-
Notifications
You must be signed in to change notification settings - Fork 1
/
exercise_3.html
757 lines (661 loc) · 25.7 KB
/
exercise_3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Exercises</title>
<script src="site_libs/header-attrs-2.29/header-attrs.js"></script>
<script src="site_libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/flatly.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<style>h1 {font-size: 34px;}
h1.title {font-size: 38px;}
h2 {font-size: 30px;}
h3 {font-size: 24px;}
h4 {font-size: 18px;}
h5 {font-size: 16px;}
h6 {font-size: 12px;}
code {color: inherit; background-color: rgba(0, 0, 0, 0.04);}
pre:not([class]) { background-color: white }</style>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/navigation-1.1/codefolding.js"></script>
<link href="site_libs/font-awesome-6.4.2/css/all.min.css" rel="stylesheet" />
<link href="site_libs/font-awesome-6.4.2/css/v4-shims.min.css" rel="stylesheet" />
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-162377463-1"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'UA-162377463-1');
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
details > summary > p:only-child {
display: inline;
}
pre code {
padding: 0;
}
</style>
<style type="text/css">
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #adb5bd;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script type="text/javascript">
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark the anchor link active (and if it's in a dropdown, also mark that active)
var dropdown = menuAnchor.closest('li.dropdown');
if (window.bootstrap) { // Bootstrap 4+
menuAnchor.addClass('active');
dropdown.find('> .dropdown-toggle').addClass('active');
} else { // Bootstrap 3
menuAnchor.parent().addClass('active');
dropdown.addClass('active');
}
// Navbar adjustments
var navHeight = $(".navbar").first().height() + 15;
var style = document.createElement('style');
var pt = "padding-top: " + navHeight + "px; ";
var mt = "margin-top: -" + navHeight + "px; ";
var css = "";
// offset scroll position for anchor links (for fixed navbar)
for (var i = 1; i <= 6; i++) {
css += ".section h" + i + "{ " + pt + mt + "}\n";
}
style.innerHTML = "body {" + pt + "padding-bottom: 40px; }\n" + css;
document.head.appendChild(style);
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before, .tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "\e259";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "\e258";
font-family: 'Glyphicons Halflings';
border: none;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
<style type="text/css">
.code-folding-btn { margin-bottom: 4px; }
</style>
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-bs-toggle="collapse" data-target="#navbar" data-bs-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">QUADstatR</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="FAQ.html">
<span class="fa fa-question"></span>
FAQ
</a>
</li>
<li>
<a href="setup.html">
<span class="fa fa-cog"></span>
Setup
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-book"></span>
R Book
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="https://alexd106.github.io/Rbook">
<span class="fa fa-firefox"></span>
Web book
</a>
</li>
<li class="divider"></li>
<li>
<a href="https://github.com/alexd106/Rbook/raw/master/docs/Rbook.pdf">
<span class="fa fa-file-pdf"></span>
PDF book
</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-university"></span>
Learn R
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="howto.html">
<span class="fa fa-tv"></span>
How-to videos
</a>
</li>
<li class="divider"></li>
<li>
<a href="lectures.html">
<span class="fa fa-book"></span>
Lecture slides
</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-file-contract"></span>
Exercises
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="exercises.html">
<span class="fa fa-folder"></span>
Excercises
</a>
</li>
<li class="divider"></li>
<li>
<a href="exercise_solutions.html">
<span class="fa fa-folder"></span>
Exercise solutions
</a>
</li>
</ul>
</li>
<li>
<a href="data.html">
<span class="fa fa-download"></span>
Data
</a>
</li>
<li>
<a href="Tutorials.html">
<span class="fa fa-desktop"></span>
Tutorials
</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-question-circle"></span>
Info
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="syllabus.html">
<span class="fa fa-graduation-cap"></span>
Syllabus
</a>
</li>
<li class="divider"></li>
<li>
<a href="People.html">
<span class="fa fa-user-friends"></span>
People
</a>
</li>
<li class="divider"></li>
<li>
<a href="resources.html">
<span class="fa fa-book"></span>
Resources
</a>
</li>
<li>
<a href="https://forms.gle/T8z1BSUUQiyJ2e8z8">
<span class="fa fa-commenting"></span>
Feedback
</a>
</li>
<li class="divider"></li>
<li>
<a href="https://www.quadrat.ac.uk/">
<span class="fa fa-chrome"></span>
QUADRAT
</a>
</li>
<li>
<a href="https://superdtp.st-andrews.ac.uk/">
<span class="fa fa-chrome"></span>
SUPER
</a>
</li>
<li>
<a href="People.html">
<span class="fa fa-envelope fa-lg"></span>
Contact
</a>
</li>
<li>
<a href="http://github.com/alexd106">
<span class="fa fa-github fa-lg"></span>
Source code
</a>
</li>
<li>
<a href="https://twitter.com/QUADRATdtp">
<span class="fa fa-twitter fa-lg"></span>
