-
Notifications
You must be signed in to change notification settings - Fork 81
/
sampling.go
83 lines (75 loc) · 2.37 KB
/
sampling.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/*
* Copyright (c) 2016 Salle, Alexandre <alex@alexsalle.com>
* Author: Salle, Alexandre <alex@alexsalle.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
package main
import (
"math"
"math/rand"
)
func (w *word) subsampleP(t real, corpusSize uint64) real {
if t == 0 {
return 0
}
p := 1 - math.Sqrt(t/(real(w.freq)/real(corpusSize)))
if p < 0 {
p = 0
}
return p
}
func (w *word) keepP(t real, corpusSize uint64) real {
return 1 - w.subsampleP(t, corpusSize)
}
type sampler interface {
sample(r *rand.Rand) *word
}
// Unigram sampling with context distribution smoothing, implements Sampler interface.
// Ported from word2vec.
type unigramDist struct {
vocab []*word
table []int
}
func newUnigramDist(vocab []*word, tableSize int, power real) *unigramDist {
var trainWordsPow real
table := make([]int, tableSize)
vocabSize := len(vocab)
for i := 0; i < vocabSize; i++ {
w := vocab[i]
trainWordsPow += math.Pow(real(w.freq), power)
}
var i int
d1 := math.Pow(real(vocab[i].freq), power) / trainWordsPow
for a := 0; a < tableSize; a++ {
table[a] = i
if real(a)/real(tableSize) > d1 {
i++
d1 += math.Pow(real(vocab[i].freq), power) / trainWordsPow
}
if i >= vocabSize {
i = vocabSize - 1
}
}
return &unigramDist{vocab, table}
}
func (d *unigramDist) sample(r *rand.Rand) *word {
i := r.Intn(len(d.table))
w := d.vocab[d.table[i]]
return w
}