diff --git a/CHANGES.txt b/CHANGES.txt index 311d90526e28a..66b754dd78b87 100644 --- a/CHANGES.txt +++ b/CHANGES.txt @@ -2,6 +2,565 @@ Spark Change Log Release 0.8.1-incubating + d03589d Mon Dec 9 23:10:00 2013 -0800 + Merge pull request #248 from colorant/branch-0.8 + [Fix POM file for mvn assembly on hadoop 2.2 Yarn] + + 3e1f78c Sun Dec 8 21:34:12 2013 -0800 + Merge pull request #195 from dhardy92/fix_DebScriptPackage + [[Deb] fix package of Spark classes adding org.apache prefix in scripts embeded in .deb] + + c14f373 Sat Dec 7 22:35:31 2013 -0800 + Merge pull request #241 from pwendell/master + [Update broken links and add HDP 2.0 version string] + + 9c9e71e Sat Dec 7 12:47:26 2013 -0800 + Merge pull request #241 from pwendell/branch-0.8 + [Fix race condition in JobLoggerSuite [0.8 branch]] + + 92597c0 Sat Dec 7 11:58:00 2013 -0800 + Merge pull request #240 from pwendell/master + [SPARK-917 Improve API links in nav bar] + + cfca70e Sat Dec 7 01:15:20 2013 -0800 + Merge pull request #236 from pwendell/shuffle-docs + [Adding disclaimer for shuffle file consolidation] + + 80cc4ff Sat Dec 7 01:15:20 2013 -0800 + Merge pull request #237 from pwendell/formatting-fix + [Formatting fix] + + 4a6aae3 Sat Dec 7 01:15:20 2013 -0800 + Merge pull request #235 from pwendell/master + [Minor doc fixes and updating README] + + 2642312 Sat Dec 7 01:15:20 2013 -0800 + Merge pull request #234 from alig/master + [Updated documentation about the YARN v2.2 build process] + + 2d3eae2 Sat Dec 7 01:15:19 2013 -0800 + Merge pull request #199 from harveyfeng/yarn-2.2 + [Hadoop 2.2 migration] + + 1e9d084 Sat Dec 7 01:15:19 2013 -0800 + Merge pull request #101 from colorant/yarn-client-scheduler + [For SPARK-527, Support spark-shell when running on YARN] + + 20d1f8b Sat Dec 7 01:15:09 2013 -0800 + Merge pull request #191 from hsaputra/removesemicolonscala + [Cleanup to remove semicolons (;) from Scala code] + + 2b76315 Sat Dec 7 00:02:14 2013 -0800 + Merge pull request #178 from hsaputra/simplecleanupcode + [Simple cleanup on Spark's Scala code] + + ee22be0 Fri Dec 6 23:29:38 2013 -0800 + Merge pull request #189 from tgravescs/sparkYarnErrorHandling + [Impove Spark on Yarn Error handling] + + d77c337 Thu Dec 5 23:30:11 2013 -0800 + Merge pull request #232 from markhamstra/FiniteWait + [jobWaiter.synchronized before jobWaiter.wait] + + 17ca8a1 Thu Dec 5 14:32:01 2013 -0800 + Merge pull request #231 from pwendell/branch-0.8 + [Bumping version numbers for 0.8.1 release] + + 47fce43 Thu Dec 5 12:33:02 2013 -0800 + Merge pull request #228 from pwendell/master + [Document missing configs and set shuffle consolidation to false.] + + cc33f9f Wed Dec 4 15:57:47 2013 -0800 + Merge pull request #227 from pwendell/master + [Fix small bug in web UI and minor clean-up.] + + ba44f21 Wed Dec 4 15:56:58 2013 -0800 + Merge pull request #223 from rxin/transient + [Mark partitioner, name, and generator field in RDD as @transient.] + + 31da065 Wed Dec 4 14:01:13 2013 -0800 + Merge pull request #95 from aarondav/perftest + [Minor: Put StoragePerfTester in org/apache/] + + daaaee1 Tue Dec 3 14:22:05 2013 -0800 + Merge pull request #218 from JoshRosen/spark-970-pyspark-unicode-error + [Fix UnicodeEncodeError in PySpark