-
Notifications
You must be signed in to change notification settings - Fork 795
/
generate_schema_wrapper.py
640 lines (534 loc) · 21.5 KB
/
generate_schema_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
"""Generate a schema wrapper from a schema"""
import argparse
import copy
import os
import sys
import json
import re
from os.path import abspath, join, dirname
import textwrap
from urllib import request
import m2r
# import schemapi from here
sys.path.insert(0, abspath(dirname(__file__)))
from schemapi import codegen # noqa: E402
from schemapi.codegen import CodeSnippet # noqa: E402
from schemapi.utils import (
get_valid_identifier,
SchemaInfo,
indent_arglist,
resolve_references,
) # noqa: E402
import generate_api_docs # noqa: E402
# Map of version name to github branch name.
SCHEMA_VERSION = {
"vega": {"v5": "v5.10.0"},
"vega-lite": {"v3": "v3.4.0", "v4": "v4.8.1"},
}
reLink = re.compile(r"(?<=\[)([^\]]+)(?=\]\([^\)]+\))", re.M)
reSpecial = re.compile(r"[*_]{2,3}|`", re.M)
class SchemaGenerator(codegen.SchemaGenerator):
schema_class_template = textwrap.dedent(
'''
class {classname}({basename}):
"""{docstring}"""
_schema = {schema!r}
{init_code}
'''
)
def _process_description(self, description):
description = "".join(
[
reSpecial.sub("", d) if i % 2 else d
for i, d in enumerate(reLink.split(description))
]
) # remove formatting from links
description = m2r.convert(description)
description = description.replace(m2r.prolog, "")
description = description.replace(":raw-html-m2r:", ":raw-html:")
description = description.replace(r"\ ,", ",")
description = description.replace(r"\ ", " ")
# turn explicit references into anonymous references
description = description.replace(">`_", ">`__")
description += "\n"
return description.strip()
def schema_class(*args, **kwargs):
return SchemaGenerator(*args, **kwargs).schema_class()
SCHEMA_URL_TEMPLATE = "https://vega.github.io/schema/" "{library}/{version}.json"
BASE_SCHEMA = """
class {basename}(SchemaBase):
_rootschema = load_schema()
@classmethod
def _default_wrapper_classes(cls):
return _subclasses({basename})
"""
LOAD_SCHEMA = '''
import pkgutil
import json
def load_schema():
"""Load the json schema associated with this module's functions"""
return json.loads(pkgutil.get_data(__name__, '{schemafile}').decode('utf-8'))
'''
CHANNEL_MIXINS = """
class FieldChannelMixin(object):
def to_dict(self, validate=True, ignore=(), context=None):
context = context or {}
shorthand = self._get('shorthand')
field = self._get('field')
if shorthand is not Undefined and field is not Undefined:
raise ValueError("{} specifies both shorthand={} and field={}. "
"".format(self.__class__.__name__, shorthand, field))
if isinstance(shorthand, (tuple, list)):
# If given a list of shorthands, then transform it to a list of classes
kwds = self._kwds.copy()
kwds.pop('shorthand')
return [self.__class__(sh, **kwds).to_dict(validate=validate, ignore=ignore, context=context)
for sh in shorthand]
if shorthand is Undefined:
parsed = {}
elif isinstance(shorthand, str):
parsed = parse_shorthand(shorthand, data=context.get('data', None))
type_required = 'type' in self._kwds
type_in_shorthand = 'type' in parsed
type_defined_explicitly = self._get('type') is not Undefined
if not type_required:
# Secondary field names don't require a type argument in VegaLite 3+.
# We still parse it out of the shorthand, but drop it here.
parsed.pop('type', None)
elif not (type_in_shorthand or type_defined_explicitly):
if isinstance(context.get('data', None), pd.DataFrame):
raise ValueError("{} encoding field is specified without a type; "
"the type cannot be inferred because it does not "
"match any column in the data.".format(shorthand))
else:
raise ValueError("{} encoding field is specified without a type; "
"the type cannot be automatically inferred because "
"the data is not specified as a pandas.DataFrame."
