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Preface

I NTRODUCTION

This quicksheet contains many classical equations and diagrams for algorithm, which will help you quickly recall
knowledge and ideas in algorithm.

This quicksheet has three significant advantages:

1. Non-essential knowledge points omitted
2. Compact knowledge representation
3. Quick recall

HOW TO USE THIS QUICKSHEET

You should not attempt to remember the details of an algorithm. Instead, you should know:

1. What problems this algorithm solves.
2. The benefits of using this algorithm compared to others.
3. The important clues of this algorithm so that you can derive the details of the algorithm from them.

Only dives into the code when you is unable to reconstruct the algorithm from the hits and and the important clues.

At GitHub, June 2015 github.com/idf

iv



Contents

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Basic Counts. . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Solving Recurrence Equations. . . . . . . . 1

1.2.1 Master Theorem. . . . . . . . . . . . 1
1.3 Useful Math Equations. . . . . . . . . . . . . . . 1

2 Memory Complexity . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.1 Tables. . . . . . . . . . . . . . . . . . . . . 2
2.1.2 Example. . . . . . . . . . . . . . . . . . . 2

3 Basic Data Structures. . . . . . . . . . . . . . . . . . . . . 3
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2.1 Stack and Recursion. . . . . . . . . 3
3.2.2 Largest Rectangle. . . . . . . . . . . 3

3.3 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3.1 Math Relations. . . . . . . . . . . . . 4
3.3.2 Operations. . . . . . . . . . . . . . . . . 4

4 Linked List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4.1 Operations. . . . . . . . . . . . . . . . . . . . . . . . . 5

4.1.1 Fundamentals. . . . . . . . . . . . . . . 5
4.1.2 Basic Operations. . . . . . . . . . . . 5
4.1.3 Combined Operations. . . . . . . . 5

5 Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 6
5.2 Operations. . . . . . . . . . . . . . . . . . . . . . . . . 6

5.2.1 Sink. . . . . . . . . . . . . . . . . . . . . . . 6
5.2.2 Swim. . . . . . . . . . . . . . . . . . . . . . 6
5.2.3 Heapify. . . . . . . . . . . . . . . . . . . . 6

5.3 Implementation. . . . . . . . . . . . . . . . . . . . . 6
5.3.1 General. . . . . . . . . . . . . . . . . . . . 6
5.3.2 Python Heapq. . . . . . . . . . . . . . 6

5.4 Event-Driven Algorithm. . . . . . . . . . . . . 7

6 Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6.1 Binary Tree. . . . . . . . . . . . . . . . . . . . . . . . 8

6.1.1 Introductions. . . . . . . . . . . . . . . 8
6.2 Binary Search Tree (BST). . . . . . . . . . . . 8

6.2.1 Operations. . . . . . . . . . . . . . . . . 8
6.2.2 Range search. . . . . . . . . . . . . . . 8

6.3 Interval Search Tree. . . . . . . . . . . . . . . . . 8

6.4 Segment Tree. . . . . . . . . . . . . . . . . . . . . . . 9
6.4.1 Introduction. . . . . . . . . . . . . . . . 9
6.4.2 Operations. . . . . . . . . . . . . . . . . 9

7 Balanced Search Tree. . . . . . . . . . . . . . . . . . . . . 11
7.1 2-3 Search Tree. . . . . . . . . . . . . . . . . . . . . 11

7.1.1 Insertion. . . . . . . . . . . . . . . . . . . 11
7.1.2 Splitting. . . . . . . . . . . . . . . . . . . 11
7.1.3 Properties. . . . . . . . . . . . . . . . . . 11

7.2 Red-Black Tree. . . . . . . . . . . . . . . . . . . . . 12
7.2.1 Properties. . . . . . . . . . . . . . . . . . 12
7.2.2 Operations. . . . . . . . . . . . . . . . . 12

7.3 B-Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7.4 AVL Tree. . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.1 Data Structure. . . . . . . . . . . . . . . . . . . . . . 14

8.1.1 Basic. . . . . . . . . . . . . . . . . . . . . . 14
8.1.2 Advanced. . . . . . . . . . . . . . . . . . 14
8.1.3 Application. . . . . . . . . . . . . . . . . 15

9 Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 16
9.2 Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 16

9.2.1 Quick Sort. . . . . . . . . . . . . . . . . 16
9.2.2 Stability . . . . . . . . . . . . . . . . . . . 17
9.2.3 Applications. . . . . . . . . . . . . . . . 17
9.2.4 Considerations. . . . . . . . . . . . . . 17
9.2.5 Summary. . . . . . . . . . . . . . . . . . 17

9.3 Reversion. . . . . . . . . . . . . . . . . . . . . . . . . . 17
9.3.1 Calculation. . . . . . . . . . . . . . . . . 18

10 Search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
10.1 Binary Search. . . . . . . . . . . . . . . . . . . . . . 19
10.2 Looping Root. . . . . . . . . . . . . . . . . . . . . . 19

11 Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
11.1 Circular Array. . . . . . . . . . . . . . . . . . . . . . 20

11.1.1 Circular max sum. . . . . . . . . . . 20
11.1.2 Non-adjacent cell. . . . . . . . . . . . 20
11.1.3 Binary search. . . . . . . . . . . . . . . 20

11.2 Voting Algorithm . . . . . . . . . . . . . . . . . . . 20
11.2.1 Majority Number. . . . . . . . . . . . 20

12 Stream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
12.1 Sliding Window. . . . . . . . . . . . . . . . . . . . 22

v



vi Preface

13 Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
13.1 Functions. . . . . . . . . . . . . . . . . . . . . . . . . . 23
13.2 Prime Numbers. . . . . . . . . . . . . . . . . . . . . 23

13.2.1 Sieve of Eratosthenes. . . . . . . . 23
13.2.2 Factorization. . . . . . . . . . . . . . . 24

14 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.1 DFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
14.2 Polish Notation. . . . . . . . . . . . . . . . . . . . . 25

14.2.1 Evaluate Post-fix Expressions. 26
14.2.2 Convert In-fix to Post-fix. . . . . 26

15 Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
15.1 Basics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

15.1.1 Considerations. . . . . . . . . . . . . . 27
15.1.2 Basic Formula. . . . . . . . . . . . . . 27
15.1.3 N objects, K Ceils. . . . . . . . . . . 27
15.1.4 N objects, K types. . . . . . . . . . . 27
15.1.5 Inclusion–Exclusion Principle. 27

15.2 Combinations with Duplicated Objects. 27
15.2.1 Basic Solution. . . . . . . . . . . . . . 28
15.2.2 Algebra Solution. . . . . . . . . . . . 28

16 Bit Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 29
16.1 Concepts. . . . . . . . . . . . . . . . . . . . . . . . . . 29

16.1.1 Basics. . . . . . . . . . . . . . . . . . . . . 29
16.1.2 Operations. . . . . . . . . . . . . . . . . 29

16.2 Single Number. . . . . . . . . . . . . . . . . . . . . 29
16.2.1 Appear three times. . . . . . . . . . 29
16.2.2 Two Numbers. . . . . . . . . . . . . . . 29

17 Greedy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
17.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 30

17.1.1 Summarizing properties. . . . . . 30

18 String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
18.1 Palindrome. . . . . . . . . . . . . . . . . . . . . . . . 31

18.1.1 Palindrome anagram. . . . . . . . . 31
18.2 KMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

18.2.1 Prefix suffix table. . . . . . . . . . . 31
18.2.2 Searching algorithm. . . . . . . . . 32
18.2.3 Applications. . . . . . . . . . . . . . . . 32

19 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
19.1 Basic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
19.2 BFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

