请在阿里云人工智能平台PAI产品中填写专属镜像地址: dsw-registry.cn-wulanchabu.cr.aliyuncs.com/pai/pai-megatron-patch:24.07
运行下列代码克隆Pai-Megatron-Patch
git clone --recurse-submodules https://github.com/alibaba/Pai-Megatron-Patch.git
cd Pai-Megatron-Patch
目前DeepSeek-V2-MoE已支持使用FlashAttention-3加速计算,但只能在Hopper架构的GPU卡上进行运算。若需要在H卡上使用FA3,请在DSW的容器中按如下指令安装并保存镜像
pip install "git+https://github.com/Dao-AILab/flash-attention.git#egg=flashattn-hopper&subdirectory=hopper"
python_path=`python -c "import site; print(site.getsitepackages()[0])"`
mkdir -p $python_path/flashattn_hopper
wget -P $python_path/flashattn_hopper https://raw.githubusercontent.com/Dao-AILab/flash-attention/main/hopper/flash_attn_interface.py
cd /mnt
mkdir deepseek-ckpts
cd deepseek-ckpts
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-ckpts/DeepSeek-V2-Lite.tgz
tar -zxf DeepSeek-V2-Lite.tgz
mkdir deepseek-datasets
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/SlimPajama.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-train.json
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/alpaca_zh-valid.json
制作idxmap的脚本如下所示
cd /workspace/Pai-Megatron-Patch/toolkits/pretrain_data_preprocessing
sh run_make_pretraining_dataset_megatron.sh \
/mnt/deepseek-datasets/SlimPajama.json \
DeepSeekV2Tokenizer \
text \
/mnt/deepseek-datasets/ \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite
为方便期间,我们也提供了已经处理好的idxmap数据集供后续测试使用
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.bin
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/deepseek-datasets/mmap_deepseekv2_datasets_text_document.idx
运行hf2mcore_deepseek_v2_moe_convertor.sh
脚本,需要传入的参数列表如下
MODEL_SIZE=$1 # 模型参数:A2.4B/A21B
SOURCE_CKPT_PATH=$2 # 源路径
TARGET_CKPT_PATH=$3 # 目标路径
TP=$4 # 模型并行度
PP=$5 # 流水并行度
EP=$6 # 专家并行度
PR=$7 # 转换精度
USE_TE=$8 # 是否使用Transformer Engine建模
mg2hf=$9 # 是否执行mcore2hf转换
HG_CKPT_PATH=${10} # HF的CKPT的路径
例如,使用下述脚本将checkpoint转换到MCore-Dense并检查输出
cd /workspace/Pai-Megatron-Patch/toolkits/model_checkpoints_convertor/deepseek
bash hf2mcore_deepseek_v2_moe_convertor.sh \
A2.4B \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite-to-mcore-tp2-pp1-ep4 \
2 \
1 \
4 \
fp32 \
true \
false
在DeepSeek-V2中,我们已将预训练和微调整合到run_mcore_deepseek.sh
脚本,对于不同的使用场景,二者各参数的意义有所不同。
需要传入的参数列表如下:
ENV=$1 # 运行环境配置开关: dsw单机训练训练,dlc表示多机训练环境
MODEL_SIZE=$2 # 模型结构参数量级: A2.4B,A21B
BATCH_SIZE=$3 # 一次迭代一个数据并行内的样本数
GLOBAL_BATCH_SIZE=$4 # 一次迭代多个数据并行的总样本数
LR=$5 # 学习率
MIN_LR=$6 # 最小学习率
SEQ_LEN=$7 # 序列长度
PAD_LEN=$8 # Padding长度
PR=${9} # 训练精度: fp16, bf16, fp8
TP=${10} # 模型并行度
PP=${11} # 流水并行度
CP=${12} # 上下文并行度
EP=${13} # 专家并行度
SP=${14} # 是否使用序列并行: true, false
DO=${15} # 是否使用Megatron版Zero-1降显存优化器: true, false
FL=${16} # 是否优先使用Flash Attention: true, false
SFT=${17} # 是否执行微调训练: true, false
AC=${18} # 激活检查点模式: sel, full, offload, false
OPTIMIZER_OFFLOAD=${19} # 是否启用Offload optimizer: false, static, auto
SAVE_INTERVAL=${20} # 保存ckpt的间隔