saveAsTextFile() (SPARK-970)] + + 8b091fe Mon Dec 2 21:28:13 2013 -0800 + Merge pull request #181 from BlackNiuza/fix_tasks_number + [correct number of tasks in ExecutorsUI] + + d21266e Sun Dec 1 12:47:30 2013 -0800 + Merge pull request #219 from sundeepn/schedulerexception + [Scheduler quits when newStage fails] + + be9c176 Tue Nov 26 10:27:41 2013 -0800 + Merge pull request #201 from rxin/mappartitions + [Use the proper partition index in mapPartitionsWIthIndex] + + 9949561 Mon Nov 25 07:51:23 2013 +0800 + Merge pull request #197 from aarondav/patrick-fix + [Fix 'timeWriting' stat for shuffle files] + + c59ce18 Sun Nov 24 11:04:00 2013 +0800 + Merge pull request #200 from mateiz/hash-fix + [AppendOnlyMap fixes] + + d7ab87e Fri Nov 22 10:27:16 2013 +0800 + Merge pull request #193 from aoiwelle/patch-1 + [Fix Kryo Serializer buffer documentation inconsistency] + + d7c6a00 Fri Nov 22 10:13:37 2013 +0800 + Merge pull request #196 from pwendell/master + [TimeTrackingOutputStream should pass on calls to close() and flush().] + + 37126e8 Sun Nov 17 18:53:16 2013 -0800 + Merge pull request #174 from ahirreddy/master + [Write Spark UI url to driver file on HDFS] + + 8823057 Sun Nov 17 18:53:04 2013 -0800 + Merge pull request #166 from ahirreddy/simr-spark-ui + [SIMR Backend Scheduler will now write Spark UI URL to HDFS, which is to ...] + + e134ed5 Sun Nov 17 18:51:19 2013 -0800 + Merge pull request #137 from tgravescs/sparkYarnJarsHdfsRebase + [Allow spark on yarn to be run from HDFS.] + + af98fbc Sun Nov 17 18:50:23 2013 -0800 + Merge pull request #165 from NathanHowell/kerberos-master + [spark-assembly.jar fails to authenticate with YARN ResourceManager] + + a64397b Sun Nov 17 18:49:40 2013 -0800 + Merge pull request #153 from ankurdave/stop-spot-cluster + [Enable stopping and starting a spot cluster] + + 6c60768 Sun Nov 17 18:46:40 2013 -0800 + Merge pull request #160 from xiajunluan/JIRA-923 + [Fix bug JIRA-923] + + f0d350a Sun Nov 17 18:44:49 2013 -0800 + Merge pull request #175 from kayousterhout/no_retry_not_serializable + [Don't retry tasks when they fail due to a NotSerializableException] + + 9d56371 Sun Nov 17 18:43:59 2013 -0800 + Merge pull request #173 from kayousterhout/scheduler_hang + [Fix bug where scheduler could hang after task failure.] + + 24e238b Sun Nov 17 18:42:41 2013 -0800 + Merge pull request #182 from rxin/vector + [Slightly enhanced PrimitiveVector:] + + e7927ad Thu Nov 14 10:32:27 2013 -0800 + Merge pull request #169 from kayousterhout/mesos_fix + [Don't ignore spark.cores.max when using Mesos Coarse mode] + + 41dc566 Thu Nov 14 10:30:57 2013 -0800 + Merge pull request #170 from liancheng/hadooprdd-doc-typo + [Fixed a scaladoc typo in HadoopRDD.scala] + + 333859f Thu Nov 14 10:26:27 2013 -0800 + Merge pull request #171 from RIA-pierre-borckmans/master + [Fixed typos in the CDH4 distributions version codes.] + + c856651 Tue Nov 12 10:22:18 2013 -0800 + Merge pull request #164 from tdas/kafka-fix + [Made block generator thread safe to fix Kafka bug.] + + 30786c6 Sun Nov 10 11:58:58 2013 -0800 + Merge pull request #157 from rxin/kryo + [3 Kryo related changes.] + + 5ce6c75 Sat Nov 9 22:31:59 2013 -0800 + Merge pull request #147 from