Twitter
</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div id="header">
<div class="btn-group pull-right float-right">
<button type="button" class="btn btn-default btn-xs btn-secondary btn-sm dropdown-toggle" data-toggle="dropdown" data-bs-toggle="dropdown" aria-haspopup="true" aria-expanded="false"><span>Code</span> <span class="caret"></span></button>
<ul class="dropdown-menu dropdown-menu-right" style="min-width: 50px;">
<li><a id="rmd-show-all-code" href="#">Show All Code</a></li>
<li><a id="rmd-hide-all-code" href="#">Hide All Code</a></li>
</ul>
</div>
<h1 class="title toc-ignore">Exercises</h1>
</div>
<p> </p>
<div id="exercise-3-importing-and-manipulating-dataframes"
class="section level2">
<h2>Exercise 3: Importing and manipulating dataframes</h2>
<p> </p>
<p>Read <a href="https://intro2r.com/data_r.html">Chapter 3</a> to help
you complete the questions in this exercise.</p>
<p> </p>
<p>1. As in previous exercises, either create a new R script or continue
with your previous R script in your RStudio Project. Again, make sure
you include any metadata you feel is appropriate (title, description of
task, date of creation etc) and don’t forget to comment out your
metadata with a <code>#</code> at the beginning of the line.</p>
<p> </p>
<p>2. If you haven’t already, download the data file
<em>‘whaledata.xlsx’</em> from the <strong><a
href="data.html"><i class="fa fa-download"></i> Data</a></strong> link
and save it to the <code>data</code> directory you created in Exercise 1
in your RStudio project.</p>
<p> </p>
<p>3. Open the <em>‘whaledata.xlsx’</em> file in Microsoft Excel (or
even better use an open source equivalent - <a
href="https://www.libreoffice.org/download/download/">LibreOffice</a> is
a good free alternative) and save it as a tab delimited file type (see
<a
href="https://intro2r.com/importing-data.html#saving-files-to-import">Section
3.3.1</a> of the Introduction to R book or watch this <a
href="https://alexd106.github.io/QUADstatR/howto.html#import-vid">video</a>
if you’re not sure how to do this). Name the file
<em>‘whaledata.txt’</em> and save it to the <code>data</code> directory.
If you’re a Windows user be careful with file extensions (things like
<em>.txt</em>). By default, Windows doesn’t show you the file extension
(maybe the boffins at Microsoft don’t think you need to know complicated
things like this?) so if you enter <em>‘whaledata.txt’</em> as a
filename you might end up with a filename
<em>’whaledata.txt.txt</em>’!</p>
<p> </p>
<p>4. Time for a quick description of the <em>‘whaledata.txt’</em>
dataset to get your bearings. These data were collected during two
research cruises in the North Atlantic in May and October 2003. During
these two months the research vessel visited multiple stations (areas)
and marine mammal observers recorded the number of whales (who doesn’t
love whales!) at each of these stations. The time the vessel spent at
each station was also recorded along with other site specific variables
such as the latitude and longitude, water depth and gradient of the
seabed. The researchers also recorded the ambient level of sub-surface
noise with a hydrophone and categorised this variable into ‘low’,
‘medium’ or ‘high’. The structure of these data is known as a
rectangular dataset (aka ‘tidy’ data by the cool kids) with no missing
cells. Each row is an individual observation and each column a separate
variable. The variable names are contained in the first row of the
dataset (aka a header).</p>
<p> </p>
<p>5. Now let’s import the <em>‘whaledata.txt’</em> file into R. To do
this you will use the workhorse function of data importing,
<code>read.table()</code>. This function is incredibly flexible and can
import many different file types (take a look at the help file)
including our tab delimited file. Don’t forget to include the
appropriate arguments when using the <code>read.table()</code> function
(remember that header?) and assign it a variable with an appropriate
name (such as <code>whale</code>). Take a look at <a
href="https://intro2r.com/importing-data.html#import_fnc">Section
3.2.2</a> of the Introduction to R book or watch this <a
href="https://alexd106.github.io/QUADstatR/howto.html#import-vid">video</a>
if you need any further information.</p>
<p> </p>
<p>6. Once you’ve imported your data file nothing much seems to happen
(don’t worry, this is normal). To examine the contents of the dataframe
one option would be to just type the variable name (<code>whale</code>)
into the console. This is probably not a good idea and doesn’t really
tell you anything about the dataframe other than there’s alot of data
(try it)! A slightly better option is to use the <code>head()</code>
function to display the first 5 rows of your dataframe. Again, this is
likely to just fill up your console. A better option would be to use the
<code>names()</code> function which will return a vector of variable
names from your dataset. However, all you get are the names of the
variables but no other information. A much, much better option is to use
the <code>str()</code> function to display the structure of the dataset
and a neat summary of your variables. Another advantage is that you can