"".format(shorthand))
else:
# Shorthand is not a string; we pass the definition to field,
# and do not do any parsing.
parsed = {'field': shorthand}
# Set shorthand to Undefined, because it's not part of the base schema.
self.shorthand = Undefined
self._kwds.update({k: v for k, v in parsed.items()
if self._get(k) is Undefined})
return super(FieldChannelMixin, self).to_dict(
validate=validate,
ignore=ignore,
context=context
)
class ValueChannelMixin(object):
def to_dict(self, validate=True, ignore=(), context=None):
context = context or {}
condition = getattr(self, 'condition', Undefined)
copy = self # don't copy unless we need to
if condition is not Undefined:
if isinstance(condition, core.SchemaBase):
pass
elif 'field' in condition and 'type' not in condition:
kwds = parse_shorthand(condition['field'], context.get('data', None))
copy = self.copy(deep=['condition'])
copy.condition.update(kwds)
return super(ValueChannelMixin, copy).to_dict(validate=validate,
ignore=ignore,
context=context)
"""
class FieldSchemaGenerator(SchemaGenerator):
schema_class_template = textwrap.dedent(
'''
class {classname}(FieldChannelMixin, core.{basename}):
"""{docstring}"""
_class_is_valid_at_instantiation = False
_encoding_name = "{encodingname}"
{init_code}
'''
)
class ValueSchemaGenerator(SchemaGenerator):
schema_class_template = textwrap.dedent(
'''
class {classname}(ValueChannelMixin, core.{basename}):
"""{docstring}"""
_class_is_valid_at_instantiation = False
_encoding_name = "{encodingname}"
{init_code}
'''
)
HEADER = """\
# The contents of this file are automatically written by
# tools/generate_schema_wrapper.py. Do not modify directly.
"""
def schema_url(library, version):
version = SCHEMA_VERSION[library][version]
return SCHEMA_URL_TEMPLATE.format(library=library, version=version)
def download_schemafile(library, version, schemapath, skip_download=False):
url = schema_url(library, version)
if not os.path.exists(schemapath):
os.makedirs(schemapath)
filename = os.path.join(schemapath, "{library}-schema.json".format(library=library))
if not skip_download:
request.urlretrieve(url, filename)
elif not os.path.exists(filename):
raise ValueError("Cannot skip download: {} does not exist".format(filename))
return filename
def copy_schemapi_util():
"""
Copy the schemapi utility and its test file into altair/utils/
"""
# copy the schemapi utility file
source_path = abspath(join(dirname(__file__), "schemapi", "schemapi.py"))
destination_path = abspath(
join(dirname(__file__), "..", "altair", "utils", "schemapi.py")
)
print("Copying\n {}\n -> {}".format(source_path, destination_path))
with open(source_path, "r", encoding="utf8") as source:
with open(destination_path, "w", encoding="utf8") as dest:
dest.write(HEADER)
dest.writelines(source.readlines())
# Copy the schemapi test file
source_path = abspath(
join(dirname(__file__), "schemapi", "tests", "test_schemapi.py")
)
destination_path = abspath(
join(dirname(__file__), "..", "altair", "utils", "tests", "test_schemapi.py")
)
print("Copying\n {}\n -> {}".format(source_path, destination_path))
with open(source_path, "r", encoding="utf8") as source:
with open(destination_path, "w", encoding="utf8") as dest:
dest.write(HEADER)
dest.writelines(source.readlines())
def toposort(graph):
"""Topological sort of a directed acyclic graph.
Parameters
----------
graph : dict of lists
Mapping of node labels to list of child node labels.
This is assumed to represent a graph with no cycles.
Returns
-------
order : list
topological order of input graph.
