forked from JonathonLuiten/TrackEval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tao.py
566 lines (497 loc) · 29.1 KB
/
tao.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
import os
import numpy as np
import json
import itertools
from collections import defaultdict
from scipy.optimize import linear_sum_assignment
from ..utils import TrackEvalException
from ._base_dataset import _BaseDataset
from .. import utils
from .. import _timing
class TAO(_BaseDataset):
"""Dataset class for TAO tracking"""
@staticmethod
def get_default_dataset_config():
"""Default class config values"""
code_path = utils.get_code_path()
default_config = {
'GT_FOLDER': os.path.join(code_path, 'data/gt/tao/tao_training'), # Location of GT data
'TRACKERS_FOLDER': os.path.join(code_path, 'data/trackers/tao/tao_training'), # Trackers location
'OUTPUT_FOLDER': None, # Where to save eval results (if None, same as TRACKERS_FOLDER)
'TRACKERS_TO_EVAL': None, # Filenames of trackers to eval (if None, all in folder)
'CLASSES_TO_EVAL': None, # Classes to eval (if None, all classes)
'SPLIT_TO_EVAL': 'training', # Valid: 'training', 'val'
'PRINT_CONFIG': True, # Whether to print current config
'TRACKER_SUB_FOLDER': 'data', # Tracker files are in TRACKER_FOLDER/tracker_name/TRACKER_SUB_FOLDER
'OUTPUT_SUB_FOLDER': '', # Output files are saved in OUTPUT_FOLDER/tracker_name/OUTPUT_SUB_FOLDER
'TRACKER_DISPLAY_NAMES': None, # Names of trackers to display, if None: TRACKERS_TO_EVAL
'MAX_DETECTIONS': 300, # Number of maximal allowed detections per image (0 for unlimited)
}
return default_config
def __init__(self, config=None):
"""Initialise dataset, checking that all required files are present"""
super().__init__()
# Fill non-given config values with defaults
self.config = utils.init_config(config, self.get_default_dataset_config(), self.get_name())
self.gt_fol = self.config['GT_FOLDER']
self.tracker_fol = self.config['TRACKERS_FOLDER']
self.should_classes_combine = True
self.use_super_categories = False
self.tracker_sub_fol = self.config['TRACKER_SUB_FOLDER']
self.output_fol = self.config['OUTPUT_FOLDER']
if self.output_fol is None:
self.output_fol = self.tracker_fol
self.output_sub_fol = self.config['OUTPUT_SUB_FOLDER']
gt_dir_files = [file for file in os.listdir(self.gt_fol) if file.endswith('.json')]
if len(gt_dir_files) != 1:
raise TrackEvalException(self.gt_fol + ' does not contain exactly one json file.')
with open(os.path.join(self.gt_fol, gt_dir_files[0])) as f:
self.gt_data = json.load(f)
# merge categories marked with a merged tag in TAO dataset
self._merge_categories(self.gt_data['annotations'] + self.gt_data['tracks'])
# Get sequences to eval and sequence information
self.seq_list = [vid['name'].replace('/', '-') for vid in self.gt_data['videos']]
self.seq_name_to_seq_id = {vid['name'].replace('/', '-'): vid['id'] for vid in self.gt_data['videos']}
# compute mappings from videos to annotation data
self.videos_to_gt_tracks, self.videos_to_gt_images = self._compute_vid_mappings(self.gt_data['annotations'])
# compute sequence lengths
self.seq_lengths = {vid['id']: 0 for vid in self.gt_data['videos']}
for img in self.gt_data['images']:
self.seq_lengths[img['video_id']] += 1
self.seq_to_images_to_timestep = self._compute_image_to_timestep_mappings()
self.seq_to_classes = {vid['id']: {'pos_cat_ids': list({track['category_id'] for track
in self.videos_to_gt_tracks[vid['id']]}),
'neg_cat_ids': vid['neg_category_ids'],
'not_exhaustively_labeled_cat_ids': vid['not_exhaustive_category_ids']}
for vid in self.gt_data['videos']}
# Get classes to eval
considered_vid_ids = [self.seq_name_to_seq_id[vid] for vid in self.seq_list]
seen_cats = set([cat_id for vid_id in considered_vid_ids for cat_id
in self.seq_to_classes[vid_id]['pos_cat_ids']])
# only classes with ground truth are evaluated in TAO
self.valid_classes = [cls['name'] for cls in self.gt_data['categories'] if cls['id'] in seen_cats]
cls_name_to_cls_id_map = {cls['name']: cls['id'] for cls in self.gt_data['categories']}
if self.config['CLASSES_TO_EVAL']:
self.class_list = [cls.lower() if cls.lower() in self.valid_classes else None
for cls in self.config['CLASSES_TO_EVAL']]
if not all(self.class_list):
raise TrackEvalException('Attempted to evaluate an invalid class. Only classes ' +
', '.join(self.valid_classes) +
' are valid (classes present in ground truth data).')