19.2.1 BFS with Abstract Level. . . . . 33
19.3 Detect Acyclic. . . . . . . . . . . . . . . . . . . . . . 33

19.3.1 Directed Graph. . . . . . . . . . . . . 33
19.3.2 Undirected Graph. . . . . . . . . . . 33

19.4 Topological Sorting. . . . . . . . . . . . . . . . . 34
19.4.1 Algorithm. . . . . . . . . . . . . . . . . . 34
19.4.2 Applications. . . . . . . . . . . . . . . . 34

19.5 Union-Find. . . . . . . . . . . . . . . . . . . . . . . . 34
19.5.1 Algorithm. . . . . . . . . . . . . . . . . . 34
19.5.2 Complexity. . . . . . . . . . . . . . . . . 35

20 Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
20.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 36

21 Dynamic Programming . . . . . . . . . . . . . . . . . . . 37
21.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . 37

21.1.1 Common practice. . . . . . . . . . . 37
21.2 Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . 37
21.3 Backpack. . . . . . . . . . . . . . . . . . . . . . . . . . 38
21.4 Local and global extremes. . . . . . . . . . . . 38

21.4.1 Long and short stocks. . . . . . . . 38
21.5 Game theory - multi players. . . . . . . . . . 38

21.5.1 Coin game. . . . . . . . . . . . . . . . . 38

22 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
22.1 General Tips. . . . . . . . . . . . . . . . . . . . . . . 39

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



List of Contributors

Daniel D. Zhang (github.com/idf )

vii

http://github.com/idf


Notations

I NTRODUCTION

Algorithm notations.

GENERAL MATH NOTATION

Symbol Meaning

bxc Floor ofx, i.e. round down to nearest integer
dxe Ceiling ofx, i.e. round up to nearest integer

floor(key) the largest key≤ the given key
ceil(key) the smallest key≥ the given key

logx The base of logarithm is 2 unless otherwise stated
a∧b Logical AND
a∨b Logical OR
¬a Logical NOT
∞ Infinity
→ Tends towards, e.g.,n→ ∞
∝ Proportional to;y = ax can be written asy ∝ x
|x| Absolute value
||a|| L2 distance (Euclidean distance) of a vector
|S| Size (cardinality) of a set
n! Factorial function
, Defined as

O(∙) Big-O: roughly means order of magnitude
R The real numbers

0 : n Range (Python convention): 0 :n = 0,1,2, ...,n−1
≈ Approximately equal to

argmax
x

f (x) Argmax: the valuex that maximizesf
(n

k

)
n choosek , equal to n!

k!(n−k)!

viii



Chapter 1
Time Complexity

1.1 BASIC COUNTS

Double for loop

N

∑
i=1

N

∑
j=i

1 =

(
N
2

)

∼
1
2

N2

N

∑
i=1

N

∑
j=i

1∼
∫ N

x=1

∫ N

y=x
dydx

Triple for loop

N

∑
i=1

N

∑
j=i

N

∑
k=1

1 =

(
N
3

)

∼
1
6

N3

N

∑
i=1

N

∑
j=i

N

∑
k=1

1∼
∫ N

x=1

∫ N

y=x

∫ N

z=y
dzdydx

1.2 SOLVING RECURRENCE EQUATIONS

Basic recurrence equation solving techniques:

1. Guessing and validation
2. Telescoping
3. Recursion tree
4. Master Theorem

1.2.1 Master Theorem

Recurrence relations:

T(n) = a T
(n

b

)
+ f (n), wherea≥ 1, b > 1

Notice thatb > 1 rather thanb≥ 1.

Case 1

If:

f (n) = o(nlogb a)

Then:
T(n) = Θ(nlogb a)

Notice that in the condition it iso rather thanO.

Case 2

If:
f (n) = Θ(nlogb a logk n)

for some constantk≥ 0

Then:
T(n) = Θ(nlogb a logk+1n)

Case 3

If:
f (n) = ω(nlogb a)

And with regularity condition:

f (
n
b
)≤ k f(n)

for some constantk < 1 and sufficiently largen

Then:
T (n) = Θ ( f (n))

Notice that in the condition it isω rather thanΩ .

1.3 USEFUL M ATH EQUATIONS

Euler:
1
2

+
1
3

+
1
4

+ ...+
1
n

= lnn

1



Chapter 2
Memory Complexity

2.1 INTRODUCTION

2.1.1 Tables

The memory usage is based on Java.

Type Bytes

boolean 1
byte 1
char 2
int 4
float 4
long 8
double 8

Type Bytes

char[] 2N+24
int[] 4N+24
double[]8N+24

Type Bytes

char[][] 2MN
int[][] 4MN
double[][] 8MN

Type Bytes

Object overhead 16
Reference 8
Padding 8x

Reference includes object reference and innner class
reference.

Padding is to make the object memory size of 8’s mul-
tiple.

2.1.2 Example

The generics is passed as Boolean:

public class Box<T> { // 16 (object overhead)

private in N; // 4 (int)

private T[] items; // 8 (reference to array)

// 8N+24 (array of Boolean references)

// 24N (Boolean objects)

// 4 (padding to round up to a multiple)

}

Notice the multiple levels of references.

2



Chapter 3
Basic Data Structures

3.1 INTRODUCTION

Abstract Data Types (ADT):

1. Queue
2. Stack
3. HashMap

Implementation (for both queue and stack):

1. Linked List
2. Resizing Array:

a. Doubling: when full (100%).
b. Halfing: when one-quarter full (100%).

Python Library:

1. collections.deque 1

2. list

3. dict, OrderedDict, DefaultDict

Java Library:

1. java.util.Stack<E>

2. java.util.LinkedList<E>

3. java.util.HashMap<K, V>; java.util.TreeMap<K, V>

3.2 STACK

3.2.1 Stack and Recursion

How a compiler implements a function:

1. Function call: push local environment and return ad-
dress

2. Return: pop return address and local environment.

Recursive function: function calls itself. It can always
be implemented by using an explicit stack to remove re-
cursion.

1 The naming in collections is awkward:discussion.

3.2.2 Largest Rectangle

Find the largest rectangle in the matrix (histogram). Given
n non-negative integers representing the histogram’s bar
height where the width of each bar is 1, find the area of
largest rectangle in the histogram.

Fig. 3.1: Largest rectangle in histogram

Keep a stack storing the bars in strictly increasing or-
der, then calculate the area by popping out the stack to get
the currently lowest bar which determines the height of
the rectangle.

Notice:

1. Maintain the non-decreasing stack
2. Calculation of the rectangle width
3. Post-processing in the end

def largestRectangleArea(self, height):

n = len(height)

gmax = -sys.maxint-1

stk = [] # store the idx, non-decreasing stack

for i in xrange(n):

while stk and height[stk[-1]] > height[i]:

last = stk.pop()

if stk: # calculate area when popping

area = height[last]*(i-(stk[-1]+1))
else:

area = height[last]*i
gmax = max(gmax, area)

stk.append(i)

# after processing all heights, process the remaining stack

3
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4

i = n

...

return gmax

3.3 MAP

3.3.1 Math Relations

OneToOneMap. One map, dual entries.

class OneToOneMap(object):

def init (self):

self.m = {} # keep a single map

def set(self, a, b):

self.m[a] = b

self.m[b] = a

def get(self, a):

return self.m.get(a)

3.3.2 Operations

Sorting by value:

from operators import itemgetter

sorted(hm.items(), key=itemgetter(1), reverse=True)



Chapter 4
Linked List

4.1 OPERATIONS

4.1.1 Fundamentals

Get thepre reference:

dummy = Node(0)

dummy.next = head

pre = dummy

cur = pre.next

4.1.2 Basic Operations

1. Get the length
2. Get thei-th object
3. Delete a node
4. Reverse

4.1.3 Combined Operations

In O(n) without extra space:

1. Determine whether two lists intersects
2. Determine whether the list is palindrome
3. Determine whether the list is acyclic

5



Chapter 5
Heap

5.1 INTRODUCTION

Heap-ordered. Binary heap is one of the implementations
of Priority Queue (ADT).