"""
stack = []
visited = {}
def visit(nodes):
for node in sorted(nodes, reverse=True):
if not visited.get(node):
visited[node] = True
visit(graph.get(node, []))
stack.insert(0, node)
visit(graph)
return stack
def generate_vegalite_schema_wrapper(schema_file):
"""Generate a schema wrapper at the given path."""
# TODO: generate simple tests for each wrapper
basename = "VegaLiteSchema"
with open(schema_file, encoding="utf8") as f:
rootschema = json.load(f)
definitions = {}
for name in rootschema["definitions"]:
defschema = {"$ref": "#/definitions/" + name}
defschema_repr = {"$ref": "#/definitions/" + name}
name = get_valid_identifier(name)
definitions[name] = SchemaGenerator(
name,
schema=defschema,
schemarepr=defschema_repr,
rootschema=rootschema,
basename=basename,
rootschemarepr=CodeSnippet("{}._rootschema".format(basename)),
)
graph = {}
for name, schema in definitions.items():
graph[name] = []
for child in schema.subclasses():
child = get_valid_identifier(child)
graph[name].append(child)
child = definitions[child]
if child.basename == basename:
child.basename = [name]
else:
child.basename.append(name)
contents = [
HEADER,
"from altair.utils.schemapi import SchemaBase, Undefined, _subclasses",
LOAD_SCHEMA.format(schemafile="vega-lite-schema.json"),
]
contents.append(BASE_SCHEMA.format(basename=basename))
contents.append(
schema_class(
"Root",
schema=rootschema,
basename=basename,
schemarepr=CodeSnippet("{}._rootschema".format(basename)),
)
)
for name in toposort(graph):
contents.append(definitions[name].schema_class())
contents.append("") # end with newline
return "\n".join(contents)
def generate_vega_schema_wrapper(schema_file):
"""Generate a schema wrapper at the given path."""
# TODO: generate simple tests for each wrapper
basename = "VegaSchema"
with open(schema_file, encoding="utf8") as f:
rootschema = json.load(f)
contents = [
HEADER,
"from altair.utils.schemapi import SchemaBase, Undefined, _subclasses",
LOAD_SCHEMA.format(schemafile="vega-schema.json"),
]
contents.append(BASE_SCHEMA.format(basename=basename))
contents.append(
schema_class(
"Root",
schema=rootschema,
basename=basename,
schemarepr=CodeSnippet("{}._rootschema".format(basename)),
)
)
for deflist in ["defs", "refs"]:
for name in rootschema[deflist]:
defschema = {"$ref": "#/{}/{}".format(deflist, name)}
defschema_repr = {"$ref": "#/{}/{}".format(deflist, name)}
contents.append(
schema_class(
get_valid_identifier(name),
schema=defschema,
schemarepr=defschema_repr,
rootschema=rootschema,
basename=basename,
rootschemarepr=CodeSnippet("Root._schema"),
)
)
contents.append("") # end with newline
return "\n".join(contents)
def generate_vegalite_channel_wrappers(schemafile, version, imports=None):
# TODO: generate __all__ for top of file
with open(schemafile, encoding="utf8") as f:
schema = json.load(f)
if imports is None:
imports = [
"from . import core",
"import pandas as pd",
"from altair.utils.schemapi import Undefined",
"from altair.utils import parse_shorthand",
]
contents = [HEADER]
contents.extend(imports)
contents.append("")
contents.append(CHANNEL_MIXINS)
if version == "v2":
encoding_def = "EncodingWithFacet"
else:
encoding_def = "FacetedEncoding"
encoding = SchemaInfo(schema["definitions"][encoding_def], rootschema=schema)
for prop, propschema in encoding.properties.items():
if propschema.is_reference():
definitions = [propschema.ref]
elif propschema.is_anyOf():
definitions = [s.ref for s in propschema.anyOf if s.is_reference()]
else:
raise ValueError("either $ref or anyOf expected")
for definition in definitions:
defschema = {"$ref": definition}
basename = definition.split("/")[-1]
classname = prop[0].upper() + prop[1:]
if "Value" in basename:
Generator = ValueSchemaGenerator
classname += "Value"
nodefault = ["value"]
else:
Generator = FieldSchemaGenerator
nodefault = []
defschema = copy.deepcopy(resolve_references(defschema, schema))
