Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adapt designer #235

Merged
merged 57 commits into from
Dec 1, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
57 commits
Select commit Hold shift + click to select a range
3d0e13a
refactor_config
tuofeilunhifi Nov 3, 2022
87239ba
bugfix
tuofeilunhifi Nov 3, 2022
b17c5b8
update nni_hpo
tuofeilunhifi Nov 3, 2022
3a6f5fb
bugfix
tuofeilunhifi Nov 3, 2022
a5179bf
bugfix
tuofeilunhifi Nov 3, 2022
3d6ffaf
bugfix
tuofeilunhifi Nov 3, 2022
f5c3a8c
update
tuofeilunhifi Nov 3, 2022
9d97453
Merge branch 'master' into adapt_designer
Nov 17, 2022
cd42ede
local adapt_designer
Nov 17, 2022
bd90580
support cls_itag and designer_config_relative_path_index
Nov 18, 2022
141cff2
bugfix
Nov 18, 2022
fb61244
support designer_metriclearning
Nov 22, 2022
eb26eef
support designer_metriclearning
Nov 22, 2022
34daa9b
bugfix 'ConfigDict' object has no attribute 'predict'
Nov 22, 2022
a1d091a
refactor config_tools
Nov 22, 2022
8407bab
refactor config_tools
Nov 22, 2022
b89891e
refactor config_tools
Nov 22, 2022
bca6889
bugfix
Nov 22, 2022
e725378
bugfix
Nov 23, 2022
4fd2d13
add class_list
Nov 23, 2022
ff9fc2a
support predict class_list
Nov 23, 2022
add5949
support predict class_list
Nov 23, 2022
c01060c
add doc
Nov 24, 2022
e3c8e7d
merge master
Nov 24, 2022
a0ce886
update doc
Nov 24, 2022
3fab8bb
add regular item matching
Nov 24, 2022
a93f490
add regular item matching
Nov 24, 2022
78d621a
update config
Nov 25, 2022
cf82099
resolve conflict
Nov 29, 2022
82f2e69
resolve conflict
Nov 29, 2022
bdac80f
update config
Nov 29, 2022
92dcc1e
add warning
Nov 29, 2022
ca206c8
add revise_keys doc
Nov 29, 2022
948a86c
add easycvconfig doc
Nov 29, 2022
20c0471
update config
Nov 29, 2022
5e3e04f
update config
Nov 29, 2022
4b363e5
update config
Nov 29, 2022
4f16c86
modify abspath_root
Nov 29, 2022
d416804
add pai_config_fromfile
Nov 29, 2022
d397dca
add pai_config_fromfile
Nov 29, 2022
695a43a
add pai_config_fromfile
Nov 29, 2022
542c524
add pai_config_fromfile
Nov 29, 2022
aa7ac39
add pai_config_fromfile
Nov 29, 2022
30af0a5
add pai_config_fromfile
Nov 29, 2022
015c88f
bugfix
Nov 30, 2022
6fbf610
update
Nov 30, 2022
c1cc54d
test
Nov 30, 2022
e683b9c
test
Nov 30, 2022
bc4fd94
update
Nov 30, 2022
dc4c9fa
init_path
Nov 30, 2022
a808561
pack benchmarks
Nov 30, 2022
8bdc859
update
Nov 30, 2022
6cf47ca
update
Nov 30, 2022
8db6ba0
support local and easycv config
Nov 30, 2022
8ce741d
add test check_base_cfg_path and pai_config_fromfile
Nov 30, 2022
d6fea30
add adapt_pai_params and pai_config_fromfile
Nov 30, 2022
042c169
add adapt_pai_params test
Nov 30, 2022
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 20 additions & 0 deletions configs/classification/imagenet/common/classification_base.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
_base_ = 'configs/base.py'

log_config = dict(
interval=10,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])

image_size2 = 224
image_size1 = int((256 / 224) * image_size2)
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

predict = dict(
type='ClassificationPredictor',
pipelines=[
dict(type='Resize', size=image_size1),
dict(type='CenterCrop', size=image_size2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img'])
])
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
_base_ = '../classification_base.py'

