-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaster_script.m
193 lines (161 loc) · 6.25 KB
/
master_script.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
clearvars; clc;
%% params
agram_freqs = [250,500,1000,2000,4000,8000];
agram_data = [-10, -15, -22, -40, -50, -65]; % monotonic slope
%agram_data = [-15, -26, -35, -55, -95, -65]; % complex slope
%agram_data = [0, -10, -20, -30, -40, -50]; % 10dB/oct falling threshold
%agram_data = [-50, -40, -30, -20, -10, 0]; % 10dB/oct rising threshold
%agram_data = [-20,-20,-20,-20,-20,-20]; % constant
%agram_data = [-20,0,-20,0,-20,0]; % zigzag
agram_comp = 0 - agram_data; % compensation
fs = 16000;
H_order = 18;
F_order = 38;
H_bw = 0.25*fs; % bandwidth (Hz)
F_bw = 0.125*fs; % bandwidth (Hz)
% M = 2; % dyadic
% H_f0 = 0.45*fs; % passband edge
%% File input.
% filename
fname = fullfile(pwd, 'FB_male_female_single-talk_seq.wav');
frange = [1,48000];
% sinusoid params
Nx = 0.25; % input length (sec)
xfreqs = [250,500,1000,2000,4000];
if isempty(fname)
t = 0:(Nx/fs):(Nx-Nx/fs);
n = (0:Nx*fs)./fs;
x = zeros(size(n));
for ii = 1:numel(xfreqs)
x = x + sin(2*pi*xfreqs(ii).*n);
end
x = x./(2^(numel(xfreqs)+6));
[~] = plotfig(x, fs, 'imp', [], 'input');
[~] = plotfig(x, fs, 'mag', [], 'inputfft');
else
[x,xfs] = audioread(fname,frange);
if xfs>fs
if ~mod(xfs,fs)
x = downsample(x, xfs/fs);
xfs = fs;
else
warning('cannot downsample input sig to fs=%d',fs);
end
end
end
%% Derive filter banks.
[B,P] = make_nonunif_fb(fs,H_order,H_bw,F_order,F_bw);
Bsum = (B(1).ir+B(2).ir+B(3).ir+B(4).ir+B(5).ir+B(6).ir+B(7).ir+B(8).ir);
%% add gains
% hand-tuned gains
%{
C(1).ir = 10^(audiogram_comp(1)/20)*B(1).ir;
C(2).ir = 10^((audiogram_comp(3)-4)/20)*B(2).ir;
C(3).ir = 10^((audiogram_comp(3)+3)/20)*B(3).ir;
C(4).ir = 10^(45/20)*B(4).ir;
C(5).ir = 10^(53/20)*B(5).ir;
C(6).ir = B(6).ir;
C(7).ir = B(7).ir;
C(8).ir = 10^(65/20)*B(8).ir;
%}
% interp (sarah)
agram_freqs2 = [250 500 1000 2000 4000 6000 7000 8000];
agram_comp2 = audiogramMatch(agram_comp);
C1 = gram2gain(B,agram_comp2,agram_freqs2,fs,1,-60); % optimization method 1
C1sum = (C1(1).ir+C1(2).ir+C1(3).ir+C1(4).ir+C1(5).ir+C1(6).ir+C1(7).ir+C1(8).ir);
% iterative
C2 = gram2gain(B,agram_comp,agram_freqs,fs,2,-3); % optimization method 2
C2sum = (C2(1).ir+C2(2).ir+C2(3).ir+C2(4).ir+C2(5).ir+C2(6).ir+C2(7).ir+C2(8).ir);
% iterative w/slope detection
C3 = gram2gain(B,agram_comp,agram_freqs,fs,3,-6); % optimization method 2
C3sum = (C3(1).ir+C3(2).ir+C3(3).ir+C3(4).ir+C3(5).ir+C3(6).ir+C3(7).ir+C3(8).ir);
%% process
Y = B;
for ii = 1:numel(C1)
Y(ii).ir = conv(x,C1(ii).ir);
end
Ysum = (Y(1).ir+Y(2).ir+Y(3).ir+Y(4).ir+Y(5).ir+Y(6).ir+Y(7).ir+Y(8).ir);
%%
% Prototype filters
%{
fh.fig1 = figure();
[~] = plotfig(H, fs, 'mag', fh.fig1, 'H(z)');
[~] = plotfig(F, fs, 'mag', fh.fig1, 'F(z)');
fh.fig2 = figure('name', 'Prototype and derived filters H');
[~] = plotfig(H, fs, 'mag', fh.fig2, 'H(z)');
[~] = plotfig(H2, fs, 'mag', fh.fig2, 'H(z^2)');
[~] = plotfig(H4, fs, 'mag', fh.fig2, 'H(z^4)');
[~] = plotfig(H8, fs, 'mag', fh.fig2, 'H(z^8)');
fh.fig3 = figure('name', 'Proto and derived filters F');
[~] = plotfig(F, fs, 'mag', fh.fig3, 'F(z)');
[~] = plotfig(F2, fs, 'mag', fh.fig3, 'F(z^2)');