else:
self.class_list = [cls for cls in self.valid_classes]
self.class_name_to_class_id = {k: v for k, v in cls_name_to_cls_id_map.items() if k in self.class_list}
# Get trackers to eval
if self.config['TRACKERS_TO_EVAL'] is None:
self.tracker_list = os.listdir(self.tracker_fol)
else:
self.tracker_list = self.config['TRACKERS_TO_EVAL']
if self.config['TRACKER_DISPLAY_NAMES'] is None:
self.tracker_to_disp = dict(zip(self.tracker_list, self.tracker_list))
elif (self.config['TRACKERS_TO_EVAL'] is not None) and (
len(self.config['TRACKER_DISPLAY_NAMES']) == len(self.tracker_list)):
self.tracker_to_disp = dict(zip(self.tracker_list, self.config['TRACKER_DISPLAY_NAMES']))
else:
raise TrackEvalException('List of tracker files and tracker display names do not match.')
self.tracker_data = {tracker: dict() for tracker in self.tracker_list}
for tracker in self.tracker_list:
tr_dir_files = [file for file in os.listdir(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol))
if file.endswith('.json')]
if len(tr_dir_files) != 1:
raise TrackEvalException(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol)
+ ' does not contain exactly one json file.')
with open(os.path.join(self.tracker_fol, tracker, self.tracker_sub_fol, tr_dir_files[0])) as f:
curr_data = json.load(f)
# limit detections if MAX_DETECTIONS > 0
if self.config['MAX_DETECTIONS']:
curr_data = self._limit_dets_per_image(curr_data)
# fill missing video ids
self._fill_video_ids_inplace(curr_data)
# make track ids unique over whole evaluation set
self._make_track_ids_unique(curr_data)
# merge categories marked with a merged tag in TAO dataset
self._merge_categories(curr_data)
# get tracker sequence information
curr_videos_to_tracker_tracks, curr_videos_to_tracker_images = self._compute_vid_mappings(curr_data)
self.tracker_data[tracker]['vids_to_tracks'] = curr_videos_to_tracker_tracks
self.tracker_data[tracker]['vids_to_images'] = curr_videos_to_tracker_images
def get_display_name(self, tracker):
return self.tracker_to_disp[tracker]
def _load_raw_file(self, tracker, seq, is_gt):
"""Load a file (gt or tracker) in the TAO format
If is_gt, this returns a dict which contains the fields:
[gt_ids, gt_classes] : list (for each timestep) of 1D NDArrays (for each det).
[gt_dets]: list (for each timestep) of lists of detections.
[classes_to_gt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as
keys and corresponding segmentations as values) for each track
[classes_to_gt_track_ids, classes_to_gt_track_areas, classes_to_gt_track_lengths]: dictionary with class values
as keys and lists (for each track) as values
if not is_gt, this returns a dict which contains the fields:
[tracker_ids, tracker_classes, tracker_confidences] : list (for each timestep) of 1D NDArrays (for each det).
[tracker_dets]: list (for each timestep) of lists of detections.