# For Encoding field definitions, we patch the schema by adding the
# shorthand property.
defschema["properties"]["shorthand"] = {
"type": "string",
"description": "shorthand for field, aggregate, and type",
}
defschema["required"] = ["shorthand"]
gen = Generator(
classname=classname,
basename=basename,
schema=defschema,
rootschema=schema,
encodingname=prop,
nodefault=nodefault,
)
contents.append(gen.schema_class())
return "\n".join(contents)
MARK_METHOD = '''
def mark_{mark}({def_arglist}):
"""Set the chart's mark to '{mark}'
For information on additional arguments, see :class:`{mark_def}`
"""
kwds = dict({dict_arglist})
copy = self.copy(deep=False)
if any(val is not Undefined for val in kwds.values()):
copy.mark = core.{mark_def}(type="{mark}", **kwds)
else:
copy.mark = "{mark}"
return copy
'''
def generate_vegalite_mark_mixin(schemafile, markdefs):
with open(schemafile, encoding="utf8") as f:
schema = json.load(f)
imports = ["from altair.utils.schemapi import Undefined", "from . import core"]
code = [
"class MarkMethodMixin(object):",
' """A mixin class that defines mark methods"""',
]
for mark_enum, mark_def in markdefs.items():
marks = schema["definitions"][mark_enum]["enum"]
info = SchemaInfo({"$ref": "#/definitions/" + mark_def}, rootschema=schema)
# adapted from SchemaInfo.init_code
nonkeyword, required, kwds, invalid_kwds, additional = codegen._get_args(info)
required -= {"type"}
kwds -= {"type"}
def_args = ["self"] + [
"{}=Undefined".format(p) for p in (sorted(required) + sorted(kwds))
]
dict_args = ["{0}={0}".format(p) for p in (sorted(required) + sorted(kwds))]
if additional or invalid_kwds:
def_args.append("**kwds")
dict_args.append("**kwds")
for mark in marks:
# TODO: only include args relevant to given type?
mark_method = MARK_METHOD.format(
mark=mark,
mark_def=mark_def,
def_arglist=indent_arglist(def_args, indent_level=10 + len(mark)),
dict_arglist=indent_arglist(dict_args, indent_level=16),
)
code.append("\n ".join(mark_method.splitlines()))
return imports, "\n".join(code)
CONFIG_METHOD = """
@use_signature(core.{classname})
def {method}(self, *args, **kwargs):
copy = self.copy(deep=False)
copy.config = core.{classname}(*args, **kwargs)
return copy
"""
CONFIG_PROP_METHOD = """
@use_signature(core.{classname})
def configure_{prop}(self, *args, **kwargs):
copy = self.copy(deep=['config'])
if copy.config is Undefined:
copy.config = core.Config()
copy.config["{prop}"] = core.{classname}(*args, **kwargs)
return copy
"""
def generate_vegalite_config_mixin(schemafile):
imports = ["from . import core", "from altair.utils import use_signature"]
code = [
"class ConfigMethodMixin(object):",
' """A mixin class that defines config methods"""',
]
with open(schemafile, encoding="utf8") as f:
schema = json.load(f)
info = SchemaInfo({"$ref": "#/definitions/Config"}, rootschema=schema)
# configure() method
method = CONFIG_METHOD.format(classname="Config", method="configure")
code.append("\n ".join(method.splitlines()))
# configure_prop() methods
for prop, prop_info in info.properties.items():
classname = prop_info.refname
if classname and classname.endswith("Config"):
method = CONFIG_PROP_METHOD.format(classname=classname, prop=prop)
code.append("\n ".join(method.splitlines()))
return imports, "\n".join(code)