JoshRosen/fix-java-api-completeness-checker + [Add spark-tools assembly to spark-class'ss classpath] + + 1d52b50 Sat Nov 9 15:47:40 2013 -0800 + Merge pull request #149 from tgravescs/fixSecureHdfsAccess + [Fix secure hdfs access for spark on yarn] + + 32a0c4f Sat Nov 9 15:40:54 2013 -0800 + Merge pull request #155 from rxin/jobgroup + [Don't reset job group when a new job description is set.] + + 07ae524 Sat Nov 9 11:56:46 2013 -0800 + Merge pull request #152 from rxin/repl + [Propagate SparkContext local properties from spark-repl caller thread to the repl execution thread.] + + a5916b9 Thu Nov 7 11:08:44 2013 -0800 + Merge pull request #148 from squito/include_appId + [Include appId in executor cmd line args] + + d5ae953 Wed Nov 6 23:23:12 2013 -0800 + Merge pull request #23 from jerryshao/multi-user + [Add Spark multi-user support for standalone mode and Mesos] + + 1d9412b Wed Nov 6 13:28:02 2013 -0800 + Merge pull request #144 from liancheng/runjob-clean + [Removed unused return value in SparkContext.runJob] + + c8e0c0d Wed Nov 6 09:40:00 2013 -0800 + Merge pull request #145 from aarondav/sls-fix + [Attempt to fix SparkListenerSuite breakage] + + 0f62786 Tue Nov 5 23:14:28 2013 -0800 + Merge pull request #143 from rxin/scheduler-hang + [Ignore a task update status if the executor doesn't exist anymore.] + + 96670e7 Tue Nov 5 10:43:10 2013 -0800 + Merge pull request #140 from aarondav/merge-75 + [Manually merge BlockManager refactor #75] + + 0848167 Tue Nov 5 10:42:36 2013 -0800 + Merge pull request #142 from liancheng/dagscheduler-pattern-matching + [Using case class deep match to simplify code in DAGScheduler.processEvent] + + 07b3f01 Mon Nov 4 23:32:56 2013 -0800 + Merge pull request #75 from JoshRosen/block-manager-cleanup + [Code de-duplication in BlockManager] + + e80d1cf Mon Nov 4 20:47:44 2013 -0800 + Merge pull request #139 from aarondav/shuffle-next + [Never store shuffle blocks in BlockManager] + + 518cf22 Mon Nov 4 18:21:27 2013 -0800 + Merge pull request #128 from shimingfei/joblogger-doc + [add javadoc to JobLogger, and some small fix] + + 7e00dee Mon Nov 4 17:54:35 2013 -0800 + Merge pull request #130 from aarondav/shuffle + [Memory-optimized shuffle file consolidation] + + 1d11e43 Mon Nov 4 16:30:30 2013 -0800 + Merge pull request #138 from marmbrus/branch-0.8 + [Fix build break caused by BlockInfo refactor] + + a3544ee Sun Nov 3 23:49:19 2013 -0800 + Merge pull request #70 from rxin/hash1 + [Fast, memory-efficient hash set, hash table implementations optimized for primitive data types.] + + e094daf Sun Nov 3 23:48:40 2013 -0800 + Merge pull request #129 from velvia/2013-11/document-local-uris + [Document & finish support for local: URIs] + + a9e7787 Sun Nov 3 23:48:26 2013 -0800 + Merge pull request #125 from velvia/2013-10/local-jar-uri + [Add support for local:// URI scheme for addJars()] + + 57fdb3f Sun Nov 3 23:46:18 2013 -0800 + Merge pull request #117 from stephenh/avoid_concurrent_modification_exception + [Handle ConcurrentModificationExceptions in SparkContext init.] + + ec0e4f0 Sun Nov 3 23:45:23 2013 -0800 + Merge pull request #124 from tgravescs/sparkHadoopUtilFix + [Pull SparkHadoopUtil out of SparkEnv (jira SPARK-886)] + + ba0e858 Sun Nov 3 