5.2 OPERATIONS

Assume the rootstarts ata[1] rather thana[0].
Basic operations:

1. sink()/sift down() - recursive
2. swim()/sift up() - recursive
3. build()/ heapify() - bottom-up sink()

5.2.1 Sink

def sink(self, idx):

while 2*idx <= self.N:

c = 2*idx
if c+1 <= self.N and self.less(c, c+1):

c += 1

if not self.less(idx, c):

return

self.swap(idx, c)

idx = c

5.2.2 Swim

def swim(self, idx):

while idx > 1 and self.less(idx/2, idx):

pi = idx/2

self.swap(pi, idx)

idx = pi

5.2.3 Heapify

Worst case: Heapifyinga sorted array is the worst case
for heap construction, because the root of each subheap

considered sinks all the way to the bottom. The worst case
complexity∼ 2N.

Building a heap is O(N) rather thanO(N lgN).
Proof:

∵
+∞

∑
i=0

ixi =
x

(1−x)2

∴
blgnc

∑
h=0

⌈ n
2h+1

⌉
O(h) = O

(

n
blgnc

∑
h=0

h
2h

)

∴
blgnc

∑
h=0

⌈ n
2h+1

⌉
O(h) = O(n)

5.3 IMPLEMENTATION

5.3.1 General

The self-implemented binary heap’s index usually starts
at 1 rather than 0.

The array representation of heap is inlevel-order.
A 3-heap is an array representation (using 1-based in-

dexing) of a complete 3-way tree. The children ofa[k] are
a[3k−1], a[3k], anda[3k+1].

The main reason that we can use an array to represent
the heap-ordered tree in a binary heap is because the tree
is complete.

Suppose that we represent a BST containing N keys
using an array, witha[0] empty, the root ata[1]. The two
children ofa[k] will be at a[2k] anda[2k+ 1]. Then, the
length of the array might need to be as large as 2N.

5.3.2 Python Heapq

Python only has built in min-heap. To use max-heap, you
can:

1. Revert the number: 1 becomes -1.
2. Wrap the data into another class and overridecom-

parators: cmp or lt

6



7

Fig. 5.1: Heap representation

The following code presents the wrapping method:

class Value(object):

def init (self, val):

self.val = val

self.deleted = False # lazy delete

def cmp (self, other):

# Reverse order by height to get max-heap

assert isinstance(other, Value)

return other.val - self.val

Normally the deletion by value in Python isO(n), to
achieveO(lgn) we can uselazy deletion. Before take the
top of the heap, we do the following:

while heap and heap[0].deleted:

heapq.heappop(heap)

5.4 EVENT-DRIVEN ALGORITHM

The core philosophy of event-driven algorithm:

1. The definition ofevent; the event are sorted by time of
appearance.

2. The definition ofheap meaning
3. The definition of thetransition functions among events

impacting the heap.

Overlapping Interval. Given a list of number intervals,
find max number of overlapping intervals.

Every new start of an interval is anevent. Put the end-
ing time into heap, and pop the ending time earlier than
the new start time from heap.

def max overlapping(intervals):

maxa = 0

intervals.sort(key=operator.attrgetter("start"))

end heap = []

for itvl in intervals:

heapq.heappush(end heap, itvl.end)

while end heap and end heap[0] <= itvl.start:

heapq.heappop(end heap)

maxa = max(maxa, len(end heap))

return maxa



Chapter 6
Tree

6.1 BINARY TREE

6.1.1 Introductions

Get parent ref. To get a parent reference (implicitly), re-
turn the current recursion function to its parent to maintain
the path. Sample code:

Node deleteMin(Node x) {
if (x.left == null) return x.right;

x.left = deleteMin(x.left);

x.count = 1+size(x.left)+size(x.right);

return x;

}

Search. To search a node in binary tree (not necessarily
BST), use dfs:

def dfs(self, root, t, path, found):

if not root or found[0]: # post-call check

return

path.append(root)

if root == t:

found[0] = True

self.dfs(root.left, t, path, found)

self.dfs(root.right, t, path, found)

if not found[0]:

path.pop() # 1 pop() corresponds to 1 append()

The ‘found‘ is a wrapper for boolean to keep it referenced
by all calling stack.

Lowest common ancestor.In BST, the searching is straight-
forward. In normal binary tree, construct the path from
root to node1 and node2 respectively, anddiff the two
paths.

Find all paths. Find all paths from root to leafs. For ev-
ery currently visiting node, add itself to path; search left,
search right and pop itself. Record current result when
reaching the leaf.

def dfs path(self, cur, path, ret):

if not cur:

return

path.append(cur)

if not cur.left and not cur.right:

ret.append("->".join(map(lambda x: str(x.val), path)))

self.dfs path(cur.left, path, ret)

self.dfs path(cur.right, path, ret)

path.pop()

6.2 BINARY SEARCH TREE (BST)

Array and BST. Given either thepreorder or postorder
(but not inorder) traversal of a BST containing N distinct
keys, it is possible to reconstruct the shape of the BST.

6.2.1 Operations

Rank.

6.2.2 Range search

int size(Key lo, Key hi) {
if (contains(hi)) return rank(hi)-rank(lo)+1;

else return rank(hi)-rank(lo);

}

1-d range search

6.3 INTERVAL SEARCH TREE

TODO

8
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6.4 SEGMENT TREE

6.4.1 Introduction

The structure ofSegment Treeis a binary tree which each
node has two attributes start and end denote an segmen-
t/interval. Notice that by practice, the interval is normally
[start,end) but sometimes it can be[start,end], which de-
pends on the question definition.

Structure:

[0, 4, count=3]
/ \

[0,2, count=1] [2,4, count=2]
/ \ / \

[0,1, count=1] [1,2, count=0] [2,3, count=1], [3,4, count=1]

Variants:

1. Sum Segment Tree.
2. Min/Max Segment Tree.
3. Count Segment Tree.

For aMaximum Segment Tree, which each node has
an extra value max to store the maximum value in this
node’s interval.

6.4.2 Operations

Components in Segment Tree:

1. Build
2. Query
3. Modify

Notice:

1. Only build need to change the start and end recursively.
2. Pre-check is preferred in recursive calls.

Code:

DEFAULT = 0

f = lambda x, y: x+y

class Node(object):

def init (self, start, end, m):

self.start, self.end, self.m = start, end, m

self.left, self.right = None, None

class SegmentTree(object):

def init (self, A):

self.A = A

self.root = self.build tree(0, len(self.A))

def build tree(self, s, e):

"""

segment: [s, e)

"""

if s >= e:

return None

if s+1 == e:

return Node(s, e, self.A[s])

left = self.build tree(s, (s+e)/2)

right = self.build tree((s+e)/2, e)

val = DEFAULT

if left: val = f(val, left.m)

if right: val = f(val, right.m)

root = Node(s, e, val)

root.left = left

root.right = right

return root

def query(self, root, s, e):

"""

:type root: Node

"""

if not root:

return DEFAULT

if s <= root.start and e >= root.end:

return root.m

if s >= root.end or e <= root.start:

return DEFAULT

l = self.query(root.left, s, e)

r = self.query(root.right, s, e)

return f(l, r)

def modify(self, root, idx, val):

"""

:type root: Node

"""

if not root or idx >= root.end or idx < root.start:

return

if idx == root.start and idx == root.end-1:

root.m = val

self.A[idx] = val

return

self.modify(root.left, idx, val)

self.modify(root.right, idx, val)

val = DEFAULT

if root.left: val = f(val, root.left.m)
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if root.right: val = f(val, root.right.m)

root.m = val



Chapter 7
Balanced Search Tree

7.1 2-3 SEARCH TREE

7.1.1 Insertion

Insertion into a 3-node at bottom:

1. Add new key to the 3-node to create a temporary 4-
node.

2. Move middle key of the 4-node into the parent (includ-
ing root’s parent).

3. Split the modified 4-node.
4. Repeat recursively up the trees as necessary.

Fig. 7.1: Insertion 1

7.1.2 Splitting

Summary of splitting the tree.