[classes_to_dt_tracks]: dictionary with class values as keys and list of dictionaries (with frame indices as
keys and corresponding segmentations as values) for each track
[classes_to_dt_track_ids, classes_to_dt_track_areas, classes_to_dt_track_lengths]: dictionary with class values
as keys and lists as values
[classes_to_dt_track_scores]: dictionary with class values as keys and 1D numpy arrays as values
"""
seq_id = self.seq_name_to_seq_id[seq]
# File location
if is_gt:
imgs = self.videos_to_gt_images[seq_id]
else:
imgs = self.tracker_data[tracker]['vids_to_images'][seq_id]
# Convert data to required format
num_timesteps = self.seq_lengths[seq_id]
img_to_timestep = self.seq_to_images_to_timestep[seq_id]
data_keys = ['ids', 'classes', 'dets']
if not is_gt:
data_keys += ['tracker_confidences']
raw_data = {key: [None] * num_timesteps for key in data_keys}
for img in imgs:
# some tracker data contains images without any ground truth information, these are ignored
try:
t = img_to_timestep[img['id']]
except KeyError:
continue
annotations = img['annotations']
raw_data['dets'][t] = np.atleast_2d([ann['bbox'] for ann in annotations]).astype(float)
raw_data['ids'][t] = np.atleast_1d([ann['track_id'] for ann in annotations]).astype(int)
raw_data['classes'][t] = np.atleast_1d([ann['category_id'] for ann in annotations]).astype(int)
if not is_gt:
raw_data['tracker_confidences'][t] = np.atleast_1d([ann['score'] for ann in annotations]).astype(float)
for t, d in enumerate(raw_data['dets']):
if d is None:
raw_data['dets'][t] = np.empty((0, 4)).astype(float)
raw_data['ids'][t] = np.empty(0).astype(int)
raw_data['classes'][t] = np.empty(0).astype(int)
if not is_gt:
raw_data['tracker_confidences'][t] = np.empty(0)
if is_gt:
key_map = {'ids': 'gt_ids',
'classes': 'gt_classes',
'dets': 'gt_dets'}
else:
key_map = {'ids': 'tracker_ids',
'classes': 'tracker_classes',
'dets': 'tracker_dets'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
all_classes = [self.class_name_to_class_id[cls] for cls in self.class_list]
if is_gt:
classes_to_consider = all_classes
all_tracks = self.videos_to_gt_tracks[seq_id]
else:
classes_to_consider = self.seq_to_classes[seq_id]['pos_cat_ids'] \
+ self.seq_to_classes[seq_id]['neg_cat_ids']
all_tracks = self.tracker_data[tracker]['vids_to_tracks'][seq_id]
classes_to_tracks = {cls: [track for track in all_tracks if track['category_id'] == cls]
if cls in classes_to_consider else [] for cls in all_classes}
# mapping from classes to track information
raw_data['classes_to_tracks'] = {cls: [{det['image_id']: np.atleast_1d(det['bbox'])
for det in track['annotations']} for track in tracks]
for cls, tracks in classes_to_tracks.items()}
raw_data['classes_to_track_ids'] = {cls: [track['id'] for track in tracks]
for cls, tracks in classes_to_tracks.items()}
raw_data['classes_to_track_areas'] = {cls: [track['area'] for track in tracks]
for cls, tracks in classes_to_tracks.items()}
raw_data['classes_to_track_lengths'] = {cls: [len(track['annotations']) for track in tracks]
for cls, tracks in classes_to_tracks.items()}
if not is_gt:
raw_data['classes_to_dt_track_scores'] = {cls: np.array([np.mean([float(x['score'])
for x in track['annotations']])
for track in tracks])
for cls, tracks in classes_to_tracks.items()}
if is_gt:
key_map = {'classes_to_tracks': 'classes_to_gt_tracks',
'classes_to_track_ids': 'classes_to_gt_track_ids',
'classes_to_track_lengths': 'classes_to_gt_track_lengths',
'classes_to_track_areas': 'classes_to_gt_track_areas'}
else:
key_map = {'classes_to_tracks': 'classes_to_dt_tracks',
'classes_to_track_ids': 'classes_to_dt_track_ids',
'classes_to_track_lengths': 'classes_to_dt_track_lengths',
'classes_to_track_areas': 'classes_to_dt_track_areas'}
for k, v in key_map.items():
raw_data[v] = raw_data.pop(k)
raw_data['num_timesteps'] = num_timesteps
raw_data['neg_cat_ids'] = self.seq_to_classes[seq_id]['neg_cat_ids']
raw_data['not_exhaustively_labeled_cls'] = self.seq_to_classes[seq_id]['not_exhaustively_labeled_cat_ids']
raw_data['seq'] = seq
return raw_data
@_timing.time
def get_preprocessed_seq_data(self, raw_data, cls):
""" Preprocess data for a single sequence for a single class ready for evaluation.
Inputs:
- raw_data is a dict containing the data for the sequence already read in by get_raw_seq_data().
- cls is the class to be evaluated.
Outputs:
- data is a dict containing all of the information that metrics need to perform evaluation.
It contains the following fields:
[num_timesteps, num_gt_ids, num_tracker_ids, num_gt_dets, num_tracker_dets] : integers.
[gt_ids, tracker_ids, tracker_confidences]: list (for each timestep) of 1D NDArrays (for each det).
[gt_dets, tracker_dets]: list (for each timestep) of lists of detections.
[similarity_scores]: list (for each timestep) of 2D NDArrays.
