Adds equidimensional decomposition and module order option to Sig GB's #243
Annotations
10 errors and 1 warning
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/algorithms/groebner-bases.jl:30-42
```jldoctest
julia> using AlgebraicSolving
julia> R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
julia> I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
julia> eliminate(I, 2)
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
```
Subexpression:
R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
Evaluated output:
(Multivariate polynomial ring in 3 variables over GF(101), Nemo.FqMPolyRingElem[x, y, z])
Expected output:
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
diff =
Warning: Diff output requires color.
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, Nemo.FqMPolyRingElem[x, y, z])
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/algorithms/groebner-bases.jl:30-42
```jldoctest
julia> using AlgebraicSolving
julia> R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
julia> I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
julia> eliminate(I, 2)
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
```
Subexpression:
I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
Evaluated output:
Nemo.FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
Expected output:
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
diff =
Warning: Diff output requires color.
FqMPolyRingElem[x Nemo.FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/algorithms/groebner-bases.jl:30-42
```jldoctest
julia> using AlgebraicSolving
julia> R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
julia> I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
julia> eliminate(I, 2)
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
```
Subexpression:
eliminate(I, 2)
Evaluated output:
1-element Vector{Nemo.FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
Expected output:
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
diff =
Warning: Diff output requires color.
1-element Vector{FqMPolyRingElem}:
Vector{Nemo.FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/algorithms/groebner-bases.jl:92-111
```jldoctest
julia> using AlgebraicSolving
julia> R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
julia> I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
julia> groebner_basis(I)
4-element Vector{FqMPolyRingElem}:
x + 2*y + 2*z + 100
y*z + 82*z^2 + 10*y + 40*z
y^2 + 60*z^2 + 20*y + 81*z
z^3 + 28*z^2 + 64*y + 13*z
julia> groebner_basis(I, eliminate=2)
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
```
Subexpression:
R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
Evaluated output:
(Multivariate polynomial ring in 3 variables over GF(101), Nemo.FqMPolyRingElem[x, y, z])
Expected output:
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
diff =
Warning: Diff output requires color.
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, Nemo.FqMPolyRingElem[x, y, z])
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/algorithms/groebner-bases.jl:92-111
```jldoctest
julia> using AlgebraicSolving
julia> R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
julia> I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
julia> groebner_basis(I)
4-element Vector{FqMPolyRingElem}:
x + 2*y + 2*z + 100
y*z + 82*z^2 + 10*y + 40*z
y^2 + 60*z^2 + 20*y + 81*z
z^3 + 28*z^2 + 64*y + 13*z
julia> groebner_basis(I, eliminate=2)
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
```
Subexpression:
I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
Evaluated output:
Nemo.FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
Expected output:
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
diff =
Warning: Diff output requires color.
FqMPolyRingElem[x Nemo.FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/algorithms/groebner-bases.jl:92-111
```jldoctest
julia> using AlgebraicSolving
julia> R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
julia> I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
julia> groebner_basis(I)
4-element Vector{FqMPolyRingElem}:
x + 2*y + 2*z + 100
y*z + 82*z^2 + 10*y + 40*z
y^2 + 60*z^2 + 20*y + 81*z
z^3 + 28*z^2 + 64*y + 13*z
julia> groebner_basis(I, eliminate=2)
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
```
Subexpression:
groebner_basis(I)
Evaluated output:
4-element Vector{Nemo.FqMPolyRingElem}:
x + 2*y + 2*z + 100
y*z + 82*z^2 + 10*y + 40*z
y^2 + 60*z^2 + 20*y + 81*z
z^3 + 28*z^2 + 64*y + 13*z
Expected output:
4-element Vector{FqMPolyRingElem}:
x + 2*y + 2*z + 100
y*z + 82*z^2 + 10*y + 40*z
y^2 + 60*z^2 + 20*y + 81*z
z^3 + 28*z^2 + 64*y + 13*z
diff =
Warning: Diff output requires color.
