forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathex10p.cpp
688 lines (593 loc) · 23 KB
/
ex10p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
// MFEM Example 10 - Parallel Version
//
// Compile with: make ex10p
//
// Sample runs:
// mpirun -np 4 ex10p -m ../data/beam-quad.mesh -s 3 -rs 2 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-tri.mesh -s 3 -rs 2 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-hex.mesh -s 2 -rs 1 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-tet.mesh -s 2 -rs 1 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-wedge.mesh -s 2 -rs 1 -dt 3
// mpirun -np 4 ex10p -m ../data/beam-quad.mesh -s 14 -rs 2 -dt 0.03 -vs 20
// mpirun -np 4 ex10p -m ../data/beam-hex.mesh -s 14 -rs 1 -dt 0.05 -vs 20
// mpirun -np 4 ex10p -m ../data/beam-quad-amr.mesh -s 3 -rs 2 -dt 3
//
// Description: This examples solves a time dependent nonlinear elasticity
// problem of the form dv/dt = H(x) + S v, dx/dt = v, where H is a
// hyperelastic model and S is a viscosity operator of Laplacian
// type. The geometry of the domain is assumed to be as follows:
//
// +---------------------+
// boundary --->| |
// attribute 1 | |
// (fixed) +---------------------+
//
// The example demonstrates the use of nonlinear operators (the
// class HyperelasticOperator defining H(x)), as well as their
// implicit time integration using a Newton method for solving an
// associated reduced backward-Euler type nonlinear equation
// (class ReducedSystemOperator). Each Newton step requires the
// inversion of a Jacobian matrix, which is done through a
// (preconditioned) inner solver. Note that implementing the
// method HyperelasticOperator::ImplicitSolve is the only
// requirement for high-order implicit (SDIRK) time integration.
//
// We recommend viewing examples 2 and 9 before viewing this
// example.
#include "mfem.hpp"
#include <memory>
#include <iostream>
#include <fstream>
using namespace std;
using namespace mfem;
class ReducedSystemOperator;
/** After spatial discretization, the hyperelastic model can be written as a
* system of ODEs:
* dv/dt = -M^{-1}*(H(x) + S*v)
* dx/dt = v,
* where x is the vector representing the deformation, v is the velocity field,
* M is the mass matrix, S is the viscosity matrix, and H(x) is the nonlinear
* hyperelastic operator.
*
* Class HyperelasticOperator represents the right-hand side of the above
* system of ODEs. */
class HyperelasticOperator : public TimeDependentOperator
{
protected:
ParFiniteElementSpace &fespace;
Array<int> ess_tdof_list;
ParBilinearForm M, S;
ParNonlinearForm H;
double viscosity;
HyperelasticModel *model;
HypreParMatrix *Mmat; // Mass matrix from ParallelAssemble()
CGSolver M_solver; // Krylov solver for inverting the mass matrix M
HypreSmoother M_prec; // Preconditioner for the mass matrix M
/** Nonlinear operator defining the reduced backward Euler equation for the
velocity. Used in the implementation of method ImplicitSolve. */
ReducedSystemOperator *reduced_oper;
/// Newton solver for the reduced backward Euler equation
NewtonSolver newton_solver;
/// Solver for the Jacobian solve in the Newton method
Solver *J_solver;
/// Preconditioner for the Jacobian solve in the Newton method
Solver *J_prec;
mutable Vector z; // auxiliary vector
public:
HyperelasticOperator(ParFiniteElementSpace &f, Array<int> &ess_bdr,
double visc, double mu, double K);
/// Compute the right-hand side of the ODE system.
virtual void Mult(const Vector &vx, Vector &dvx_dt) const;
/** Solve the Backward-Euler equation: k = f(x + dt*k, t), for the unknown k.