Fig. 7.2: insert 2

Fig. 7.3: Splitting temporary 4-ndoe summary

7.1.3 Properties

When inserting a new key into a 2-3 tree, under which
one of the following scenarios must the height of the 2-3
tree increase by one? When every node on the search path
from the root is a 3-node

11



12

7.2 RED-BLACK TREE

7.2.1 Properties

Red-black tree is an implementation of 2-3 tree using
leaning-left red link . The hight of the RB-tree is at most

Fig. 7.4: RB-tree and 2-3 tree

2lgN where alternating red and black links.

Perfect black balance. Every path from root to null link
has the same number of black links.

7.2.2 Operations

Elementary operations:

1. Left rotation: orient a (temporarily) right-leaning red
link to lean left.

2. Right rotation: orient a (temporarily) left-leaning red
link to lean right.

3. Color flip: Recolor to split a (temporary) 4-node.

Insertion. When doing insertion, from the child’s per-
spective, need to have the information of current leaning
direction and parent’s color. Or from the parent’s perspec-
tive - need to have the information of children’s and grand-
children’s color and directions.

For every new insertion, the node is always attached
with red links.

The following code is the simplest version of RB-tree
insertion:

Node put(Node h, Key key, Value val) {

Fig. 7.5: Rotate left/right

Fig. 7.6: Flip colors
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if (h == null) // std insert, with red link to parent.

return new Node(key, val, 1, RED);

int cmp = key.compareTo(h.key);

if (cmp < 0) h.left = put(h.left, key, val);

else if (cmp > 0) h.right = put(h.right, key, val);

else h.val = val; // pass

if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);

if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);

if (isRed(h.left) && isRed(h.right)) flipColors(h);

h.N = 1+size(h.left)+size(h.right);

return h;

}

Rotate left, rotate right, then flip colors.

Deletion. Deletion is more complicated.

7.3 B-TREE

Fig. 7.7: B-Tree

7.4 AVL T REE

TODO



Chapter 8
Trie

8.1 DATA STRUCTURE

8.1.1 Basic

Fig. 8.1: Trie

Notice:

1. Children are stored in HashMap rather than ArrayList.
2. self.word to stores the word and indicates whether a

word ends at the current node.

Code:

class TrieNode(object):

def init (self, char):

self.char = char

self.word = None

self.children = {} # map from char to TrieNode

class Trie(object):

def init (self):

self.root = TrieNode(None)

def add(self, word):

word = word.lower()

cur = self.root

for c in word:

if c not in cur.children:

cur.children[c] = TrieNode(c)

cur = cur.children[c]

cur.word = word

8.1.2 Advanced

Implicit storage of word in TrieNode:

1. Implicitly stores the current word.
2. Implicitly stores the current char.
3. When insert new word, do not override the existing

TrieNode. A flag to indicate whether there is a word
ending here.

Code:

class TrieNode:

def init (self):

self.ended = False

self.children = {}

class Trie:

def init (self):

self.root = TrieNode()

def insert(self, word):

cur = self.root

for w in word:

if w not in cur.children: # not override

cur.children[w] = TrieNode()

cur = cur.children[w]

cur.ended = True

def search(self, word):

cur = self.root

for w in word:

if w in cur.children:

cur = cur.children[w]

else:

return False

if not cur.ended: # not ended here

return False

return True

def startsWith(self, prefix):

cur = self.root

for w in prefix:

14



15

if w in cur.children:

cur = cur.children[w]

else:

return False

return True

8.1.3 Application

1. Word search in matrix.
2. Word look up in dictionary.



Chapter 9
Sort

9.1 INTRODUCTION

List of general algorithms:

1. Selection sort: invariant

a. Elements to the left ofi (including i) are fixed and
in ascending order (fixed and sorted).

b. No element to the right ofi is smaller than any entry
to the left ofi (A[i]≤min(A[i +1 : n]).

2. Insertion sort: invariant

a. Elements to the left ofi (including i) are in ascend-
ing order (sorted).

b. Elements to the right ofi have not yet been seen.

3. Shell sort: h-sort using insertion sort.
4. Quick sort: invariant

a. |Ap|.. ≤ ..|..unseen..|.. ≥ ..| maintain the 3 subar-
rays.

5. Heap sort: compared to quick sort it is guaranteed
O(N lgN), compared to merge sort it isO(1) extra
space.

9.2 ALGORITHMS

9.2.1 Quick Sort

9.2.1.1 Normal pivoting

The key part of quick sort is pivoting:

def pivot(self, A, i, j):

"""

pivoting algorithm:

p | closed set | open set |
| closed set p | open set |
"""

p = i

closed = p

for ptr in xrange(i, j):

if A[ptr] < A[p]:

closed += 1

A[ptr], A[closed] = A[closed], A[ptr]

A[closed], A[p] = A[p], A[closed]

return closed

Notice that this implementation goesO(N2) for arrays
with all duplicates.

Problem with duplicate keys: it is important to stop
scan at duplicate keys (counter-intuitive); otherwise quick
sort will goesO(N2) for the array with all duplicate items,
because the algorithm will put all items equal to theA[p]
ona single side.

Example: quadratic time to sort random arrays of 0s
and 1s.

9.2.1.2 Stop-at-equal pivoting

Alternative pivoting implementation with optimization for
duplicated keys:

def pivot optimized(self, A, lo, hi):

"""

Fix the pivot as the 1st element

Scan from left to right and right to left simultaneously

Avoid the case that the algo goes O(N^2) with duplicated keys

"""

p = lo

i = lo

j = hi

while True:

while True:

i += 1

if i >= hi or A[i] >= A[lo]:

break

while True:

j -= 1

if j < lo or A[j] <= A[lo]:

break

if i >= j:

break

A[i], A[j] = A[j], A[i]

A[lo], A[j] = A[j], A[lo]

16
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return j

9.2.1.3 3-way pivoting

3-way pivoting: pivot the array into 3 subarrays:
|..≤ ..|.. = ..|..unseen..|..≥ ..|

def pivot 3way(self, A, lo, hi):

lt = lo-1 # pointing to end of array LT

gt = hi # pointing to the end of array GT (reversed)

v = A[lo]

i = lo # scanning pointer

while i < gt:

if A[i] < v:

lt += 1

A[lt], A[i] = A[i], A[lt]

i += 1

elif A[i] > v:

gt -= 1

A[gt], A[i] = A[i], A[gt]

else:

i += 1

return lt+1, gt

9.2.2 Stability

Definition: a stable sort preserves therelative order of
items with equal keys (scenario: sorted by time then
sorted by location).

Algorithms:

1. Stable

a. Merge sort
b. Insertion sort

2. Unstable

a. Selection sort
b. Shell sort
c. Quick sort
d. Heap sort

Long-distance swapoperation is the key to find the un-
stable case during sorting.

9.2.3 Applications

1. Sort

Fig. 9.1: Stale sort vs. unstable sort

2. Partial quick sort (selection), k-th largest elements
3. Binary search
4. Find duplicates
5. Graham scan
6. Data compression

9.2.4 Considerations

1. Stable?
2. Distinct keys?
3. Need guaranteed performance?
4. Linked list or arrays?
5. Caching system? (reference to neighboring cells in the

array?
6. Usually randomly ordered array? (or partially sorted?)
7. Parallel?
8. Deterministic?
9. Multiple key types?