4-element Vector{FqMPolyRingElem}:
Vector{Nemo.FqMPolyRingElem}:
x + 2*y + 2*z + 100
y*z + 82*z^2 + 10*y + 40*z
y^2 + 60*z^2 + 20*y + 81*z
z^3 + 28*z^2 + 64*y + 13*z
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/algorithms/groebner-bases.jl:92-111
```jldoctest
julia> using AlgebraicSolving
julia> R, (x,y,z) = polynomial_ring(GF(101),["x","y","z"], internal_ordering=:degrevlex)
(Multivariate polynomial ring in 3 variables over GF(101), FqMPolyRingElem[x, y, z])
julia> I = Ideal([x+2*y+2*z-1, x^2+2*y^2+2*z^2-x, 2*x*y+2*y*z-y])
FqMPolyRingElem[x + 2*y + 2*z + 100, x^2 + 2*y^2 + 2*z^2 + 100*x, 2*x*y + 2*y*z + 100*y]
julia> groebner_basis(I)
4-element Vector{FqMPolyRingElem}:
x + 2*y + 2*z + 100
y*z + 82*z^2 + 10*y + 40*z
y^2 + 60*z^2 + 20*y + 81*z
z^3 + 28*z^2 + 64*y + 13*z
julia> groebner_basis(I, eliminate=2)
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
```
Subexpression:
groebner_basis(I, eliminate=2)
Evaluated output:
1-element Vector{Nemo.FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
Expected output:
1-element Vector{FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
diff =
Warning: Diff output requires color.
1-element Vector{FqMPolyRingElem}:
Vector{Nemo.FqMPolyRingElem}:
z^4 + 38*z^3 + 95*z^2 + 95*z
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/siggb/siggb.jl:46-71
```jldoctest
julia> using AlgebraicSolving
julia> R, vars = polynomial_ring(GF(17), ["x$i" for i in 1:4])
(Multivariate polynomial ring in 4 variables over GF(17), FqMPolyRingElem[x1, x2, x3, x4])
julia> F = cyclic(R)
FqMPolyRingElem[x1 + x2 + x3 + x4, x1*x2 + x1*x4 + x2*x3 + x3*x4, x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4, x1*x2*x3*x4 + 16]
julia> Fhom = homogenize(F.gens)
4-element Vector{FqMPolyRingElem}:
x1 + x2 + x3 + x4
x1*x2 + x2*x3 + x1*x4 + x3*x4
x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4
x1*x2*x3*x4 + 16*x5^4
julia> sig_groebner_basis(Fhom, mod_ord = :DPOT)
7-element Vector{Tuple{Tuple{Int64, FqMPolyRingElem}, FqMPolyRingElem}}:
((1, 1), x1 + x2 + x3 + x4)
((2, 1), x2^2 + 2*x2*x4 + x4^2)
((3, 1), x2*x3^2 + x3^2*x4 + 16*x2*x4^2 + 16*x4^3)
((4, 1), x2*x3*x4^2 + x3^2*x4^2 + 16*x2*x4^3 + x3*x4^3 + 16*x4^4 + 16*x5^4)
((4, x3), x3^3*x4^2 + x3^2*x4^3 + 16*x3*x5^4 + 16*x4*x5^4)
((4, x2), x2*x4^4 + x4^5 + 16*x2*x5^4 + 16*x4*x5^4)
((4, x2*x3), x3^2*x4^4 + x2*x3*x5^4 + 16*x2*x4*x5^4 + x3*x4*x5^4 + 15*x4^2*x5^4)
```
Subexpression:
R, vars = polynomial_ring(GF(17), ["x$i" for i in 1:4])
Evaluated output:
(Multivariate polynomial ring in 4 variables over GF(17), Nemo.FqMPolyRingElem[x1, x2, x3, x4])
Expected output:
(Multivariate polynomial ring in 4 variables over GF(17), FqMPolyRingElem[x1, x2, x3, x4])
diff =
Warning: Diff output requires color.
(Multivariate polynomial ring in 4 variables over GF(17), FqMPolyRingElem[x1, Nemo.FqMPolyRingElem[x1, x2, x3, x4])
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/siggb/siggb.jl:46-71
```jldoctest
julia> using AlgebraicSolving
julia> R, vars = polynomial_ring(GF(17), ["x$i" for i in 1:4])
(Multivariate polynomial ring in 4 variables over GF(17), FqMPolyRingElem[x1, x2, x3, x4])
julia> F = cyclic(R)
FqMPolyRingElem[x1 + x2 + x3 + x4, x1*x2 + x1*x4 + x2*x3 + x3*x4, x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4, x1*x2*x3*x4 + 16]
julia> Fhom = homogenize(F.gens)
4-element Vector{FqMPolyRingElem}:
x1 + x2 + x3 + x4
x1*x2 + x2*x3 + x1*x4 + x3*x4
x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4
x1*x2*x3*x4 + 16*x5^4
julia> sig_groebner_basis(Fhom, mod_ord = :DPOT)
7-element Vector{Tuple{Tuple{Int64, FqMPolyRingElem}, FqMPolyRingElem}}:
((1, 1), x1 + x2 + x3 + x4)
((2, 1), x2^2 + 2*x2*x4 + x4^2)
((3, 1), x2*x3^2 + x3^2*x4 + 16*x2*x4^2 + 16*x4^3)
((4, 1), x2*x3*x4^2 + x3^2*x4^2 + 16*x2*x4^3 + x3*x4^3 + 16*x4^4 + 16*x5^4)
((4, x3), x3^3*x4^2 + x3^2*x4^3 + 16*x3*x5^4 + 16*x4*x5^4)
((4, x2), x2*x4^4 + x4^5 + 16*x2*x5^4 + 16*x4*x5^4)
((4, x2*x3), x3^2*x4^4 + x2*x3*x5^4 + 16*x2*x4*x5^4 + x3*x4*x5^4 + 15*x4^2*x5^4)
```
Subexpression:
F = cyclic(R)
Evaluated output:
Nemo.FqMPolyRingElem[x1 + x2 + x3 + x4, x1*x2 + x1*x4 + x2*x3 + x3*x4, x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4, x1*x2*x3*x4 + 16]
Expected output:
FqMPolyRingElem[x1 + x2 + x3 + x4, x1*x2 + x1*x4 + x2*x3 + x3*x4, x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4, x1*x2*x3*x4 + 16]
diff =
Warning: Diff output requires color.