23:43:48 2013 -0800 + Merge pull request #126 from kayousterhout/local_fix + [Fixed incorrect log message in local scheduler] + + 504fe74 Sun Nov 3 23:43:03 2013 -0800 + Merge pull request #118 from JoshRosen/blockinfo-memory-usage + [Reduce the memory footprint of BlockInfo objects] + + 25fa229 Sun Nov 3 23:41:19 2013 -0800 + Merge pull request #112 from kayousterhout/ui_task_attempt_id + [Display both task ID and task attempt ID in UI, and rename taskId to taskAttemptId] + + 57ea854 Sun Nov 3 23:38:37 2013 -0800 + Merge pull request #102 from tdas/transform + [Added new Spark Streaming operations] + + 5b45c9b Sat Nov 2 14:42:22 2013 -0700 + Merge pull request #133 from Mistobaan/link_fix + [update default github] + + 054d97b Sat Nov 2 14:37:35 2013 -0700 + Merge pull request #134 from rxin/readme + [Fixed a typo in Hadoop version in README.] + + 87d4e1c Fri Nov 1 17:58:38 2013 -0700 + Merge pull request #132 from Mistobaan/doc_fix + [fix persistent-hdfs] + + 3db505c Tue Oct 29 01:42:07 2013 -0400 + Merge pull request #119 from soulmachine/master + [A little revise for the document] + + abeca01 Sun Oct 27 22:11:39 2013 -0400 + Merge pull request #115 from aarondav/shuffle-fix + [Eliminate extra memory usage when shuffle file consolidation is disabled] + + 79e5c50 Sat Oct 26 13:05:40 2013 -0700 + Merge pull request #108 from alig/master + [Changes to enable executing by using HDFS as a synchronization point between driver and executors, as well as ensuring executors exit properly.] + + cb24278 Sat Oct 26 11:41:18 2013 -0700 + Merge pull request #113 from pwendell/master + [Improve error message when multiple assembly jars are present.] + + 3ec2f51 Sat Oct 26 11:39:29 2013 -0700 + Merge pull request #111 from kayousterhout/ui_name + [Properly display the name of a stage in the UI.] + + 7d47704 Sat Oct 26 11:36:23 2013 -0700 + Merge pull request #114 from soulmachine/master + [A little revise for the document] + + 148509f Thu Oct 24 22:32:23 2013 -0700 + Merge pull request #109 from pwendell/master + [Adding Java/Java Streaming versions of `repartition` with associated tests] + + c018c61 Thu Oct 24 17:27:28 2013 -0700 + Merge pull request #97 from ewencp/pyspark-system-properties + [Add classmethod to SparkContext to set system properties.] + + 3500b66 Thu Oct 24 17:27:11 2013 -0700 + Merge pull request #93 from kayousterhout/ui_new_state + [Show "GETTING_RESULTS" state in UI.] + + f5eff85 Thu Oct 24 17:26:44 2013 -0700 + Merge pull request #83 from ewencp/pyspark-accumulator-add-method + [Add an add() method to pyspark accumulators.] + + 59d6f06 Thu Oct 24 17:09:05 2013 -0700 + Merge pull request #106 from pwendell/master + [Add a `repartition` operator.] + + 76f3c2f Wed Oct 23 18:03:26 2013 -0700 + Merge pull request #103 from JoshRosen/unpersist-fix + [Add unpersist() to JavaDoubleRDD and JavaPairRDD.] + + 534bab2 Tue Oct 22 16:02:45 2013 -0700 + Merge pull request #100 from JoshRosen/spark-902 + [Remove redundant Java Function call() definitions] + + fa9a0e4 Tue Oct 22 12:23:17 2013 -0700 + Merge pull request #90 from pwendell/master + [SPARK-940: Do not directly pass Stage objects to SparkListener.] + + c449ee1 Tue Oct 22 00:00:35 2013 -0700 + Merge pull request #92 from tgravescs/sparkYarnFixClasspath + [Fix the Worker to use CoarseGrainedExecutorBackend and modify classpath ...] + + 498cc6b Mon Oct 21 22:45:31 2013 -0700 + Merge pull request #87 from aarondav/shuffle-base + [Basic shuffle file consolidation] + + e3ad6a5 Mon Oct 21 20:20:42 2013 -0700 + Revert "Merge pull request #94 from aarondav/mesos-fix" + [This reverts commit fe974ba1484dbe6fffdae8680b3b37b26de83145.] + + fe974ba Mon Oct 21 20:15:30 2013 -0700 + Merge pull request #94 from aarondav/mesos-fix + [Fix mesos urls] + + 1c3f4bd Mon Oct 21 11:58:22 2013 -0700 + Merge pull request #88 from rxin/clean + [Made the following traits/interfaces/classes non-public:] + + 1a50c79 Sun Oct 20 22:27:29 2013 -0700 + Merge pull request #41 from pwendell/shuffle-benchmark + [Provide Instrumentation for Shuffle Write Performance] + + 37a755c Sun Oct 20 21:04:33 2013 -0700 + Merge pull request #89 from rxin/executor + [Don't setup the uncaught exception handler in local mode.] + + ec74428 Sun Oct 20 11:46:14 2013 -0700 + Merge pull request #84 from rxin/kill1 + [Added documentation for setJobGroup. Also some minor cleanup in SparkContext.] + + 52d13a6 Sun Oct 20 10:50:54 2013 -0700 + Merge pull request #85 from rxin/clean + [Moved the top level spark package object from spark to org.apache.spark] + + 919c557 Sat Oct 19 11:29:00 2013 -0700 + Merge pull request #79 from aarondav/scdefaults0.8 + [Add deprecation warning to unrecognized MASTER urls] + + f3de2ce Fri Oct 18 23:20:16 2013 -0700 + Merge pull request #76 from pwendell/master + [Clarify compression property.] + + f181560 Fri Oct 18 23:14:28 2013 -0700 + Merge pull request #68 from mosharaf/master + [Faster and stable/reliable broadcast] + + eaa2150 Fri Oct 18 23:08:47 2013 -0700 + Merge pull request #74 from rxin/kill + [Job cancellation via job group id.] + + df21ac8 Thu Oct 17 18:38:46 2013 -0700 + Merge pull request #69 from KarthikTunga/master + [Fix for issue SPARK-627. Implementing --config argument in the scripts.] + + b531552 Thu Oct 17 18:37:22 2013 -0700 + Merge pull request #67 from kayousterhout/remove_tsl + [Removed TaskSchedulerListener interface.] + + 5a73ab7 Thu Oct 17 18:36:36 2013 -0700 + Merge pull request #62 from harveyfeng/master + [Make TaskContext's stageId publicly accessible.] + + b6ce111 Thu Oct 17 18:35:33 2013 -0700 + Merge pull request #61 from kayousterhout/daemon_thread + [Unified daemon thread pools] + + 2760055 Thu Oct 17 18:34:56 2013 -0700 + Merge pull request #59 from rxin/warning + [Bump up logging level to warning for failed tasks.] + + 1e67234 Thu Oct 17 18:33:21 2013 -0700 + Merge pull request #65 from tgravescs/fixYarn + [Fix yarn build] + + d0c9d41 Thu Oct 17 18:32:54 2013 -0700 + Merge pull request #34 from kayousterhout/rename + [Renamed StandaloneX to CoarseGrainedX.] + + cee3b43 Wed Oct 16 10:37:55 2013 -0700 + Merge pull request #63 from pwendell/master + [Fixing spark streaming example and a bug in examples build.] + + 1d92983 Tue Oct 15 10:52:15 2013 -0700 + Merge pull request #58 from hsaputra/update-pom-asf + [Update pom.xml to use version 13 of the ASF parent pom] + + c50b016 Mon Oct 14 23:18:37 2013 -0700 + Merge pull request #29 from rxin/kill + [Job killing] + + 