DATASET_PATH=${21} # 训练数据集路径
VALID_DATASET_PATH=${22} # 验证数据集路径
PRETRAIN_CHECKPOINT_PATH=${23} # 预训练模型路径
TRAIN_TOKENS_OR_ITERS=${24} # 训练TOKEN或者Iter数
WARMUP_TOKENS_OR_ITERS=${25} # 预热TOKEN或者Iter数
OUTPUT_BASEPATH=${26} # 训练输出日志文件路径
使用以下命令启动对Deepseek-V2-MoE的继续预训练。
备注:当AC=offload
或full
时,可设置MP_AC_LAYERS
环境变量来控制Checkpointing或Offload的TransformerLayer层数(默认值:1
)。
cd /workspace/Pai-Megatron-Patch/examples/deepseek_v2
sh run_mcore_deepseek.sh \
dsw \
A2.4B \
1 \
8 \
1e-5 \
1e-6 \
128 \
128 \
bf16 \
2 \
1 \
1 \
4 \
true \
true \
true \
false \
false \
false \
100000 \
/mnt/deepseek-datasets/mmap_deepseekv2_datasets_text_document \
/mnt/deepseek-datasets/mmap_deepseekv2_datasets_text_document \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite-to-mcore-tp2-pp1-ep4 \
10000 \
100 \
/workspace/output_mcore_deepseek_pretrain
制作idxmap用于微调的数据集可以参考链接。
当准备好微调数据集后,将SFT开关设置为true
即可进行指令微调。
cd /workspace/Pai-Megatron-Patch/examples/deepseek_v2
sh run_mcore_deepseek.sh \
dsw \
A2.4B \
1 \
8 \
1e-5 \
1e-6 \
128 \
128 \
bf16 \
2 \
1 \
1 \
4 \
true \
true \
true \
true \
false \
false \
100000 \
/mnt/deepseek-datasets/path_to_your_dataset \
/mnt/deepseek-datasets/path_to_your_dataset \
/path/to/pretraining/checkpoint \
10000 \
100 \
/workspace/output_mcore_deepseek_finetune
通过设置MP_DATASET_TYPE环境变量,本脚本还可使用json格式的数据集进行指令微调
export MP_DATASET_TYPE="raw"
cd /workspace/Pai-Megatron-Patch/examples/deepseek_v2
sh run_mcore_deepseek.sh \
dsw \
A2.4B \
1 \
8 \
1e-5 \
1e-6 \
128 \
128 \
bf16 \
1 \
1 \
1 \
1 \
true \
true \
true \
true \
false \
false \
100000 \
/mnt/deepseek-datasets/alpaca_zh-train.json \
/mnt/deepseek-datasets/alpaca_zh-train.json \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite-to-mcore-tp2-pp1-ep4 \
10000 \
100 \
/workspace/output_mcore_deepseek_finetune
您需要将训练/微调后保存的Megatron-Core转换为HuggingFace格式来进行推理评估。
cd /workspace/Pai-Megatron-Patch/toolkits/model_checkpoints_convertor/deepseek
bash hf2mcore_deepseek_v2_moe_convertor.sh \
A2.4B \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite-to-mcore-tp2-pp1-ep4 \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite-mcore-te-to-hf \
2 \
1 \
4 \
fp32 \
true \
true \
/mnt/deepseek-ckpts/DeepSeek-V2-Lite
下载评估数据
# In container
cd /workspace
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/evaluation-datasets/evaluate.tgz
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/evaluation-datasets/cmmlu.tgz
wget https://atp-modelzoo-wlcb-pai.oss-cn-wulanchabu.aliyuncs.com/release/models/pai-megatron-patch/evaluation-datasets/ceval.tgz
tar -xvzf cmmlu.tgz
tar -xvzf ceval.tgz
tar -xvzf evaluate.tgz
运行以下指令对转换后的模型进行评估。
cd /workspace/Pai-Megatron-Patch/LM-Evaluation-Harness-240310
accelerate launch --main_process_port 29051 -m lm_eval \
--model hf \
--model_args pretrained=/mnt/deepseek-ckpts/DeepSeek-V2-Lite-mcore-te-to-hf,trust_remote_code=True \
--tasks cmmlu,ceval-valid \
--batch_size 16