FqMPolyRingElem[x1 Nemo.FqMPolyRingElem[x1 + x2 + x3 + x4, x1*x2 + x1*x4 + x2*x3 + x3*x4, x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4, x1*x2*x3*x4 + 16]
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/DocTests.jl#L373
doctest failure in ~/work/AlgebraicSolving.jl/AlgebraicSolving.jl/src/siggb/siggb.jl:46-71
```jldoctest
julia> using AlgebraicSolving
julia> R, vars = polynomial_ring(GF(17), ["x$i" for i in 1:4])
(Multivariate polynomial ring in 4 variables over GF(17), FqMPolyRingElem[x1, x2, x3, x4])
julia> F = cyclic(R)
FqMPolyRingElem[x1 + x2 + x3 + x4, x1*x2 + x1*x4 + x2*x3 + x3*x4, x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4, x1*x2*x3*x4 + 16]
julia> Fhom = homogenize(F.gens)
4-element Vector{FqMPolyRingElem}:
x1 + x2 + x3 + x4
x1*x2 + x2*x3 + x1*x4 + x3*x4
x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4
x1*x2*x3*x4 + 16*x5^4
julia> sig_groebner_basis(Fhom, mod_ord = :DPOT)
7-element Vector{Tuple{Tuple{Int64, FqMPolyRingElem}, FqMPolyRingElem}}:
((1, 1), x1 + x2 + x3 + x4)
((2, 1), x2^2 + 2*x2*x4 + x4^2)
((3, 1), x2*x3^2 + x3^2*x4 + 16*x2*x4^2 + 16*x4^3)
((4, 1), x2*x3*x4^2 + x3^2*x4^2 + 16*x2*x4^3 + x3*x4^3 + 16*x4^4 + 16*x5^4)
((4, x3), x3^3*x4^2 + x3^2*x4^3 + 16*x3*x5^4 + 16*x4*x5^4)
((4, x2), x2*x4^4 + x4^5 + 16*x2*x5^4 + 16*x4*x5^4)
((4, x2*x3), x3^2*x4^4 + x2*x3*x5^4 + 16*x2*x4*x5^4 + x3*x4*x5^4 + 15*x4^2*x5^4)
```
Subexpression:
Fhom = homogenize(F.gens)
Evaluated output:
4-element Vector{Nemo.FqMPolyRingElem}:
x1 + x2 + x3 + x4
x1*x2 + x2*x3 + x1*x4 + x3*x4
x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4
x1*x2*x3*x4 + 16*x5^4
Expected output:
4-element Vector{FqMPolyRingElem}:
x1 + x2 + x3 + x4
x1*x2 + x2*x3 + x1*x4 + x3*x4
x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4
x1*x2*x3*x4 + 16*x5^4
diff =
Warning: Diff output requires color.
4-element Vector{FqMPolyRingElem}:
Vector{Nemo.FqMPolyRingElem}:
x1 + x2 + x3 + x4
x1*x2 + x2*x3 + x1*x4 + x3*x4
x1*x2*x3 + x1*x2*x4 + x1*x3*x4 + x2*x3*x4
x1*x2*x3*x4 + 16*x5^4
|
Run julia-actions/julia-docdeploy@latest:
../../../.julia/packages/Documenter/bFHi4/src/Expanders.jl#L334
no docs found for 'equidimensional_decomposition(
I::Ideal{T},
info_level::Int=0
) where {T <: MPolyRingElem}' in `@docs` block in src/decomposition.md:29-34
```@docs
equidimensional_decomposition(
I::Ideal{T},
info_level::Int=0
) where {T <: MPolyRingElem}
```
|
Loading