This is the only requirement for high-order SDIRK implicit integration.*/
virtual void ImplicitSolve(const double dt, const Vector &x, Vector &k);
double ElasticEnergy(const ParGridFunction &x) const;
double KineticEnergy(const ParGridFunction &v) const;
void GetElasticEnergyDensity(const ParGridFunction &x,
ParGridFunction &w) const;
virtual ~HyperelasticOperator();
};
/** Nonlinear operator of the form:
k --> (M + dt*S)*k + H(x + dt*v + dt^2*k) + S*v,
where M and S are given BilinearForms, H is a given NonlinearForm, v and x
are given vectors, and dt is a scalar. */
class ReducedSystemOperator : public Operator
{
private:
ParBilinearForm *M, *S;
ParNonlinearForm *H;
mutable HypreParMatrix *Jacobian;
double dt;
const Vector *v, *x;
mutable Vector w, z;
const Array<int> &ess_tdof_list;
public:
ReducedSystemOperator(ParBilinearForm *M_, ParBilinearForm *S_,
ParNonlinearForm *H_, const Array<int> &ess_tdof_list);
/// Set current dt, v, x values - needed to compute action and Jacobian.
void SetParameters(double dt_, const Vector *v_, const Vector *x_);
/// Compute y = H(x + dt (v + dt k)) + M k + S (v + dt k).
virtual void Mult(const Vector &k, Vector &y) const;
/// Compute J = M + dt S + dt^2 grad_H(x + dt (v + dt k)).
virtual Operator &GetGradient(const Vector &k) const;
virtual ~ReducedSystemOperator();
};
/** Function representing the elastic energy density for the given hyperelastic
model+deformation. Used in HyperelasticOperator::GetElasticEnergyDensity. */
class ElasticEnergyCoefficient : public Coefficient
{
private:
HyperelasticModel &model;
const ParGridFunction &x;
DenseMatrix J;
public:
ElasticEnergyCoefficient(HyperelasticModel &m, const ParGridFunction &x_)
: model(m), x(x_) { }
virtual double Eval(ElementTransformation &T, const IntegrationPoint &ip);
virtual ~ElasticEnergyCoefficient() { }
};
void InitialDeformation(const Vector &x, Vector &y);
void InitialVelocity(const Vector &x, Vector &v);
void visualize(ostream &os, ParMesh *mesh,
ParGridFunction *deformed_nodes,
ParGridFunction *field, const char *field_name = NULL,
bool init_vis = false);
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/beam-quad.mesh";
int ser_ref_levels = 2;
int par_ref_levels = 0;
int order = 2;
int ode_solver_type = 3;
double t_final = 300.0;
double dt = 3.0;
double visc = 1e-2;
double mu = 0.25;
double K = 5.0;
bool adaptive_lin_rtol = true;
bool visualization = true;
int vis_steps = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
"ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3,\n\t"
" 11 - Forward Euler, 12 - RK2,\n\t"
" 13 - RK3 SSP, 14 - RK4."
" 22 - Implicit Midpoint Method,\n\t"
" 23 - SDIRK23 (A-stable), 24 - SDIRK34");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step.");
args.AddOption(&visc, "-v", "--viscosity",
"Viscosity coefficient.");
args.AddOption(&mu, "-mu", "--shear-modulus",
"Shear modulus in the Neo-Hookean hyperelastic model.");
args.AddOption(&K, "-K", "--bulk-modulus",
"Bulk modulus in the Neo-Hookean hyperelastic model.");
args.AddOption(&adaptive_lin_rtol, "-alrtol", "--adaptive-lin-rtol",
"-no-alrtol", "--no-adaptive-lin-rtol",
"Enable or disable adaptive linear solver rtol.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Read the serial mesh from the given mesh file on all processors. We can
// handle triangular, quadrilateral, tetrahedral and hexahedral meshes
// with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 4. Define the ODE solver used for time integration. Several implicit
// singly diagonal implicit Runge-Kutta (SDIRK) methods, as well as
// explicit Runge-Kutta methods are available.
