-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_adroit.py
127 lines (118 loc) · 5.95 KB
/
train_adroit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pickle
import keras
import tensorflow as tf
from keras import backend as K
import numpy as np
from utils.multiGPU import ModelMGPU
from helpers.data_generator import process_data, DataGenerator, TensorBoardWrapper
from helpers.custom_losses import denorm_loss, hinge_mse_loss, percent_correct_sign
from models.LSTMConv2D import get_model_lstm_conv2d, get_model_simple_lstm
from models.LSTMConv2D import get_model_linear_systems, get_model_conv2d
from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau
num_cores = 6
config = tf.ConfigProto(intra_op_parallelism_threads=num_cores,
inter_op_parallelism_threads=num_cores,
allow_soft_placement=True,
device_count={'CPU': 1,
'GPU': 4})
session = tf.Session(config=config)
K.set_session(session)
avail_profiles = ['dens', 'ffprime', 'idens', 'itemp', 'press', 'rotation',
'temp', 'thomson_dens', 'thomson_temp']
avail_actuators = ['curr', 'ech', 'gasA', 'gasB', 'gasC', 'gasD' 'gasE', 'pinj',
'pinj_15L', 'pinj_15R', 'pinj_21L', 'pinj_21R', 'pinj_30L',
'pinj_30R', 'pinj_33L', 'pinj_33R', 'tinj']
available_sigs = avail_profiles + avail_actuators + ['time']
models = {'simple_lstm': get_model_simple_lstm,
'lstm_conv2d': get_model_lstm_conv2d,
'conv2d': get_model_conv2d,
'linear_systems': get_model_linear_systems}
model_type = 'conv2d'
input_profile_names = ['temp', 'dens', 'rotation']
target_profile_names = ['temp']
actuator_names = ['pinj', 'curr']
predict_deltas = False
profile_lookback = 8
actuator_lookback = 8
lookahead = 3
profile_length = 65
std_activation = 'relu'
rawdata_path = '/scratch/network/wconlin/final_data.pkl'
checkpt_dir = '/scratch/network/wconlin/'
sig_names = input_profile_names + target_profile_names + actuator_names
normalization_method = 'RobustScaler'
window_length = 1
window_overlap = 0
sample_step = 1
uniform_normalization = True
train_frac = 0.8
val_frac = 0.2
nshots = 1000
mse_weight_vector = np.linspace(1, np.sqrt(10), profile_length)**2
hinge_weight = 50
batch_size = 128
epochs = 100
verbose = 1
batch_size = 4*batch_size # for distributed GPUs
runname = 'model-' + model_type + '_profiles-' + '-'.join(input_profile_names) \
+ '_act-' + '-'.join(actuator_names) + '_targ-' \
+ '-'.join(target_profile_names) + '_norm-' + normalization_method \
+ '_profLB-' + str(profile_lookback) + \
'_actLB-' + str(actuator_lookback) + '_activ-' + std_activation
assert(all(elem in available_sigs for elem in sig_names))
traindata, valdata, param_dict = process_data(rawdata_path, sig_names, normalization_method,
window_length, window_overlap, profile_lookback,
lookahead, sample_step, uniform_normalization,
train_frac, val_frac, nshots)
train_generator = DataGenerator(traindata, batch_size, input_profile_names,
actuator_names, target_profile_names, profile_lookback,
actuator_lookback, lookahead, predict_deltas)
val_generator = DataGenerator(valdata, batch_size, input_profile_names,
actuator_names, target_profile_names, profile_lookback,
actuator_lookback, lookahead, predict_deltas)
steps_per_epoch = len(train_generator)
val_steps = len(val_generator)
model = models[model_type](input_profile_names, target_profile_names,
actuator_names, profile_lookback, actuator_lookback,
lookahead, profile_length, std_activation)
model.summary()
model = ModelMGPU(model, 4)
optimizer = keras.optimizers.Adadelta()
loss = []
loss.append(hinge_mse_loss(
'temp', model, hinge_weight, mse_weight_vector, predict_deltas))
metrics = []
metrics.append(denorm_loss(
param_dict['temp'], keras.metrics.MAE, predict_deltas, 'temp', model))
metrics.append(percent_correct_sign('temp', model, predict_deltas))
callbacks = []
callbacks.append(ModelCheckpoint(checkpt_dir + runname + '.h5', monitor='val_loss', verbose=0,
save_best_only=True, save_weights_only=False,
mode='auto', period=1))
callbacks.append(ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10,
verbose=1, mode='auto', min_delta=0.001,
cooldown=1, min_lr=0))
callbacks.append(TensorBoardWrapper(val_generator, log_dir=checkpt_dir + 'tensorboard_logs/' + runname,
histogram_freq=1, batch_size=batch_size, write_graph=False, write_grads=False))
model.compile(optimizer, loss, metrics)
history = model.fit_generator(train_generator, steps_per_epoch=steps_per_epoch,
epochs=epochs, verbose=verbose, callbacks=callbacks,
validation_data=val_generator, validation_steps=val_steps,
max_queue_size=10, workers=4, use_multiprocessing=False)
analysis_params = {'rawdata': rawdata_path,
'input_profile_names': input_profile_names,
'actuator_names': actuator_names,
'target_profile_names': target_profile_names,
'predict_deltas': predict_deltas,
'sig_names': sig_names,
'window_length': window_length,
'window_overlap': window_overlap,
'profile_lookback': profile_lookback,
'actuator_lookback': actuator_lookback,
'lookahead': lookahead,
'sample_step': sample_step,
'model_path': checkpt_dir + runname + '.h5',
'normalization_params': param_dict,
'history': history}
with open(checkpt_dir + runname + '.pkl', 'wb+') as f:
pickle.dump(analysis_params, f)