O(N lgN) is the lower bound of comparison-based sort-
ing; but for other contexts, we may not needO(N lgN):

1. Partially-ordered arrays: insertion sort to achieveO(N).
Number of inversions: 1 inversion= 1 pair of keys
that are out of order.

2. Duplicate keys
3. Digital properties of keys: radix sort to achieveO(N).

9.2.5 Summary

9.3 REVERSION

If ai > aj but i < j, then this is considered as 1 reversion.
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Fig. 9.2: Sort summary

9.3.1 Calculation

MergeSort to calculate the #reverse-ordered paris. The
only difference from a normal merge sort is that - when
pushing the 2nd half of the array to the place, you cal-
culate the reversion generated by the elementA2[i2] com-
pared toA1[i1 :].

def merge(A1, n1, A2, n2, A, n):

i = i1 = i2 =0

count = 0

while i < n:

if i1 == n1:

for i2 in xrange(i2, n2):

A[i] = A2[i2]

i += 1

elif i2 == n2:

for i1 in xrange(i1, n1):

A[i] = A1[i1]

i += 1

else:

# use array diagram to illustrate

if A1[i1] > A2[i2]: # push the A2 to A

A[i] = A2[i2]

# number of reverse-ordered pairs

count += n1 - i1

i += 1

i2 += 1

else:

A[i] = A1[i1]

i += 1

i1 += 1

return count

def merge sort(a):

n = len(a)

if n == 1:

return 0

n1 = n/2

n2 = n - n1

a1 = a[:n1]

a2 = a[n1:]

count1 = merge sort(a1)

count2 = merge sort(a2)

count = count1+count2+merge(a1, n1, a2, n2, a, n)

return count



Chapter 10
Search

10.1 BINARY SEARCH

Variants:

1. bisect left
2. bisect right
3. get the idx equal or just lower
4. get the idx equal or just higher

Binary search, get the idx equal or just lower, which is a
very standard binary search:

def bisect(self, A, t):

lo = 0

hi = len(A)

while lo < hi:

mid = (lo+hi)/2

if A[mid] == t:

return mid

elif A[mid] < t:

lo = mid+1

else:

hi = mid

return lo-1

10.2 LOOPING ROOT

Iterate the list and make the current element as the root,
evaluate the left part and the right part and combine the
results (i.e. looping + divide & conquer).

19



Chapter 11
Array

11.1 CIRCULAR ARRAY

Common patterns for solving problems with circular ar-
rays.

Normally, we should solve the linear problem and cir-
cular problem differently.

11.1.1 Circular max sum

Linear problem can be solved linear with simple algo-
rithm, but the circular sum should use dp.

1. Construct left max sum for max sum over the[0..i]
(forward starting from the left side).
Construct right max sum for max sum over the indexes
[i..n−1] (backward starting from the right side). No-
tice that the max sum index ends AT or BEFORE i.

2. ThemaxSum= maxSum[i..n−1]+maxSum[0..i]

11.1.2 Non-adjacent cell

To solve circular non-adjacent array problem in linear
way, we should consider 2 cases:

1. Not consider theA[1]
2. Not consider theA[−1]

11.1.3 Binary search

Searching for an element in a circular sorted array. Half
of the array is sorted while the other half is not.

1. If A[0] < A[mid], then all values in the first half of the
array are sorted.

2. If A[mid] < A[−1], then all values in the second half of
the array are sorted.

3. Then decide whether to got thesorted half or theun-
sorted half.

11.2 VOTING ALGORITHM

11.2.1 Majority Number

11.2.1.1 1
2 of the Size

Given an array of integers, the majority number is the
number that occurs more than half of the size of the ar-
ray.

Algorithm: Majority Vote Algorithm. Maintain a counter
to count how many times the majority number appear
more than any other elements before indexi and after re-
initialization. Re-initialization happens when the counter
drops to 0.

Proof: assuming there is a majority numberx, if at the
indexi, the current count isj and the current counter does
not capture the majority number, there are less thani− j

2 x,
thus there are more thann−i+ j

2 x after the indexi. The j x

beats against the counter andn−i− j
2 x will make it counted

by counter.
If the counter captures the majority number, two cases

will happen. The one is that the counter continue to cap-
ture the majority number till the end; then the counter
will captures the correct majority number. The other case
is that the majority number counter is beaten by other
numbers, which will in turn fall back to the case that the
counter does not capture the majority number.

This algorithm needs to re-check the current number
being counted is indeed the majority number.

11.2.1.2 1
3 of the Size

Given an array of integers, the majority number is the
number that occurs more than13 of the size of the array.
This question can be generalized to be solved by1

k case.

11.2.1.3 1
k of the Size

Given an array of integers and a number k, the majority
number is the number that occurs more than1

k of the size
of the array.

class Solution:

20
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def majorityNumber(self, nums, k):

"""

Since majority elements appears more

than ceil(n/k) times, there are at

most 2 majority number

"""

cnt = defaultdict(int)

for num in nums:

if num in cnt:

cnt[num] += 1

else:

if len(cnt) < k-1:

cnt[num] += 1

else:

for key in cnt.keys():

cnt[key] -= 1

if cnt[key] == 0:

del cnt[key]

for key in cnt.keys():

if (len(filter(lambda x: x == key, nums))

> len(nums)/k):

return key

raise Exception



Chapter 12
Stream

12.1 SLIDING WINDOW

Sliding Window Maximum. Given an arraynums, Find
the list of maximum in the sliding window of sizek which
is moving from the very left of the array to the very right.
→ double-ended queue.

Invariant: the queue is storing the non-decreasing-ordered
elements of current window.

Sliding Window Median. Find the list of median in the
sliding window.→ Dual heap with lazy deletion.

22



Chapter 13
Math

13.1 FUNCTIONS

Equals. Requirements for equals

1. Reflexive
2. Symmetric
3. Transitive
4. Non-null

Compare. Requirements for compares (total order):

1. Antisymmetry
2. Transitivity
3. Totality

13.2 PRIME NUMBERS

13.2.1 Sieve of Eratosthenes

13.2.1.1 Basics

To find all the prime numbers less than or equal to a given
integer n by Eratosthenes’ method:

1. Create a list of consecutive integers from 2 through n:
(2, 3, 4, ..., n).

2. Initially, let p equal 2, the first prime number.
3. Starting fromp, enumerate its multiples by counting

to n in increments ofp, and mark them in the list
(these will be 2p, 3p, 4p, ... ; the p itself should not
be marked).

4. Find the first number greater thanp in the list that is not
marked. If there was no such number, stop. Otherwise,
let p now equal this new number (which is the next
prime), and repeat from step 3.

When the algorithm terminates, the numbers remaining
not marked in the list are all the primes belown.

13.2.1.2 Refinements

The main idea here is that every value forp is prime,
because we have already marked all the multiples of the

numbers less thanp. Note that some of the numbers be-
ing marked may have already been marked earlier (e.g.,
15 will be marked both for 3 and 5).

As a refinement, it is sufficient to mark the numbers in
step 3 starting fromp2, because all the smaller multiples
of p will have already been marked at that point by the
previous smaller prime factor other thanp. From p2, p
becomes the smaller prime factor of a composite number.
This means that the algorithm is allowed to terminate in
step 4 whenp2 is greater than n.

Another refinement is to initially list odd numbers only,
(3, 5, ..., n), and count in increments of 2p in step 3, thus
marking only odd multiples ofp. This actually appears in
the original algorithm. This can be generalized with wheel
factorization, forming the initial list only from numbers
coprime with the first few primes and not just from odds
(i.e., numbers coprime with 2), and counting in the corre-
spondingly adjusted increments so that only such multi-
ples ofp are generated that are coprime with those small
primes, in the first place.