ODESolver *ode_solver;
switch (ode_solver_type)
{
// Implicit L-stable methods
case 1: ode_solver = new BackwardEulerSolver; break;
case 2: ode_solver = new SDIRK23Solver(2); break;
case 3: ode_solver = new SDIRK33Solver; break;
// Explicit methods
case 11: ode_solver = new ForwardEulerSolver; break;
case 12: ode_solver = new RK2Solver(0.5); break; // midpoint method
case 13: ode_solver = new RK3SSPSolver; break;
case 14: ode_solver = new RK4Solver; break;
case 15: ode_solver = new GeneralizedAlphaSolver(0.5); break;
// Implicit A-stable methods (not L-stable)
case 22: ode_solver = new ImplicitMidpointSolver; break;
case 23: ode_solver = new SDIRK23Solver; break;
case 24: ode_solver = new SDIRK34Solver; break;
default:
if (myid == 0)
{
cout << "Unknown ODE solver type: " << ode_solver_type << '\n';
}
delete mesh;
return 3;
}
// 5. Refine the mesh in serial to increase the resolution. In this example
// we do 'ser_ref_levels' of uniform refinement, where 'ser_ref_levels' is
// a command-line parameter.
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh->UniformRefinement();
}
// 6. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh->UniformRefinement();
}
// 7. Define the parallel vector finite element spaces representing the mesh
// deformation x_gf, the velocity v_gf, and the initial configuration,
// x_ref. Define also the elastic energy density, w_gf, which is in a
// discontinuous higher-order space. Since x and v are integrated in time
// as a system, we group them together in block vector vx, on the unique
// parallel degrees of freedom, with offsets given by array true_offset.
H1_FECollection fe_coll(order, dim);
ParFiniteElementSpace fespace(pmesh, &fe_coll, dim);
HYPRE_BigInt glob_size = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of velocity/deformation unknowns: " << glob_size << endl;
}
int true_size = fespace.TrueVSize();
Array<int> true_offset(3);
true_offset[0] = 0;
true_offset[1] = true_size;
true_offset[2] = 2*true_size;
BlockVector vx(true_offset);
ParGridFunction v_gf, x_gf;
v_gf.MakeTRef(&fespace, vx, true_offset[0]);
x_gf.MakeTRef(&fespace, vx, true_offset[1]);
ParGridFunction x_ref(&fespace);
pmesh->GetNodes(x_ref);
L2_FECollection w_fec(order + 1, dim);
ParFiniteElementSpace w_fespace(pmesh, &w_fec);
ParGridFunction w_gf(&w_fespace);
// 8. Set the initial conditions for v_gf, x_gf and vx, and define the
// boundary conditions on a beam-like mesh (see description above).
VectorFunctionCoefficient velo(dim, InitialVelocity);
v_gf.ProjectCoefficient(velo);
v_gf.SetTrueVector();
VectorFunctionCoefficient deform(dim, InitialDeformation);
x_gf.ProjectCoefficient(deform);
x_gf.SetTrueVector();
v_gf.SetFromTrueVector(); x_gf.SetFromTrueVector();
Array<int> ess_bdr(fespace.GetMesh()->bdr_attributes.Max());
ess_bdr = 0;
ess_bdr[0] = 1; // boundary attribute 1 (index 0) is fixed
// 9. Initialize the hyperelastic operator, the GLVis visualization and print
// the initial energies.
