-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn.py
58 lines (52 loc) · 1.47 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import json
def nonlin(x,deriv=False):
if(deriv==True):
return x*(1-x)
return 1/(1+np.exp(-x))
trainingData = [
[[0,0,0], 0],
[[1,0,0], 1],
[[0,1,0], 1],
[[1,1,0], 0],
[[0,0,1], 0],
[[1,0,1], 1],
[[0,1,1], 1],
[[1,1,1], 0],
]
X = np.array([x[0] for x in trainingData])
y = np.array([x[1] for x in trainingData])
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(100000):
trainingIndex = j % len(X)
l0 = np.array([X[trainingIndex]])
l1 = nonlin(np.dot(l0, syn0))
l2 = nonlin(np.dot(l1,syn1))
l2_error = y[trainingIndex] - l2
l2_delta = l2_error*(l2*(1-l2))
l1_error = l2_delta.dot(syn1.T)
l1_delta = l1_error * nonlin(l1,deriv=True)
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
if j % 10000 == 0:
print "Error:" + str(np.mean(np.abs(l2_error)))
with open("./frontend/public/network.json", "w") as file:
json.dump({
"neuronLayers": [
l0.tolist()[0],
l1.tolist()[0],
l2.tolist()[0],
],
"synapseLayers": [
syn0.tolist(),
syn1.tolist(),
],
}, file)
print syn0.tolist()
print syn1.tolist()
for ex in X:
print "example: %s" % ex
l1 = nonlin(np.dot(ex, syn0))
print "layer 1: %s" % l1
print "layer 2: %s" % nonlin(np.dot(l1, syn1))