Notes:
General preprocessing (preproc) occurs in 4 steps. Some datasets may not use all of these steps.
1) Extract only detections relevant for the class to be evaluated (including distractor detections).
2) Match gt dets and tracker dets. Remove tracker dets that are matched to a gt det that is of a
distractor class, or otherwise marked as to be removed.
3) Remove unmatched tracker dets if they fall within a crowd ignore region or don't meet a certain
other criteria (e.g. are too small).
4) Remove gt dets that were only useful for preprocessing and not for actual evaluation.
After the above preprocessing steps, this function also calculates the number of gt and tracker detections
and unique track ids. It also relabels gt and tracker ids to be contiguous and checks that ids are
unique within each timestep.
TAO:
In TAO, the 4 preproc steps are as follow:
1) All classes present in the ground truth data are evaluated separately.
2) No matched tracker detections are removed.
3) Unmatched tracker detections are removed if there is not ground truth data and the class does not
belong to the categories marked as negative for this sequence. Additionally, unmatched tracker
detections for classes which are marked as not exhaustively labeled are removed.
4) No gt detections are removed.
Further, for TrackMAP computation track representations for the given class are accessed from a dictionary
and the tracks from the tracker data are sorted according to the tracker confidence.
"""
cls_id = self.class_name_to_class_id[cls]
is_not_exhaustively_labeled = cls_id in raw_data['not_exhaustively_labeled_cls']
is_neg_category = cls_id in raw_data['neg_cat_ids']
data_keys = ['gt_ids', 'tracker_ids', 'gt_dets', 'tracker_dets', 'tracker_confidences', 'similarity_scores']
data = {key: [None] * raw_data['num_timesteps'] for key in data_keys}
unique_gt_ids = []
unique_tracker_ids = []
num_gt_dets = 0
num_tracker_dets = 0
for t in range(raw_data['num_timesteps']):
# Only extract relevant dets for this class for preproc and eval (cls)
gt_class_mask = np.atleast_1d(raw_data['gt_classes'][t] == cls_id)
gt_class_mask = gt_class_mask.astype(np.bool)
gt_ids = raw_data['gt_ids'][t][gt_class_mask]
gt_dets = raw_data['gt_dets'][t][gt_class_mask]
tracker_class_mask = np.atleast_1d(raw_data['tracker_classes'][t] == cls_id)
tracker_class_mask = tracker_class_mask.astype(np.bool)
tracker_ids = raw_data['tracker_ids'][t][tracker_class_mask]
tracker_dets = raw_data['tracker_dets'][t][tracker_class_mask]
tracker_confidences = raw_data['tracker_confidences'][t][tracker_class_mask]
similarity_scores = raw_data['similarity_scores'][t][gt_class_mask, :][:, tracker_class_mask]
# Match tracker and gt dets (with hungarian algorithm).
unmatched_indices = np.arange(tracker_ids.shape[0])
if gt_ids.shape[0] > 0 and tracker_ids.shape[0] > 0:
matching_scores = similarity_scores.copy()
matching_scores[matching_scores < 0.5 - np.finfo('float').eps] = 0
match_rows, match_cols = linear_sum_assignment(-matching_scores)
actually_matched_mask = matching_scores[match_rows, match_cols] > 0 + np.finfo('float').eps
match_cols = match_cols[actually_matched_mask]
unmatched_indices = np.delete(unmatched_indices, match_cols, axis=0)
if gt_ids.shape[0] == 0 and not is_neg_category:
to_remove_tracker = unmatched_indices
elif is_not_exhaustively_labeled:
to_remove_tracker = unmatched_indices
else:
to_remove_tracker = np.array([], dtype=np.int)
# remove all unwanted unmatched tracker detections
data['tracker_ids'][t] = np.delete(tracker_ids, to_remove_tracker, axis=0)
data['tracker_dets'][t] = np.delete(tracker_dets, to_remove_tracker, axis=0)
data['tracker_confidences'][t] = np.delete(tracker_confidences, to_remove_tracker, axis=0)
similarity_scores = np.delete(similarity_scores, to_remove_tracker, axis=1)
data['gt_ids'][t] = gt_ids
data['gt_dets'][t] = gt_dets
data['similarity_scores'][t] = similarity_scores
unique_gt_ids += list(np.unique(data['gt_ids'][t]))
unique_tracker_ids += list(np.unique(data['tracker_ids'][t]))
num_tracker_dets += len(data['tracker_ids'][t])
num_gt_dets += len(data['gt_ids'][t])
# Re-label IDs such that there are no empty IDs
if len(unique_gt_ids) > 0:
unique_gt_ids = np.unique(unique_gt_ids)
gt_id_map = np.nan * np.ones((np.max(unique_gt_ids) + 1))
gt_id_map[unique_gt_ids] = np.arange(len(unique_gt_ids))
for t in range(raw_data['num_timesteps']):
if len(data['gt_ids'][t]) > 0:
data['gt_ids'][t] = gt_id_map[data['gt_ids'][t]].astype(np.int)
if len(unique_tracker_ids) > 0:
unique_tracker_ids = np.unique(unique_tracker_ids)
tracker_id_map = np.nan * np.ones((np.max(unique_tracker_ids) + 1))
tracker_id_map[unique_tracker_ids] = np.arange(len(unique_tracker_ids))
for t in range(raw_data['num_timesteps']):
if len(data['tracker_ids'][t]) > 0:
data['tracker_ids'][t] = tracker_id_map[data['tracker_ids'][t]].astype(np.int)