HyperelasticOperator oper(fespace, ess_bdr, visc, mu, K);
socketstream vis_v, vis_w;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
vis_v.open(vishost, visport);
vis_v.precision(8);
visualize(vis_v, pmesh, &x_gf, &v_gf, "Velocity", true);
// Make sure all ranks have sent their 'v' solution before initiating
// another set of GLVis connections (one from each rank):
MPI_Barrier(pmesh->GetComm());
vis_w.open(vishost, visport);
if (vis_w)
{
oper.GetElasticEnergyDensity(x_gf, w_gf);
vis_w.precision(8);
visualize(vis_w, pmesh, &x_gf, &w_gf, "Elastic energy density", true);
}
if (myid == 0)
{
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
}
double ee0 = oper.ElasticEnergy(x_gf);
double ke0 = oper.KineticEnergy(v_gf);
if (myid == 0)
{
cout << "initial elastic energy (EE) = " << ee0 << endl;
cout << "initial kinetic energy (KE) = " << ke0 << endl;
cout << "initial total energy (TE) = " << (ee0 + ke0) << endl;
}
double t = 0.0;
oper.SetTime(t);
ode_solver->Init(oper);
// 10. Perform time-integration
// (looping over the time iterations, ti, with a time-step dt).
bool last_step = false;
for (int ti = 1; !last_step; ti++)
{
double dt_real = min(dt, t_final - t);
ode_solver->Step(vx, t, dt_real);
last_step = (t >= t_final - 1e-8*dt);
if (last_step || (ti % vis_steps) == 0)
{
v_gf.SetFromTrueVector(); x_gf.SetFromTrueVector();
double ee = oper.ElasticEnergy(x_gf);
double ke = oper.KineticEnergy(v_gf);
if (myid == 0)
{
cout << "step " << ti << ", t = " << t << ", EE = " << ee
<< ", KE = " << ke << ", ΔTE = " << (ee+ke)-(ee0+ke0) << endl;
}
if (visualization)
{
visualize(vis_v, pmesh, &x_gf, &v_gf);
if (vis_w)
{
oper.GetElasticEnergyDensity(x_gf, w_gf);
visualize(vis_w, pmesh, &x_gf, &w_gf);
}
}
}
}
// 11. Save the displaced mesh, the velocity and elastic energy.
{
v_gf.SetFromTrueVector(); x_gf.SetFromTrueVector();
GridFunction *nodes = &x_gf;
int owns_nodes = 0;
pmesh->SwapNodes(nodes, owns_nodes);
ostringstream mesh_name, velo_name, ee_name;
mesh_name << "deformed." << setfill('0') << setw(6) << myid;
velo_name << "velocity." << setfill('0') << setw(6) << myid;
ee_name << "elastic_energy." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh->Print(mesh_ofs);
pmesh->SwapNodes(nodes, owns_nodes);
ofstream velo_ofs(velo_name.str().c_str());
velo_ofs.precision(8);
v_gf.Save(velo_ofs);
ofstream ee_ofs(ee_name.str().c_str());
ee_ofs.precision(8);
oper.GetElasticEnergyDensity(x_gf, w_gf);
w_gf.Save(ee_ofs);
}
// 12. Free the used memory.