copy this information from the console and paste it into your R script
(making sure it’s commented) for later reference. How many observations
does this dataset have? How many variables are in this dataset? What
type of variables are <code>month</code> and
<code>water.noise</code>?</p>
<p> </p>
<p>7. You can get another useful summary of your dataframe by using the
<code>summary()</code> function. This will provide you with some useful
summary statistics for each variable. Notice how the type of output
depends on whether the variable is a factor or a number. Another useful
feature of the <code>summary()</code> function is that it will also
count the number of missing values in each variable. Which variables
have missing values and how many?</p>
<p> </p>
<p>8. Summarising and manipulating dataframes is a key skill to acquire
when learning R. Although there are many ways to do this, we will
concentrate on using the square bracket <code>[ ]</code> notation which
you used previously with vectors. The key thing to remember when using
<code>[ ]</code> with dataframes is that dataframes have two dimensions
(think rows and columns) so you always need to specify which rows and
which columns you want inside the <code>[ ]</code> (see <a
href="https://intro2r.com/wrangling-data-frames.html#positional-indexes">Section
3.4.1</a> and this <a
href="https://alexd106.github.io/QUADstatR/howto.html#dataw-vid">video</a>
for some additional background information and a few examples). Let’s
practice.</p>
<ol style="list-style-type: lower-alpha">
<li><p>Extract all the elements of the first 10 rows and the first 4
columns of the <code>whale</code> dataframe and assign to a new variable
called <code>whale.sub</code>.</p></li>
<li><p>Next, extract all observations (remember - rows) from the
<code>whale</code> dataframe and the columns <code>month</code>,
<code>water.noise</code> and <code>number.whales</code> and assign to a
variable called <code>whale.num</code>.</p></li>
<li><p>Now, extract the first 50 rows and all columns form the original
dataframe and assign to a variable <code>whale.may</code> (there’s a
better way to do this with conditional statements - see below).</p></li>
<li><p>Finally, extract all rows except the first 10 rows and all
columns except the last column. Remember, for some of these questions
you can specify the columns you want either by position or by name.
Practice both ways. Do you have a preference? If so why?</p></li>
</ol>
<p> </p>
<p>9. In addition to extracting rows and columns from your dataframe by
position you can also use conditional statements to select particular
rows based on some logical criteria. This is very useful but takes a bit
of practice to get used to (see <a
href="https://intro2r.com/wrangling-data-frames.html#logical-indexes">Section
3.4.2</a> for an introduction). Extract rows from your dataframe (all
columns by default) based on the following criteria (note: you will need
to assign the results of these statements to appropriately named
variables, I’ll leave it up to you to use informative names!):</p>
<ul>
<li>at depths greater than 1200 m</li>
<li>gradient steeper than 200 degrees</li>
<li>water noise level of ‘low’</li>
<li>water.noise level of ‘high’ in the month of ‘May’</li>
<li>month of ‘October’, water noise level of ‘low’ and gradient greater
than the median value of gradient (132)</li>
<li>all observations from between latitudes 60.0 and 61.0 and longitudes
-6.0 and -4.0</li>
<li>all rows that do not have a water noise level of medium</li>
</ul>
<p> </p>
<p>10. A really neat feature of extracting rows based on conditional
statements is that you can include R functions within the statement
itself. To practice this, modify your answer to the gradient question in
Q9 to use the <code>median()</code> function rather than hard coding the
value 132.</p>
<p> </p>
<p>11. However, when using functions in conditional statements you need
to be careful. For example, write some code to extract all rows from the
dataframe <code>whale</code> with depths greater than 1500 m and with a
greater number of whales spotted than average (hint: use the
<code>mean()</code> function in your conditional statement). Can you see
a problem with the output? Discuss the cause of this problem with an
instructor and explore possible solutions.</p>
<p> </p>
<p>12. Although you have concentrated on using the square bracket
<code>[ ]</code> notation to extract rows and columns from your
dataframe, there are of course many other approaches. One such approach
is to use the <code>subset()</code> function (see <code>?subset</code>
or search for the <code>subset</code> function in the Introduction to R
book to find more information). Use the <code>subset()</code> function
to extract all rows in ‘May’ with a time at station less than 1000
minutes and a depth greater than 1000 m. Also use <code>subset()</code>
to extract data collected in ‘October’ from latitudes greater than 61
degrees but only include the columns <code>month</code>,
<code>latitude</code>, <code>longitude</code> and
<code>number.whales</code>.</p>
<p> </p>
<p>13. Another useful way to manipulated your dataframes is to sort the
rows based on the value of a variable (or combinations of variables).