# Record overview statistics.
data['num_tracker_dets'] = num_tracker_dets
data['num_gt_dets'] = num_gt_dets
data['num_tracker_ids'] = len(unique_tracker_ids)
data['num_gt_ids'] = len(unique_gt_ids)
data['num_timesteps'] = raw_data['num_timesteps']
data['seq'] = raw_data['seq']
# get track representations
data['gt_tracks'] = raw_data['classes_to_gt_tracks'][cls_id]
data['gt_track_ids'] = raw_data['classes_to_gt_track_ids'][cls_id]
data['gt_track_lengths'] = raw_data['classes_to_gt_track_lengths'][cls_id]
data['gt_track_areas'] = raw_data['classes_to_gt_track_areas'][cls_id]
data['dt_tracks'] = raw_data['classes_to_dt_tracks'][cls_id]
data['dt_track_ids'] = raw_data['classes_to_dt_track_ids'][cls_id]
data['dt_track_lengths'] = raw_data['classes_to_dt_track_lengths'][cls_id]
data['dt_track_areas'] = raw_data['classes_to_dt_track_areas'][cls_id]
data['dt_track_scores'] = raw_data['classes_to_dt_track_scores'][cls_id]
data['not_exhaustively_labeled'] = is_not_exhaustively_labeled
data['iou_type'] = 'bbox'
# sort tracker data tracks by tracker confidence scores
if data['dt_tracks']:
idx = np.argsort([-score for score in data['dt_track_scores']], kind="mergesort")
data['dt_track_scores'] = [data['dt_track_scores'][i] for i in idx]
data['dt_tracks'] = [data['dt_tracks'][i] for i in idx]
data['dt_track_ids'] = [data['dt_track_ids'][i] for i in idx]
data['dt_track_lengths'] = [data['dt_track_lengths'][i] for i in idx]
data['dt_track_areas'] = [data['dt_track_areas'][i] for i in idx]
# Ensure that ids are unique per timestep.
self._check_unique_ids(data)
return data
def _calculate_similarities(self, gt_dets_t, tracker_dets_t):
similarity_scores = self._calculate_box_ious(gt_dets_t, tracker_dets_t)
return similarity_scores
def _merge_categories(self, annotations):
"""
Merges categories with a merged tag. Adapted from https://github.com/TAO-Dataset
:param annotations: the annotations in which the classes should be merged
:return: None
"""
merge_map = {}
for category in self.gt_data['categories']:
if 'merged' in category:
for to_merge in category['merged']:
merge_map[to_merge['id']] = category['id']
for ann in annotations:
ann['category_id'] = merge_map.get(ann['category_id'], ann['category_id'])
def _compute_vid_mappings(self, annotations):
"""
Computes mappings from Videos to corresponding tracks and images.