delete ode_solver;
delete pmesh;
return 0;
}
void visualize(ostream &os, ParMesh *mesh,
ParGridFunction *deformed_nodes,
ParGridFunction *field, const char *field_name, bool init_vis)
{
if (!os)
{
return;
}
GridFunction *nodes = deformed_nodes;
int owns_nodes = 0;
mesh->SwapNodes(nodes, owns_nodes);
os << "parallel " << mesh->GetNRanks()
<< " " << mesh->GetMyRank() << "\n";
os << "solution\n" << *mesh << *field;
mesh->SwapNodes(nodes, owns_nodes);
if (init_vis)
{
os << "window_size 800 800\n";
os << "window_title '" << field_name << "'\n";
if (mesh->SpaceDimension() == 2)
{
os << "view 0 0\n"; // view from top
os << "keys jl\n"; // turn off perspective and light
}
os << "keys cm\n"; // show colorbar and mesh
// update value-range; keep mesh-extents fixed
os << "autoscale value\n";
os << "pause\n";
}
os << flush;
}
ReducedSystemOperator::ReducedSystemOperator(
ParBilinearForm *M_, ParBilinearForm *S_, ParNonlinearForm *H_,
const Array<int> &ess_tdof_list_)
: Operator(M_->ParFESpace()->TrueVSize()), M(M_), S(S_), H(H_),
Jacobian(NULL), dt(0.0), v(NULL), x(NULL), w(height), z(height),
ess_tdof_list(ess_tdof_list_)
{ }
void ReducedSystemOperator::SetParameters(double dt_, const Vector *v_,
const Vector *x_)
{
dt = dt_; v = v_; x = x_;
}
void ReducedSystemOperator::Mult(const Vector &k, Vector &y) const
{
// compute: y = H(x + dt*(v + dt*k)) + M*k + S*(v + dt*k)
add(*v, dt, k, w);
add(*x, dt, w, z);
H->Mult(z, y);
M->TrueAddMult(k, y);
S->TrueAddMult(w, y);
y.SetSubVector(ess_tdof_list, 0.0);
}
Operator &ReducedSystemOperator::GetGradient(const Vector &k) const
{
delete Jacobian;
SparseMatrix *localJ = Add(1.0, M->SpMat(), dt, S->SpMat());
add(*v, dt, k, w);
add(*x, dt, w, z);
localJ->Add(dt*dt, H->GetLocalGradient(z));
Jacobian = M->ParallelAssemble(localJ);
delete localJ;
HypreParMatrix *Je = Jacobian->EliminateRowsCols(ess_tdof_list);
delete Je;
return *Jacobian;
}
ReducedSystemOperator::~ReducedSystemOperator()
{
delete Jacobian;
}
HyperelasticOperator::HyperelasticOperator(ParFiniteElementSpace &f,
Array<int> &ess_bdr, double visc,
double mu, double K)
: TimeDependentOperator(2*f.TrueVSize(), 0.0), fespace(f),
M(&fespace), S(&fespace), H(&fespace),
viscosity(visc), M_solver(f.GetComm()), newton_solver(f.GetComm()),
z(height/2)
{
const double rel_tol = 1e-8;
const int skip_zero_entries = 0;
const double ref_density = 1.0; // density in the reference configuration
ConstantCoefficient rho0(ref_density);
M.AddDomainIntegrator(new VectorMassIntegrator(rho0));
M.Assemble(skip_zero_entries);
M.Finalize(skip_zero_entries);
Mmat = M.ParallelAssemble();
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
HypreParMatrix *Me = Mmat->EliminateRowsCols(ess_tdof_list);
delete Me;
M_solver.iterative_mode = false;
M_solver.SetRelTol(rel_tol);
M_solver.SetAbsTol(0.0);
M_solver.SetMaxIter(30);
M_solver.SetPrintLevel(0);
M_prec.SetType(HypreSmoother::Jacobi);
M_solver.SetPreconditioner(M_prec);
M_solver.SetOperator(*Mmat);
model = new NeoHookeanModel(mu, K);
H.AddDomainIntegrator(new HyperelasticNLFIntegrator(model));
H.SetEssentialTrueDofs(ess_tdof_list);
ConstantCoefficient visc_coeff(viscosity);
S.AddDomainIntegrator(new VectorDiffusionIntegrator(visc_coeff));
S.Assemble(skip_zero_entries);
S.Finalize(skip_zero_entries);
