-
Notifications
You must be signed in to change notification settings - Fork 5
/
HELP.txt
121 lines (99 loc) · 4.22 KB
/
HELP.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
SYNOPSIS:
./vlg_extractor [COMMANDS] [OPTIONS] list_input input_dir output_dir
list_input: This is an ascii-file containing the relative path
(to input_dir) of the input files
input_dir: Directory that contains the images
output_dir: Directory that will contain the features
COMMANDS:
--help: It shows this help
--extract_classemes=[OUTPUT_TYPE]
This extract the continuous version
--extract_classemes_bin=[OUTPUT_TYPE]
This extract the binary version
--extract_picodes128=[OUTPUT_TYPE]
--extract_picodes1024=[OUTPUT_TYPE]
--extract_picodes2048=[OUTPUT_TYPE]
--extract_mc=[OUTPUT_TYPE]
--extract_mc_bit=[OUTPUT_TYPE]
--extract_concatenationLowLevelFeatures=[OUTPUT_TYPE]
OPTIONS:
--parameters-dir=<path directory>
The directory of the parameters. Default is "<root>/data".
--classeme-suffix
This specifies the suffix to use for the classemes output files.
Default "_classemes".
Note: in case of "--extract_classemes_bin", we append a "BIN" at the end
of the filename.
--picodes-suffix
Default: "_picodes"
Note A proper number indicating the dimensionality
will be append to the filename
--mc-suffix
Default: "_mc"
--load-concatenation-low-level-features=[INPUT_TYPE]
--concatenation-low-level-features-prefix
Default: "_low_level_features_v2"
--disable-output-overwriting
It does not overwrite a file with the same name on disk
(by default, the software overwrites everything).
[OUTPUT_TYPE]
It can be {ASCII, FLOAT, BIN}
ASCII is an ascii file containing a matrix.
The software automatically adds extension ".ascii" to this filename.
FLOAT is a binary file, containing a matrix. The values are stored in
row order.
The format is: <uint: n_rows><uint: n_cols><float: data[0]>...
<float: data[n_rows*n_cols-1]>
where uint and float are 4-bytes each.
The software automatically adds extension ".dat" to this filename.
We provide function "load_float_matrix.m" to load this type of files
into Matlab.
BIN This produces the most compact output file: it saves a file which
i-th bit corresponds to i-th bit entry.
The unused entries in the last byte are filled with zeros.
The extension is ".bin".
We provide function "load_bit_vector.m" to load this type of files
into Matlab.
Note that this format makes sense only for "classemes_bin",
"picodes" and "mc_bit".
Note: there can be multiple [OUTPUT_TYPE] options in order to produce
more output.
[INPUT_TYPE]
It can be FLOAT. See the [OUTPUT_TYPE] description above.
NOTES about extract_concatenationLowLevelFeatures:
This command will extract the low-level features used for the
construction of the high-level representation classemes, picodes, mc and
their binary variants. The resulting vector consisting of the
concatenation of such features has 22860 dimensions, organized as follows:
- GIST level 0: dims 1:960
- PHOG-180 level 0: dims 961,980
level 1: dims 981,1060
level 2: dims 1061,1380
level 3: dims 1381,2660
- PHOG-360 level 0: dims 2661,2700
level 1: dims 2701,2860
level 2: dims 2861,3500
level 3: dims 3501,6060
- SSIM level 0: dims 6061,6360
level 1: dims 6361,7560
level 2: dims 7561,12360
- SIFT-BOW level 0: dims 12361,12860
level 1: dims 12861,14860
level 2: dims 14861,22860
AUTHORS:
* Alessandro Bergamo
aleb@cs.dartmouth.edu
* Chen Fang
chen@cs.dartmouth.edu
* Lorenzo Torresani
lorenzo@cs.dartmouth.edu
REPORTING BUGS:
Report bugs to Alessandro Bergamo aleb@cs.dartmouth.edu
Please send a precise and complete report.
REFERENCES:
[1] Efficient Object Category Recognition using Classemes,
Lorenzo Torresani et others, ECCV2010
[2] Alessandro Bergamo, Lorenzo Torresani, Andrew Fitzgibbon
PiCoDes: Learning a Compact Code for Novel-Category Recognition, NIPS 2011
[3] Alessandro Bergamo, Lorenzo Torresani
Meta-Class Features for Large-Scale Object Categorization on a Budget