[~] = plotfig(F4, fs, 'mag', fh.fig3, 'F(z^4)');
[~] = plotfig(F8, fs, 'mag', fh.fig3, 'F(z^8)');
fh.fig4 = figure('name', 'Filter banks pre-subtraction');
[~] = plotfig(P(1).ir, fs, 'mag', fh.fig4, 'P(1).ir');
[~] = plotfig(P(2).ir, fs, 'mag', fh.fig4, 'P(2).ir');
[~] = plotfig(P(3).ir, fs, 'mag', fh.fig4, 'P(3).ir');
[~] = plotfig(P(4).ir, fs, 'mag', fh.fig4, 'P(4).ir');
[~] = plotfig(P(5).ir, fs, 'mag', fh.fig4, 'P(5).ir');
[~] = plotfig(P(6).ir, fs, 'mag', fh.fig4, 'P(6).ir');
[~] = plotfig(P(7).ir, fs, 'mag', fh.fig4, 'P(7).ir');
[~] = plotfig(P(8).ir, fs, 'mag', fh.fig4, 'P(8).ir');
%}
% Flat filterbanks (B)
fh.fig1 = figure('name', 'Filter banks');
[~] = plotfig(B(1).ir, fs, 'mag', fh.fig1, 'B1','k');
[~] = plotfig(B(2).ir, fs, 'mag', fh.fig1, 'B2','k');
[~] = plotfig(B(3).ir, fs, 'mag', fh.fig1, 'B3','k');
[~] = plotfig(B(4).ir, fs, 'mag', fh.fig1, 'B4','k');
[~] = plotfig(B(5).ir, fs, 'mag', fh.fig1, 'B5','k');
[~] = plotfig(B(6).ir, fs, 'mag', fh.fig1, 'B6','k');
[~] = plotfig(B(7).ir, fs, 'mag', fh.fig1, 'B7','k');
[~] = plotfig(B(8).ir, fs, 'mag', fh.fig1, 'B8','k');
hold on;
plot(agram_freqs,zeros(size(agram_freqs)),'r', 'linewidth', 1.5, 'displayname','Sum');
plot(agram_freqs,zeros(size(agram_freqs)),'kx', 'linewidth', 1.5, 'displayname','Sum');
hold off;
legend hide;
title('Filter Banks, flat response');
%}
%%
fh.fig2 = figure('name', 'Matching Errors');
[~] = ploterror(agram_freqs, agram_comp, C1sum, fs, fh.fig2, 'Interpolated', 'r:', true);
[~] = ploterror(agram_freqs, agram_comp, C2sum, fs, fh.fig2, 'Iterative SE', 'b:', false);
[~] = ploterror(agram_freqs, agram_comp, C3sum, fs, fh.fig2, 'Iterative SE w/slope', 'g:', false);
%%
fh.fig5 = figure('name', 'Filter banks');
[~] = plotfig(C3(1).ir, fs, 'maglog', fh.fig5, 'C1', 'k');
[~] = plotfig(C3(2).ir, fs, 'maglog', fh.fig5, 'C2', 'k');
[~] = plotfig(C3(3).ir, fs, 'maglog', fh.fig5, 'C3', 'k');
[~] = plotfig(C3(4).ir, fs, 'maglog', fh.fig5, 'C4', 'k');
[~] = plotfig(C3(5).ir, fs, 'maglog', fh.fig5, 'C5', 'k');
[~] = plotfig(C3(6).ir, fs, 'maglog', fh.fig5, 'C6', 'k');
[~] = plotfig(C3(7).ir, fs, 'maglog', fh.fig5, 'C7', 'k');
[~] = plotfig(C3(8).ir, fs, 'maglog', fh.fig5, 'C8', 'k');
[~] = plotfig(C3sum, fs, 'maglog', fh.fig5, 'Sum', 'g');
hold on;
% plot(audiogram_freqs,audiogram_comp,'kx:', 'linewidth', 1.5); % alex
plot(agram_freqs,agram_comp,'kx:', 'linewidth', 1.5); % sarah
hold off;
ylim([10,100]);
legend hide;
title('Audiogram Match (Iterative Optimization)');
%%
%{
fh.fig6 = figure('name', 'Filter banks IR');
[~] = plotfig(B(1).ir, fs, 'phase', fh.fig6, 'B(1).ir',[]);
[~] = plotfig(B(2).ir, fs, 'phase', fh.fig6, 'B(2).ir',[]);
[~] = plotfig(B(3).ir, fs, 'phase', fh.fig6, 'B(3).ir',[]);
[~] = plotfig(B(4).ir, fs, 'phase', fh.fig6, 'B(4).ir',[]);
[~] = plotfig(B(5).ir, fs, 'phase', fh.fig6, 'B(5).ir',[]);
[~] = plotfig(B(6).ir, fs, 'phase', fh.fig6, 'B(6).ir',[]);
[~] = plotfig(B(7).ir, fs, 'phase', fh.fig6, 'B(7).ir',[]);
[~] = plotfig(B(8).ir, fs, 'phase', fh.fig6, 'B(8).ir',[]);
%}
%%
fh.fig4 = figure('name','Signal In/Out');
[~] = plotfig(x, fs, 'maglog', fh.fig4, 'X', []);
[~] = plotfig(Ysum, fs, 'maglog', fh.fig4, 'Y', []);
title('Signal In/Out');
ylim([-20,100]);