To summarized, the refinements include:

1. Starting fromp2.
2. Preprocessing even numbers and then only process odd

numbers; thus the increment becomes 2p.

13.2.1.3 code

def countPrimes(n):

"""

Find primeusing Sieve’s algorithm

:type n: int

:rtype: int

"""

if n < 3:

return 0

is prime = [True for in xrange(n)]

is prime[0], is prime[1] = False, False

for i in xrange(2, int(math.sqrt(n))+1):

if is prime[i]:

for j in xrange(i*i, n, i):

is prime[j] = False

return is prime.count(True)
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13.2.2 Factorization

Backtracking:

def dfs(self, cur, ret):

"""

16

get factors of cur[-1]

[16]

[2, 8]

[2, 2, 4]

[2, 2, 2, 2]

[4, 4]

"""

if len(cur) > 1:

ret.append(list(cur))

n = cur.pop()

start = cur[-1] if cur else 2

for i in xrange(start, int(sqrt(n))+1):

if n%i == 0:

cur.append(i)

cur.append(n/i)

self.dfs(cur, ret)

cur.pop()

13.2.2.1 Time Complexity

O(2n) wheren is the number of prime factors. Choosei
prime factors to combine then, and keep the rest uncom-
bined

∑
i

(
n
i

)

TODO



Chapter 14
Arithmetic

14.1 DFS

Insert operators. Given a string that contains only digits
0-9 and a target value, return all possibilities to add binary
operators (not unary) +, -, or * between the digits so they
evaluate to the target value.

Example:

”123”,6→ [”1 +2+3”, ”1 ∗2∗3”]

”232”,8→ [”2 ∗3+2”, ”2 +3∗2”]

Clues:

1. DFS
2. Special handling for multiplication - caching
3. Detect invalid number with leading 0’s

Code:

def addOperators(self, num, target):

ret = []

self.dfs(num, target, 0, "", 0, 0, ret)

return ret

def dfs(self, num, target, pos,

cur str, cur val,

mul, ret

):

if pos >= len(num):

if cur val == target:

ret.append(cur str)

else:

for i in xrange(pos, len(num)):

if i != pos and num[pos] == ’0’:

continue

nxt val = int(num[pos:i+1])

if not cur str:

self.dfs(num, target, i+1,

"%d"%nxt val, nxt val,

nxt val, ret)

else:

self.dfs(num, target, i+1,

cur str+"+%d"%nxt val, cur val+nxt val,

nxt val, ret)

self.dfs(num, target, i+1,

cur str+"-%d"%nxt val, cur val-nxt val,

-nxt val, ret)

self.dfs(num, target, i+1,

cur str+"*%d"%nxt val, cur val-mul+mul*nxt val,

mul*nxt val, ret)

Insert parenthesis. Given a string of numbers and op-
erators, return all possible results from computing all the
different possible ways to group numbers and operators.
The valid operators are +, - and *.

Examples:

(2∗ (3− (4∗5))) =−34

((2∗3)− (4∗5)) =−14

((2∗ (3−4))∗5) =−10

(2∗ ((3−4)∗5)) =−10

(((2∗3)−4)∗5) = 10

Clues: Iterate the operators, divide and conquer - left parts
and right parts and then combine result.
Code:

def dfs eval(self, nums, ops):

ret = []

if not ops:

assert len(nums) == 1

return nums

for i, op in enumerate(ops):

left vals = self.dfs eval(nums[:i+1], ops[:i])

right vals = self.dfs eval(nums[i+1:], ops[i+1:])

for l in left vals:

for r in right vals:

ret.append(self. eval(l, r, op))

return ret

14.2 POLISH NOTATION

Polish Notation is in-fix while Reverse Polish Notation is
post-fix.
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14.2.1 Evaluate Post-fix Expressions

Straightforward: Use a stack to store the number. Iterate
the input, push stack when hit numbers, pop stack when
hit operators.

14.2.2 Convert In-fix to Post-fix

TODO



Chapter 15
Combinatorics

15.1 BASICS

15.1.1 Considerations

1. Doesorder matter?
2. Are the objectsrepeatable?
3. Are the objects partiallyduplicated?

If order does not matter, you can pre-set the order.

15.1.2 Basic Formula

(
n
k

)

=
n!

k!(n−k)!
(

n
k

)

=

(
n

n−k

)

(
n
k

)

=

(
n−1

k

)

+

(
n−1
k−1

)

15.1.3 N objects, K Ceils

x1 +x2 +x3 = 10

is equivalent to
∗∗∗∗∗| ∗∗| ∗∗∗

, notice that∗ are duplicated.
then the formula is:

(
n+ r

r

)

,wherer = k−1.
The meaning is to chooser objects fromn+ r objects to
become the|.

15.1.4 N objects, K types

What is the number of permutation ofN objects withK
different types:

ret =
AN

N

∏K
i=1Asz(i)

sz(i)

15.1.5 Inclusion–Exclusion Principle

Fig. 15.1: Inclusion–exclusion principl

|A∪B∪C|= |A|+ |B|+ |C|

−|A∩B|− |A∩C|− |B∩C|

+|A∩B∩C|

Generally,
∣
∣
∣
∣
∣

n⋃

i=1

Ai

∣
∣
∣
∣
∣
=

n

∑
k=1

(−1)k+1

(

∑
1≤i1<∙∙∙<ik≤n

∣
∣Ai1 ∩∙∙ ∙∩Aik

∣
∣

)

15.2 COMBINATIONS WITH DUPLICATED

OBJECTS

Determine the number of combinations of 10 letters (order
does not matter) that can be formed from 3A, 4B, 5C.
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15.2.1 Basic Solution

If there are no restrictions on the number of any of the
letter, it is

(10+2
2

)
; then we get the universal set,

|U |=

(
10+2

2

)

Let PA be the set that a 10-combination has more than
3A. PB...4B.PC...5C.

The result is:

|3A∩4B∩5C|=

|U |−sum(|Pi |)+sum(|Pi ∩Pj |)−sum(|Pi ∩Pj ∩Pk|)

To calculate|Pi |, take|P1| as an example.Pre-set4A –
if we take any one of these 10-combinations inP1 and re-
move 4A we are left with a 6-combination with unlimited
on the numbers of letters; thus,

|P1|=

(
6+2

2

)

Similarly, we can getP2,P3.
To calculate|Pi ∩Pj |, take|P1∩P2| as an example.Pre-

set4A and 5B; thus,

|P1∩P2|=

(
1+2

2

)

Similarly, we can get other|Pi ∩Pj |.
Similarly, we can get other|Pi ∩Pj ∩Pk|.

15.2.2 Algebra Solution

The number of 10-combinations that can be made from
3A, 4B, 5C is found from the coefficient ofx10 in the ex-
pansion of:

(1+x+x2+x3)(1+x+x2+x3+x4)(1+x+x2+x3+x4+x5)

And we know:

1+x+x2 +x3 = (1−x4)/(1−x)

1+x+x2 +x3 +x4 = (1−x5)/(1−x)

1+x+x2 +x3 +x4 +x5 = (1−x6)/(1−x)

We expand the formula, although the naive way of get-
ting the coefficient ofx10 is tedious.



Chapter 16
Bit Manipulation

16.1 CONCEPTS

16.1.1 Basics

1. Bit value: bit0, bit1.
2. BitSet/Bits
3. Bit position (bit interchangeably)

16.1.2 Operations

Mask.

1. Masking to 1: to mask a single bit position,bit ∨1
2. Masking to 0: to mask a single bit position,bit ∧0
3. Querying a bit position value: to query a single bit po-

sition,bit ∧1
4. Toggling bit values: to toggle a single bit position,bit⊕

1

This can be extended to do masking operations on multi-
ple bits.

