
ErrInvalidConfidence = errors.New("invalid confidence level, 0 < confidence < 1)")
)
// Mean computes the sample mean of a population sample.
//
// If the sample size is less than 1, it returns ErrSampleTooSmall
func Mean(data []float64) (float64, error) {
if len(data) < 1 {
return 0.0, ErrSampleTooSmall
}
return sum(data) / float64(len(data)), nil
}
func sum(s []float64) float64 {
sum := 0.0
for i := range s {
sum += s[i]
}
return sum
}
// StandardDeviation computes the sample-based unbiased estimation of the
// standard deviation of a population.
//
// This implementation uses the Bessel's correction and is downward biassed as
// per Jensen's inequality.
//
// It is calculated as sqrt(1/(N-1) sum_i_N(x_i-mean(x))).
//
// If the sample size is less than 2, it returns ErrSampleTooSmall
func StandardDeviation(data []float64) (float64, error) {
if len(data) < 2 {
return 0.0, ErrSampleTooSmall
}
mean, _ := Mean(data)
sum := 0.0
var diff float64
for _, samplePoint := range data {
diff = samplePoint - mean
sum += diff * diff
}
return math.Sqrt(sum / float64(len(data)-1)), nil
}
// StandardError returns the standard deviation of the sampling
// distribution of the mean, also known as the "Standard Error of the
// Mean".
//
// If the sample size is less than 2, it returns ErrSampleTooSmall
func StandardError(data []float64) (float64, error) {
sd, err := StandardDeviation(data)
if err != nil {
return 0.0, err
}
return sd / math.Sqrt(float64(len(data))), nil
}
// MeanConfidenceIntervals assumes the sample points are from a Normal
// distribution of unknown variance and calculates the confidence
// intervals of the mean of the distribution for the given confidence
// level.
//
// If the sample size is less than 2, it returns ErrSampleTooSmall.
//
// If the confidence value is not in the ]0, 1[ it returns
// ErrInvalidConfidence.
func MeanConfidenceIntervals(data []float64, confidence float64) ([2]float64, error) {
se, err := StandardError(data)
if err != nil {
return [2]float64{}, err
}
dimension := int64(len(data) - 1)
tinv, err := studentTwoSidedCriticalValue(dimension, confidence)
if err != nil {
return [2]float64{}, err
}
margin := tinv * se
mean, err := Mean(data)
if err != nil {
return [2]float64{}, err
}
return [2]float64{mean - margin, mean + margin}, nil
}