def vegalite_main(skip_download=False):
library = "vega-lite"
for version in SCHEMA_VERSION[library]:
path = abspath(join(dirname(__file__), "..", "altair", "vegalite", version))
schemapath = os.path.join(path, "schema")
schemafile = download_schemafile(
library=library,
version=version,
schemapath=schemapath,
skip_download=skip_download,
)
# Generate __init__.py file
outfile = join(schemapath, "__init__.py")
print("Writing {}".format(outfile))
with open(outfile, "w", encoding="utf8") as f:
f.write("# flake8: noqa\n")
f.write("from .core import *\nfrom .channels import *\n")
f.write(
"SCHEMA_VERSION = {!r}\n" "".format(SCHEMA_VERSION[library][version])
)
f.write("SCHEMA_URL = {!r}\n" "".format(schema_url(library, version)))
# Generate the core schema wrappers
outfile = join(schemapath, "core.py")
print("Generating\n {}\n ->{}".format(schemafile, outfile))
file_contents = generate_vegalite_schema_wrapper(schemafile)
with open(outfile, "w", encoding="utf8") as f:
f.write(file_contents)
# Generate the channel wrappers
outfile = join(schemapath, "channels.py")
print("Generating\n {}\n ->{}".format(schemafile, outfile))
code = generate_vegalite_channel_wrappers(schemafile, version=version)
with open(outfile, "w", encoding="utf8") as f:
f.write(code)
# generate the mark mixin
if version == "v2":
markdefs = {"Mark": "MarkDef"}
else:
markdefs = {
k: k + "Def" for k in ["Mark", "BoxPlot", "ErrorBar", "ErrorBand"]
}
outfile = join(schemapath, "mixins.py")
print("Generating\n {}\n ->{}".format(schemafile, outfile))
mark_imports, mark_mixin = generate_vegalite_mark_mixin(schemafile, markdefs)
config_imports, config_mixin = generate_vegalite_config_mixin(schemafile)
imports = sorted(set(mark_imports + config_imports))
with open(outfile, "w", encoding="utf8") as f:
f.write(HEADER)
f.write("\n".join(imports))
f.write("\n\n\n")
f.write(mark_mixin)
f.write("\n\n\n")
f.write(config_mixin)
def vega_main(skip_download=False):
library = "vega"
for version in SCHEMA_VERSION[library]:
path = abspath(join(dirname(__file__), "..", "altair", "vega", version))
schemapath = os.path.join(path, "schema")
schemafile = download_schemafile(
library=library,
version=version,
schemapath=schemapath,
skip_download=skip_download,
)
# Generate __init__.py file
outfile = join(schemapath, "__init__.py")
print("Writing {}".format(outfile))
with open(outfile, "w", encoding="utf8") as f:
f.write("# flake8: noqa\n")
f.write("from .core import *\n\n")
f.write(
"SCHEMA_VERSION = {!r}\n" "".format(SCHEMA_VERSION[library][version])
)
f.write("SCHEMA_URL = {!r}\n" "".format(schema_url(library, version)))
# Generate the core schema wrappers
outfile = join(schemapath, "core.py")
print("Generating\n {}\n ->{}".format(schemafile, outfile))
file_contents = generate_vega_schema_wrapper(schemafile)
with open(outfile, "w", encoding="utf8") as f:
f.write(file_contents)
def main():
parser = argparse.ArgumentParser(
prog="generate_schema_wrapper.py", description="Generate the Altair package."
)
parser.add_argument(
"--skip-download", action="store_true", help="skip downloading schema files"
)
args = parser.parse_args()
copy_schemapi_util()
vegalite_main(args.skip_download)
vega_main(args.skip_download)
generate_api_docs.write_api_file()
if __name__ == "__main__":
main()