Rightmost bit set. To get the rightmost bit, with the help
of 2’s complement:

rightmost= bits∧−bits

16.2 SINGLE NUMBER

16.2.1 Appear three times

Given an array of integers, every element appears three
times except for one. Find that single one.

Using list. Consider 4-bit numbers:

0000

0001

0010

...

1111

Add (not∧) the bit valuesvertically , then result would
beabcdwherea,b,c,d can be any number, not just binary.
a,b,c,d can be divided by 3 if the all element appears
three times. Until here, you can use a list to holda,b,c,d.
By mod 3, the single one that does not appear 3 times is
found.

To generalize to 32-bitint, use a list of length 32.

Using bits. To further optimize the space, use bits (bit
set) instead of list.

• Since all except one appears 3 times, we are only inter-
ested in 0,1,2 (mod 3) count of bit1 appearances in a
bit position.

• We create 3 bit sets to represent 0,1,2 appearances of
all positions of bits.

• For a bit, there is one and only one bit set containing
bit1 in that bit position.

• Transition among the 3 bit sets for every number:

bitSet(i) = (bitSet(i−1)∧num)∨ (bitSet(i)∧¬num)

For i appearances, the first part is the bit settransited
from (i−1) appearances, and the second part is the bit
settransited out from itself.

16.2.2 Two Numbers

Given an array of numbers nums, in which exactly two
elements appear only once and all the other elements ap-
pear exactly twice. Find the two elements that appear only
once.

• Easily get:x = a⊕b.
• a 6= b; thus there are at least one 1-bit inx is different.
• Take an arbitrary 1 bit set inx, and such bit set can clas-

sify the elements in the array into two separate groups.
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Chapter 17
Greedy

17.1 INTRODUCTION

Queue, Stack

17.1.1 Summarizing properties

TODO
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Chapter 18
String

18.1 PALINDROME

18.1.1 Palindrome anagram

Test palindrome anagram. Char counter, number of odd
count should≤ 0.

Count palindrome anagram. 15.1.4.

Construct palindrome anagram. clues:

1. dfs
2. jump parent char

Code:

def grow(self, s, count map, pi, cur, ret):

if len(cur) == len(s):

ret.append(cur)

return

for k in count map.keys():

if k != pi and count map[k] > 0:

# jump the parent

for i in xrange(1, count map[k]/2+1):

count map[k] -= i*2
self.grow(s, count map, k, k*i+cur+k*i, ret)

count map[k] += i*2

18.2 KMP

Find stringW in string S within complexity ofO(|W|+
|S|).

18.2.1 Prefix suffix table

Partial match table (also known as ”failure function”). Af-
ter a failure matching, you know that the matched suf-
fix before the failure point is already matched; therefore
when you shift theW, you only need to shift the prefix

Fig. 18.1: KMP example

Fig. 18.2: Prefix-suffix table

onto the position of the previous suffix. The prefix and
suffix must be proper prefix and suffix.

In table-building algorithm.T[i] stores the NEXT pre-
fix indexcnd.

Notice:

1. dummy atT[0] =−1.
2. three parts

a. matched
b. fall back
c. restart

Code:

# construct T

T = [0 for in xrange(ln+1)]

T[0] = -1

T[1] = 0

pos = 2

cnd = 0

while pos <= ln:

if needle[pos-1]==needle[cnd]: # matched

T[pos] = cnd+1
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cnd += 1

pos += 1

elif T[cnd]!=-1: # fall back

cnd = T[cnd]

else: # restart

T[pos] = 0

cnd = 0

pos += 1

18.2.2 Searching algorithm

Notice:

1. indexi ands.
2. T[i +1−1] for corresponding previous index inT for

current scanning indexi.
3. three parts:

a. matched
b. fall back
c. restart

Code:

# search

i = 0 # index for needle

j = 0 # index for haystack

while j+i < len(haystack):

if needle[i] == haystack[j+i]: # matched

i += 1

if i == len(needle):

return haystack[j:]

else:

if T[i] != -1: # fall back

j = j+i-T[i]

i = T[i]

else: # restart

j += 1

i = 0

return None

18.2.3 Applications

1. Find needle in haystack.
2. Shortest palindrome



Chapter 19
Graph

19.1 BASIC

Graph Representation. V for a vertex set with a map,
mapping from vertex to its neighbors.

V = defaultdict(list)

19.2 BFS

19.2.1 BFS with Abstract Level

Start BFS with a set of vertices in abstract level, not nec-
essarily neighboring vertices.

Example:−1 obstacles, 0 targets, calculate all other
vertices’s Manhattan distance to its nearest target:







∞ −1 0 ∞
∞ ∞ ∞ −1
∞ −1 ∞ −1
0 −1 ∞ ∞







is calculated as:






3 −1 0 1
2 2 1−1
1 −1 2−1
0 −1 3 4







Code

def wallsAndGates(self, mat):

q = [(i, j) for i, row in enumerate(mat)

for j, val in enumerate(row) if val == 0]

for i, j in q: # iterator

for d in self.dirs:

I, J = i+d[0], j+d[1]

if (0 <= I < m and 0 <= J < n and

mat[I][J] > mat[i][j]+1):

mat[I][J] = mat[i][j]+1

q.append((I, J))

19.3 DETECT ACYCLIC

1. marked is reset after a dfs.
2. visited should be maintained only in the end of the dfs.
3. For directed graph:

a. Should dfs for all neighbors except for vertices in
visited, to avoid revisiting. For example, avoid re-
visiting A, B when start from C in the graphC→
A→ B.

b. Excluding predecessorpi is erroneous in the case of
A↔ B

4. For undirected graph:

a. Should dfs for all neighbors except for the prede-
cessorpi.

b. Excluding neighbors invisited is redundant.

19.3.1 Directed Graph

def dfs(self, V, k, visited, pathset):

if k in pathset:

return False

marked.add(k)

for nbr in V[k]:

if nbr not in visited:

if not self.dfs(V, nbr, visited, pathset):

return False

marked.remove(k)

pathset.add(k)

return True

19.3.2 Undirected Graph

def dfs(self, V, k, pi, visited, marked):

if k in marked:

return False

marked.add(k)

for neighbor in V[k]:

if neighbor != pi:
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if not self.dfs(V, neighbor, k,

visited, marked):

return False

marked.remove(k)

visited.add(k)

return True

19.4 TOPOLOGICAL SORTING

For a graphG = {V,E}, A→ B, thenA is beforeB in the
ordered list.

19.4.1 Algorithm

General algorithm and notice.

dfs:

1. Dfs neighbors first. If the neighbors of current node is
¬visited, then dfs the neighbors

2. Dfs current node. After visiting all the neighbors, then
visit the current node and push it to the result queue.

3. Reverse. Reverse the result queue.

Notice:

1. Need toreverse the result queue, since the neighbors
(successors) are visited first.

2. Need todetect cycle; thus the dfs need to construct
result queue and detect cycle simultaneously, by using
two sets:visitedandmarked.