:param annotations: the annotations for which the mapping should be generated
:return: the video-to-track-mapping, the video-to-image-mapping
"""
vids_to_tracks = {}
vids_to_imgs = {}
vid_ids = [vid['id'] for vid in self.gt_data['videos']]
# compute an mapping from image IDs to images
images = {}
for image in self.gt_data['images']:
images[image['id']] = image
for ann in annotations:
ann["area"] = ann["bbox"][2] * ann["bbox"][3]
vid = ann["video_id"]
if ann["video_id"] not in vids_to_tracks.keys():
vids_to_tracks[ann["video_id"]] = list()
if ann["video_id"] not in vids_to_imgs.keys():
vids_to_imgs[ann["video_id"]] = list()
# Fill in vids_to_tracks
tid = ann["track_id"]
exist_tids = [track["id"] for track in vids_to_tracks[vid]]
try:
index1 = exist_tids.index(tid)
except ValueError:
index1 = -1
if tid not in exist_tids:
curr_track = {"id": tid, "category_id": ann['category_id'],
"video_id": vid, "annotations": [ann]}
vids_to_tracks[vid].append(curr_track)
else:
vids_to_tracks[vid][index1]["annotations"].append(ann)
# Fill in vids_to_imgs
img_id = ann['image_id']
exist_img_ids = [img["id"] for img in vids_to_imgs[vid]]
try:
index2 = exist_img_ids.index(img_id)
except ValueError:
index2 = -1
if index2 == -1:
curr_img = {"id": img_id, "annotations": [ann]}
vids_to_imgs[vid].append(curr_img)
else:
vids_to_imgs[vid][index2]["annotations"].append(ann)
# sort annotations by frame index and compute track area
for vid, tracks in vids_to_tracks.items():
for track in tracks:
track["annotations"] = sorted(
track['annotations'],
key=lambda x: images[x['image_id']]['frame_index'])
# Computer average area
track["area"] = (sum(x['area'] for x in track['annotations']) / len(track['annotations']))
# Ensure all videos are present
for vid_id in vid_ids:
if vid_id not in vids_to_tracks.keys():
vids_to_tracks[vid_id] = []
if vid_id not in vids_to_imgs.keys():
vids_to_imgs[vid_id] = []
return vids_to_tracks, vids_to_imgs
def _compute_image_to_timestep_mappings(self):
"""
Computes a mapping from images to the corresponding timestep in the sequence.
:return: the image-to-timestep-mapping
"""
images = {}
for image in self.gt_data['images']:
images[image['id']] = image
seq_to_imgs_to_timestep = {vid['id']: dict() for vid in self.gt_data['videos']}
for vid in seq_to_imgs_to_timestep:
curr_imgs = [img['id'] for img in self.videos_to_gt_images[vid]]
curr_imgs = sorted(curr_imgs, key=lambda x: images[x]['frame_index'])
seq_to_imgs_to_timestep[vid] = {curr_imgs[i]: i for i in range(len(curr_imgs))}
return seq_to_imgs_to_timestep
def _limit_dets_per_image(self, annotations):
"""
Limits the number of detections for each image to config['MAX_DETECTIONS']. Adapted from
https://github.com/TAO-Dataset/
:param annotations: the annotations in which the detections should be limited
:return: the annotations with limited detections
"""
max_dets = self.config['MAX_DETECTIONS']
img_ann = defaultdict(list)
for ann in annotations:
img_ann[ann["image_id"]].append(ann)
for img_id, _anns in img_ann.items():
if len(_anns) <= max_dets:
continue
_anns = sorted(_anns, key=lambda x: x["score"], reverse=True)
img_ann[img_id] = _anns[:max_dets]
return [ann for anns in img_ann.values() for ann in anns]
def _fill_video_ids_inplace(self, annotations):
"""
Fills in missing video IDs inplace. Adapted from https://github.com/TAO-Dataset/
:param annotations: the annotations for which the videos IDs should be filled inplace
:return: None
"""
missing_video_id = [x for x in annotations if 'video_id' not in x]
if missing_video_id:
image_id_to_video_id = {
x['id']: x['video_id'] for x in self.gt_data['images']
}
for x in missing_video_id:
x['video_id'] = image_id_to_video_id[x['image_id']]
@staticmethod
def _make_track_ids_unique(annotations):
"""
Makes the track IDs unqiue over the whole annotation set. Adapted from https://github.com/TAO-Dataset/
:param annotations: the annotation set
:return: the number of updated IDs
"""
track_id_videos = {}
track_ids_to_update = set()
max_track_id = 0
for ann in annotations:
t = ann['track_id']
if t not in track_id_videos:
track_id_videos[t] = ann['video_id']
if ann['video_id'] != track_id_videos[t]:
# Track id is assigned to multiple videos
track_ids_to_update.add(t)
max_track_id = max(max_track_id, t)
if track_ids_to_update:
print('true')
next_id = itertools.count(max_track_id + 1)
new_track_ids = defaultdict(lambda: next(next_id))
for ann in annotations:
t = ann['track_id']
v = ann['video_id']
if t in track_ids_to_update:
ann['track_id'] = new_track_ids[t, v]
return len(track_ids_to_update)