Rather counter-intuitively you should use the <code>order()</code>
function to sort your dataframes, not the <code>sort()</code> function
(see <a
href="https://intro2r.com/wrangling-data-frames.html#ordering-data-frames">Section
3.4.3</a> of the Introduction to R book for an explanation). Ordering
dataframes uses the same logic you practised in Q14 in Exercise 2. Let’s
practice with a straight forward example. Use the <code>order()</code>
function to sort all rows in the <code>whale</code> dataframe in
ascending order of depth (shallowest to deepest). Store this sorted
dataframe in a variable called <code>whale.depth.sort</code>.</p>
<p> </p>
<p>14. Now for something a little more complicated. Sort all rows in the
<code>whale</code> dataframe by ascending order of depth within each
level of water noise. The trick here is to remember that you can order
by more than one variable when using the <code>order()</code> function
(see <a
href="https://intro2r.com/wrangling-data-frames.html#ordering-data-frames">Section
3.4.3</a> again). Don’t forget to assign your sorted dataframe to a new
variable with a sensible name. Repeat the previous ordering but this
time order by <strong>descending</strong> order of depth within each
level of water noise.</p>
<p> </p>
<p>15. Often, we would like to summarise variables by, for example,
calculating a mean, median or counting the number of observations. To do
this for a single variable it’s fairly straight forward :</p>
<p> </p>
<p> </p>
<p>15. (cont) Perhaps more interestingly, you might want summarise one
variable conditional on the level of another factor variable. For
example, write some R code to calculate the mean number of whales
sighted at each of the three levels of water noise (see <a
href="https://intro2r.com/summarising-data-frames.html#summarising-data-frames">Section
3.5</a> for a few hints). Next, calculate the median number of whales
sighted at each level of water noise and for each month.</p>
<p> </p>
<p>16. Another useful function for summarising dataframes is
<code>aggregate()</code>. Search in the R book for the function
aggregate to see how to use this function (or see
<code>?aggregate</code>). Use the <code>aggregate()</code> function to
calculate the mean of time at station, number of whales, depth and
gradient for each level of water noise (don’t forget about that sneaky
NA value). Next calculate the mean of time at station, number of whales,
depth and gradient for each level of water noise for each month.
(Optional): For an extra bonus point see if you can figure out how to
modify your previous code to display the mean values to 2 decimal places
rather than the default of 3 decimal places.</p>
<p> </p>
<p>17. Knowing how many observations are present for each factor level
(or combinations of factor levels) is useful to determine whether you
have an adequate sample size (for subsequent modelling for example). Use
the <code>table()</code> function to determine the number of
observations for each level of water noise (see <a
href="https://intro2r.com/summarising-data-frames.html#summarising-data-frames">Section
3.5</a> again for more information). Next use the same function to
display the number of observations for each combination of water noise
and month. (Optional): The <code>xtabs()</code> function is very
flexible for creating tables of counts for factor combinations (aka
contingency tables). Take a look at the Introduction to R book, the help
file or Google to figure out how to use the <code>xtabs()</code>
function to replicate your use of the <code>table()</code> function.</p>
<p> </p>
<p>18. Ok, we have spent quite a bit of time (and energy) learning how
to import and manipulate dataframes. The last thing we need to cover is
how to export dataframes from R to an external file (see <a
href="https://intro2r.com/exporting-data.html#exporting-data">Section
3.6</a> of the book for more details). Let’s say you want to export the
dataframe <code>whale.num</code> you created previously (see Q8) to a
file called ‘whale_num.txt’ in your <code>output</code> directory which
you created in Exercise 1. To do this you will need to use the
<code>write.table()</code> function. You want to include the the
variable names in the first row of the file, but you don’t want to
include the row names. Also, make sure the file is a tab delimited file.
Once you have create your file, try to open it in Microsoft Excel (or
open source equivalent).</p>
<p> </p>
<p>End of Exercise 3</p>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open');
});
});
</script>
<!-- code folding -->
<script>
$(document).ready(function () {
window.initializeCodeFolding("hide" === "show");
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>