Fig. 19.1: Weighted quick-union traces

def topological sort(self, V):

visited = set()

marked = set()

ret = []

for k in V.keys():

if k not in visited:

if not self.dfs(V, k, visited, marked, ret):

return [] # contains cycle

ret.reverse()

return ret

def dfs(self, V, k, visited, marked, ret):

if k in marked:

return False

marked.add(k)

for neighbor in V[k]:

if neighbor not in visited:

if not self.dfs(V, neighbor, visited, marked, ret):

return False

marked.remove(k)

visited.add(k)

ret.append(k)

return True

19.4.2 Applications

1. Course scheduling problem with pre-requisite.

19.5 UNION -FIND

Improvements:

1. Weighting: size-baladnced tree
2. Path Compression.

19.5.1 Algorithm

Weighted union-find with path compression:

1. An array to store each item’s predecessorpi.
2. Merge the tree according to thesize to maintain bal-

ance.
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class UnionFind(object):

"""

Weighted Union Find with path compression

"""

def init (self):

self.pi = {} # item -> pi

self.sz = {} # root -> size

def add(self, item):

if item not in self.pi:

self.pi[item] = item

self.sz[item] = 1

def union(self, a, b):

pi1 = self.root(a)

pi2 = self.root(b)

if pi1 != pi2:

if self.sz[pi1] > self.sz[pi2]:

pi1, pi2 = pi2, pi1

# size balancing

self.pi[pi1] = pi2

self.sz[pi2] += self.sz[pi1]

del self.sz[pi1]

def root(self, item):

pi = self.pi[item]

if item != pi:

self.pi[item] = self.root(pi)

# path compression

return self.pi[item]

def count(self):

return len(self.sz) # only root nodes have size

19.5.2 Complexity

m union-find withn objects:O(n)+mO(lgn)



Chapter 20
Interval

20.1 INTRODUCTION

Two-way range. The current scanning node as the pivot,
need to scan its left neighbors and right neighbors.

| ← p→ |

If the relationship between the pivot and its neighbors
is symmetric, since scanning range is[i− k, i + k] and it-
erating from left to right, only consider[i− k, i] to avoid
duplication.

| ← p
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Chapter 21
Dynamic Programming

21.1 INTRODUCTION

The core philosophy of dp:

1. The definition ofstates
2. The definition of thetransition functions among states

The so called concept dp as memoization of recursion
does not grasp the core philosophy of dp.

The formula in the following section are unimportant.
Instead, what is important is the definition of dp array and
transition function derivation.

21.1.1 Common practice

Dummy. Use dummies to avoid using if-else conditional
branch.

1. Usen+1 dp arrays to reserve space for dummies.
2. Iteration range is[1,n+1).
3. n+k for k dummies

State definition. Two general sets of state definitions:

1. End AT indexi
2. End BEFORE indexi

Space optimization. To avoid MLE, we need to carry
out space optimization. Leto be other subscripts,f be the
transition function.

Firstly,
Fi,o = f

(
Fi−1,o′

)

should be reduced to

Fo = f
(
Fo′
)

Secondly,

Fi,o = f
(
Fi−1,o′ ,Fi−2.o′

)

should be reduced to

Fi,o = f
(
F(i−1)%2,o′ ,F(i−2)%2.o′

)

More generally, we can be(i − b)%a to reduce the
space down toa.

Notice:

1. Must iterateo backward to un-updated value.

21.2 SEQUENCE

Longest common subsequence.Let Fi, j be the LCS at
stringa[: i] andb[: j]. We have two situations:a[i] == b[ j]
or not.

Fi. j =






Fi−1, j−1 +1 // if a[i] == b[ j]

max
(

Fi−1, j , // otherwise

Fi, j−1

)

Longest common substring. LetFi, j be the LCS at string
a[: i] andb[: j]. We have two situations:a[i] == b[ j] or not.

Fi. j =

{
Fi−1, j−1 +1 // if a[i] == b[ j]

0 // otherwise

Because it is not necessary thatFi, j ≥ Fi′, j ′ ,∀i, j ∙ i >

i′, j > j ′, thegmax= max
(
{Fi, j}

)
.

Edit distance Find the minimum number of steps re-
quired to convert wordsA to B using inserting, deleting,
replacing.

Let Fi, j be the minimum number of steps required to
convertA[: i] to B[: j].

Fi. j =






Fi−1, j−1 // if a[i] == b[ j]

min
(

Fi, j−1 +1, //otherwise, insert

Fi−1, j +1, // delete

Fi1, j1 +1
)

// replace

Maximal square. Find the largest rectangle in the ma-
trix:

1 0 1 0 0

1 0 1 1 1

1 1 1 1 1

1 0 0 1 0

Let Fi, j represents the max square’s length ended atmati, j
(lower right corner).

Fi. j =

{
min

(
Fi−1, j−1,Fi−1, j ,Fi, j−1

)
+1 // if mati, j == 1

0 // otherwise
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21.3 BACKPACK

Given n items with weightwi and valuevi , an integerC
denotes the size of a backpack. What is the max value you
can fill this backpack?

Let Fi,c be the max value we can carry for index 0..i
with capacityc. We have 2 choices: take thei-th item or
not.

Fi,c = max
(

Fi−1,c,

Fi−1,c−wi +vi
)

TODO advanced backpack problem.

21.4 LOCAL AND GLOBAL EXTREMES

21.4.1 Long and short stocks

The following formula derives from the question: Best
Time to Buy and Sell Stock IV.

Let locali, j be the max profit at dayi with j transactions
with last transactions ENDED at dayi. Letglobali, j be the
max profit at dayi with j transactions.

locali, j = max
(

globali−1. j−1 +Δ , locali−1, j +Δ
)

globali, j = max
(

locali, j ,globali−1, j

)
(21.1)

Notice:

1. Consider opportunity costs.
2. The global min is notglocal[−1] but max

(
{global[i]}

)
.

3. You must sell the stock before you buy again (i.e. you
can not have higher than 1 in stock position).

21.4.1.1 Space optimization

localj = max
(

globalj−1 +Δ , localj +Δ
)

globalj = max
(

localj ,globalj
)

(21.2)

Notice,

1. Must iteratej backward; otherwise we will use the
updated value.

21.4.1.2 Alternative definitions

Other possible definitions: letglobali, j be the max profit
at dayi with UP TO j transactions. Then,

locali, j = max
(

globali−1. j−1 +max(0,Δ), locali−1, j +Δ
)

globali, j = max
(

locali, j ,globali−1, j

)
(21.3)

andglobal[−1] is the global max.

21.5 GAME THEORY - MULTI PLAYERS

Assumption: the opponent take the optimal strategy for
herself.

21.5.1 Coin game

Same side There arencoins with different value in a line.
Two players take turns to take 1 or 2 coins from left side.
The player who take the coins with the most value wins.

let F p
i represents maximum values he can get for index

i..last, for the person p. There are 2 choices: take thei-th
coin or take thei-th and(i +1)-th coin.

F p
i = max

(
Ai +S[i +1 :]−F p′

i+1,

Ai +Ai+1 +S[i +2 :]−F p′

i+2

)

The above equation can be further optimized by merging
the sumS.

Dual sides There are n coins in a line. Two players take
turns to take a coin from one of the ends of the line until
there are no more coins left. The player with the larger
amount of money wins.

let F p
i, j represents maximum values he can get for index

i.. j, for the person p. There are 2 choices: take thei-th coin
or take thej-th coin.

F p
i, j = max

(
Ai +S[i +1 : j]−F p′

i+1, j ,

Aj +S[i : j−1]−F p′

i, j−1

)



Chapter 22
General

22.1 GENERAL TIPS

Information Source. Keep the source information rather
than derived information (e.g. keep the array index rather
than array element).

Information Transformation. Need you keep the raw
information to avoid information loss (e.g. after convert-
ing str to list, you should keepstr).

Element Data Structure When working with ADT, you
should use a more intelligence data structure as type to
avoid allocating another ADT to maintain the state (e.g.
java.util.PriorityQueue<E>).
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Glossary

A Array

idx Index

TLE Time Limit Exceeded

MLE Memory Limit Exceeded

dp Dynamic programming

in-place The algorithm takes≤ clgN extra space

partially sorted number of inversion in the array≤ cN

non-degeneracy Distinct properties without total over-
lapping

underflow Degenerated, empty, or null case

loitering Holding a reference to an object when it is no
longer needed thus hindering garbage collection.
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