class_list = [
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',
'14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25',
'26', '27', '28', '29', '30', '31', '32', '33', '34', '35', '36', '37',
'38', '39', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49',
'50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61',
'62', '63', '64', '65', '66', '67', '68', '69', '70', '71', '72', '73',
'74', '75', '76', '77', '78', '79', '80', '81', '82', '83', '84', '85',
'86', '87', '88', '89', '90', '91', '92', '93', '94', '95', '96', '97',
'98', '99', '100', '101', '102', '103', '104', '105', '106', '107', '108',
'109', '110', '111', '112', '113', '114', '115', '116', '117', '118',
'119', '120', '121', '122', '123', '124', '125', '126', '127', '128',
'129', '130', '131', '132', '133', '134', '135', '136', '137', '138',
'139', '140', '141', '142', '143', '144', '145', '146', '147', '148',
'149', '150', '151', '152', '153', '154', '155', '156', '157', '158',
'159', '160', '161', '162', '163', '164', '165', '166', '167', '168',
'169', '170', '171', '172', '173', '174', '175', '176', '177', '178',
'179', '180', '181', '182', '183', '184', '185', '186', '187', '188',
'189', '190', '191', '192', '193', '194', '195', '196', '197', '198',
'199', '200', '201', '202', '203', '204', '205', '206', '207', '208',
'209', '210', '211', '212', '213', '214', '215', '216', '217', '218',
'219', '220', '221', '222', '223', '224', '225', '226', '227', '228',
'229', '230', '231', '232', '233', '234', '235', '236', '237', '238',
'239', '240', '241', '242', '243', '244', '245', '246', '247', '248',
'249', '250', '251', '252', '253', '254', '255', '256', '257', '258',
'259', '260', '261', '262', '263', '264', '265', '266', '267', '268',
'269', '270', '271', '272', '273', '274', '275', '276', '277', '278',
'279', '280', '281', '282', '283', '284', '285', '286', '287', '288',
'289', '290', '291', '292', '293', '294', '295', '296', '297', '298',
'299', '300', '301', '302', '303', '304', '305', '306', '307', '308',
'309', '310', '311', '312', '313', '314', '315', '316', '317', '318',
'319', '320', '321', '322', '323', '324', '325', '326', '327', '328',
'329', '330', '331', '332', '333', '334', '335', '336', '337', '338',
'339', '340', '341', '342', '343', '344', '345', '346', '347', '348',
'349', '350', '351', '352', '353', '354', '355', '356', '357', '358',
'359', '360', '361', '362', '363', '364', '365', '366', '367', '368',
'369', '370', '371', '372', '373', '374', '375', '376', '377', '378',
'379', '380', '381', '382', '383', '384', '385', '386', '387', '388',
'389', '390', '391', '392', '393', '394', '395', '396', '397', '398',
'399', '400', '401', '402', '403', '404', '405', '406', '407', '408',
'409', '410', '411', '412', '413', '414', '415', '416', '417', '418',
'419', '420', '421', '422', '423', '424', '425', '426', '427', '428',
'429', '430', '431', '432', '433', '434', '435', '436', '437', '438',
'439', '440', '441', '442', '443', '444', '445', '446', '447', '448',
'449', '450', '451', '452', '453', '454', '455', '456', '457', '458',
'459', '460', '461', '462', '463', '464', '465', '466', '467', '468',
'469', '470', '471', '472', '473', '474', '475', '476', '477', '478',
'479', '480', '481', '482', '483', '484', '485', '486', '487', '488',
'489', '490', '491', '492', '493', '494', '495', '496', '497', '498',
'499', '500', '501', '502', '503', '504', '505', '506', '507', '508',
'509', '510', '511', '512', '513', '514', '515', '516', '517', '518',
'519', '520', '521', '522', '523', '524', '525', '526', '527', '528',
'529', '530', '531', '532', '533', '534', '535', '536', '537', '538',
'539', '540', '541', '542', '543', '544', '545', '546', '547', '548',
'549', '550', '551', '552', '553', '554', '555', '556', '557', '558',
'559', '560', '561', '562', '563', '564', '565', '566', '567', '568',
'569', '570', '571', '572', '573', '574', '575', '576', '577', '578',
'579', '580', '581', '582', '583', '584', '585', '586', '587', '588',
'589', '590', '591', '592', '593', '594', '595', '596', '597', '598',
'599', '600', '601', '602', '603', '604', '605', '606', '607', '608',
'609', '610', '611', '612', '613', '614', '615', '616', '617', '618',
'619', '620', '621', '622', '623', '624', '625', '626', '627', '628',
'629', '630', '631', '632', '633', '634', '635', '636', '637', '638',
'639', '640', '641', '642', '643', '644', '645', '646', '647', '648',
'649', '650', '651', '652', '653', '654', '655', '656', '657', '658',
'659', '660', '661', '662', '663', '664', '665', '666', '667', '668',
'669', '670', '671', '672', '673', '674', '675', '676', '677', '678',
'679', '680', '681', '682', '683', '684', '685', '686', '687', '688',
'689', '690', '691', '692', '693', '694', '695', '696', '697', '698',
'699', '700', '701', '702', '703', '704', '705', '706', '707', '708',
'709', '710', '711', '712', '713', '714', '715', '716', '717', '718',
'719', '720', '721', '722', '723', '724', '725', '726', '727', '728',
'729', '730', '731', '732', '733', '734', '735', '736', '737', '738',
'739', '740', '741', '742', '743', '744', '745', '746', '747', '748',
'749', '750', '751', '752', '753', '754', '755', '756', '757', '758',
'759', '760', '761', '762', '763', '764', '765', '766', '767', '768',
'769', '770', '771', '772', '773', '774', '775', '776', '777', '778',
'779', '780', '781', '782', '783', '784', '785', '786', '787', '788',
'789', '790', '791', '792', '793', '794', '795', '796', '797', '798',
'799', '800', '801', '802', '803', '804', '805', '806', '807', '808',
'809', '810', '811', '812', '813', '814', '815', '816', '817', '818',
'819', '820', '821', '822', '823', '824', '825', '826', '827', '828',
'829', '830', '831', '832', '833', '834', '835', '836', '837', '838',
'839', '840', '841', '842', '843', '844', '845', '846', '847', '848',
'849', '850', '851', '852', '853', '854', '855', '856', '857', '858',
'859', '860', '861', '862', '863', '864', '865', '866', '867', '868',
'869', '870', '871', '872', '873', '874', '875', '876', '877', '878',
'879', '880', '881', '882', '883', '884', '885', '886', '887', '888',
'889', '890', '891', '892', '893', '894', '895', '896', '897', '898',
'899', '900', '901', '902', '903', '904', '905', '906', '907', '908',
'909', '910', '911', '912', '913', '914', '915', '916', '917', '918',
'919', '920', '921', '922', '923', '924', '925', '926', '927', '928',
'929', '930', '931', '932', '933', '934', '935', '936', '937', '938',
'939', '940', '941', '942', '943', '944', '945', '946', '947', '948',
'949', '950', '951', '952', '953', '954', '955', '956', '957', '958',
'959', '960', '961', '962', '963', '964', '965', '966', '967', '968',
'969', '970', '971', '972', '973', '974', '975', '976', '977', '978',
'979', '980', '981', '982', '983', '984', '985', '986', '987', '988',
'989', '990', '991', '992', '993', '994', '995', '996', '997', '998', '999'
]