reduced_oper = new ReducedSystemOperator(&M, &S, &H, ess_tdof_list);
HypreSmoother *J_hypreSmoother = new HypreSmoother;
J_hypreSmoother->SetType(HypreSmoother::l1Jacobi);
J_hypreSmoother->SetPositiveDiagonal(true);
J_prec = J_hypreSmoother;
MINRESSolver *J_minres = new MINRESSolver(f.GetComm());
J_minres->SetRelTol(rel_tol);
J_minres->SetAbsTol(0.0);
J_minres->SetMaxIter(300);
J_minres->SetPrintLevel(-1);
J_minres->SetPreconditioner(*J_prec);
J_solver = J_minres;
newton_solver.iterative_mode = false;
newton_solver.SetSolver(*J_solver);
newton_solver.SetOperator(*reduced_oper);
newton_solver.SetPrintLevel(1); // print Newton iterations
newton_solver.SetRelTol(rel_tol);
newton_solver.SetAbsTol(0.0);
newton_solver.SetAdaptiveLinRtol(2, 0.5, 0.9);
newton_solver.SetMaxIter(10);
}
void HyperelasticOperator::Mult(const Vector &vx, Vector &dvx_dt) const
{
// Create views to the sub-vectors v, x of vx, and dv_dt, dx_dt of dvx_dt
int sc = height/2;
Vector v(vx.GetData() + 0, sc);
Vector x(vx.GetData() + sc, sc);
Vector dv_dt(dvx_dt.GetData() + 0, sc);
Vector dx_dt(dvx_dt.GetData() + sc, sc);
H.Mult(x, z);
if (viscosity != 0.0)
{
S.TrueAddMult(v, z);
z.SetSubVector(ess_tdof_list, 0.0);
}
z.Neg(); // z = -z
M_solver.Mult(z, dv_dt);
dx_dt = v;
}
void HyperelasticOperator::ImplicitSolve(const double dt,
const Vector &vx, Vector &dvx_dt)
{
int sc = height/2;
Vector v(vx.GetData() + 0, sc);
Vector x(vx.GetData() + sc, sc);
Vector dv_dt(dvx_dt.GetData() + 0, sc);
Vector dx_dt(dvx_dt.GetData() + sc, sc);
// By eliminating kx from the coupled system:
// kv = -M^{-1}*[H(x + dt*kx) + S*(v + dt*kv)]
// kx = v + dt*kv
// we reduce it to a nonlinear equation for kv, represented by the
// reduced_oper. This equation is solved with the newton_solver
// object (using J_solver and J_prec internally).
reduced_oper->SetParameters(dt, &v, &x);
Vector zero; // empty vector is interpreted as zero r.h.s. by NewtonSolver
newton_solver.Mult(zero, dv_dt);
MFEM_VERIFY(newton_solver.GetConverged(), "Newton solver did not converge.");
add(v, dt, dv_dt, dx_dt);
}
double HyperelasticOperator::ElasticEnergy(const ParGridFunction &x) const
{
return H.GetEnergy(x);
}
double HyperelasticOperator::KineticEnergy(const ParGridFunction &v) const
{
double loc_energy = 0.5*M.InnerProduct(v, v);
double energy;
MPI_Allreduce(&loc_energy, &energy, 1, MPI_DOUBLE, MPI_SUM,
fespace.GetComm());
return energy;
}
void HyperelasticOperator::GetElasticEnergyDensity(
const ParGridFunction &x, ParGridFunction &w) const
{
ElasticEnergyCoefficient w_coeff(*model, x);
w.ProjectCoefficient(w_coeff);
}
HyperelasticOperator::~HyperelasticOperator()
{
delete J_solver;
delete J_prec;
delete reduced_oper;
delete model;
delete Mmat;
}
double ElasticEnergyCoefficient::Eval(ElementTransformation &T,
const IntegrationPoint &ip)
{
model.SetTransformation(T);
x.GetVectorGradient(T, J);
// return model.EvalW(J); // in reference configuration
return model.EvalW(J)/J.Det(); // in deformed configuration
}
void InitialDeformation(const Vector &x, Vector &y)
{
// set the initial configuration to be the same as the reference, stress
// free, configuration
y = x;
}
void InitialVelocity(const Vector &x, Vector &v)
{
const int dim = x.Size();
const double s = 0.1/64.;
v = 0.0;
v(dim-1) = s*x(0)*x(0)*(8.0-x(0));
v(0) = -s*x(0)*x(0);
}