data_source_type = 'ClsSourceImageList'
data_train_list = 'data/imagenet_raw/meta/train_labeled.txt'
data_train_root = 'data/imagenet_raw/train/'
data_test_list = 'data/imagenet_raw/meta/val_labeled.txt'
data_test_root = 'data/imagenet_raw/validation/'
image_size2 = 224
image_size1 = int((256 / 224) * image_size2)

dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=image_size2),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(type='Resize', size=image_size1),
dict(type='CenterCrop', size=image_size2),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]

data = dict(
imgs_per_gpu=32, # total 256
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
type=data_source_type),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list,
root=data_test_root,
type=data_source_type),
pipeline=test_pipeline))

eval_config = dict(initial=False, interval=1, gpu_collect=True)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

eval和predict的配置移动到classification_base中,其他地方也是

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

done

eval_pipelines = [
dict(
mode='test',
data=data['val'],
dist_eval=True,
evaluators=[
dict(type='ClsEvaluator', topk=(1, 5), class_list=class_list)
],
)
]
61 changes: 1 addition & 60 deletions configs/classification/imagenet/hrnet/hrnetw18_b32x8_100e_jpg.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,4 @@
_base_ = 'configs/base.py'
log_config = dict(
interval=10,
hooks=[dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')])
_base_ = '../common/dataset/imagenet_classification.py'

# model settings
model = dict(
Expand All @@ -19,61 +15,6 @@
),
num_classes=1000))

data_train_list = 'data/imagenet_raw/meta/train_labeled.txt'
data_train_root = 'data/imagenet_raw/train/'
data_test_list = 'data/imagenet_raw/meta/val_labeled.txt'
data_test_root = 'data/imagenet_raw/validation/'
data_all_list = 'data/imagenet_raw/meta/all_labeled.txt'
data_root = 'data/imagenet_raw/'

dataset_type = 'ClsDataset'
img_norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
train_pipeline = [
dict(type='RandomResizedCrop', size=224),
dict(type='RandomHorizontalFlip'),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]
test_pipeline = [
dict(type='Resize', size=256),
dict(type='CenterCrop', size=224),
dict(type='ToTensor'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Collect', keys=['img', 'gt_labels'])
]

data = dict(
imgs_per_gpu=32, # total 256
workers_per_gpu=4,
train=dict(
type=dataset_type,
data_source=dict(
list_file=data_train_list,
root=data_train_root,
type='ClsSourceImageList'),
pipeline=train_pipeline),
val=dict(
type=dataset_type,
data_source=dict(
list_file=data_test_list,
root=data_test_root,
type='ClsSourceImageList'),
pipeline=test_pipeline))

eval_config = dict(initial=True, interval=100, gpu_collect=True)
eval_pipelines = [
dict(
mode='test',
data=data['val'],
dist_eval=True,
evaluators=[dict(type='ClsEvaluator', topk=(1, 5))],
)
]

# additional hooks
custom_hooks = []

# optimizer
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0001)

Expand Down
Loading