616ea6f Mon Oct 14 20:59:31 2013 -0700 + Merge pull request #57 from aarondav/bid + [Refactor BlockId into an actual type] + + e306de8 Mon Oct 14 20:58:48 2013 -0700 + Merge pull request #53 from witgo/master + [Add a zookeeper compile dependency to fix build in maven] + + d66c01f Mon Oct 14 20:58:17 2013 -0700 + Merge pull request #19 from aarondav/master-zk + [Standalone Scheduler fault tolerance using ZooKeeper] + + 0fcb234 Mon Oct 14 20:54:34 2013 -0700 + Merge pull request #46 from mateiz/py-sort-update + [Fix PySpark docs and an overly long line of code after #38] + + f94aa52 Mon Oct 14 20:53:15 2013 -0700 + Merge pull request #44 from mateiz/fast-map + [A fast and low-memory append-only map for shuffle operations] + + 36f5b08 Mon Oct 14 20:50:28 2013 -0700 + Merge pull request #33 from AndreSchumacher/pyspark_partition_key_change + [Fixing SPARK-602: PythonPartitioner] + + d615b14 Mon Oct 14 20:48:45 2013 -0700 + Merge pull request #32 from mridulm/master + [Address review comments, move to incubator spark] + + 7084217 Mon Oct 14 19:31:22 2013 -0700 + Merge pull request #27 from davidmccauley/master + [SPARK-920/921 - JSON endpoint updates] + + a35259a Mon Oct 14 19:28:46 2013 -0700 + Merge pull request #26 from Du-Li/master + [fixed a wildcard bug in make-distribution.sh; ask sbt to check local] + + 62ce4ae Mon Oct 14 19:28:09 2013 -0700 + Merge pull request #25 from CruncherBigData/master + [Update README: updated the link] + + 6961744 Mon Oct 14 18:55:41 2013 -0700 + Merge pull request #10 from kayousterhout/results_through-bm + [Send Task results through the block manager when larger than Akka frame size (fixes SPARK-669).] + + ce364c0 Mon Oct 14 18:54:35 2013 -0700 + Merge pull request #4 from MLnick/implicit-als + [Adding algorithm for implicit feedback data to ALS] + + f94bd3f Mon Oct 14 15:10:59 2013 -0700 + Merge pull request #28 from tgravescs/sparYarnAppName + [Allow users to set the application name for Spark on Yarn] + + dc2c90d Mon Oct 14 15:03:34 2013 -0700 + Merge pull request #38 from AndreSchumacher/pyspark_sorting + [SPARK-705: implement sortByKey() in PySpark] + + 00a7551 Sat Oct 12 21:26:22 2013 -0700 + Merge pull request #52 from harveyfeng/hadoop-closure + [Add an optional closure parameter to HadoopRDD instantiation to use when creating local JobConfs.] + + 5383a5a Sat Oct 12 21:26:11 2013 -0700 + Merge pull request #20 from harveyfeng/hadoop-config-cache + [Allow users to pass broadcasted Configurations and cache InputFormats across Hadoop file reads.] + + 4a2e76a Fri Oct 11 16:09:07 2013 -0700 + Merge pull request #54 from aoiwelle/remove_unused_imports + [Remove unnecessary mutable imports] + + 64fae16 Wed Oct 9 21:42:18 2013 -0700 + Merge pull request #47 from xiliu82/branch-0.8 + [add Function3 and WrappedFunction3] + + dfc62e2 Wed Oct 9 16:55:58 2013 -0700 + Merge pull request #49 from mateiz/kryo-fix-2 + [Fix Chill serialization of Range objects] + + 0b6f047 Wed Oct 9 16:53:31 2013 -0700 + Merge pull request #50 from kayousterhout/SPARK-908 + [Fix race condition in SparkListenerSuite (fixes SPARK-908).] + + f930dd4 Tue Oct 8 22:58:35 2013 -0700 + Merge pull request #43 from mateiz/kryo-fix + [Don't allocate Kryo buffers unless needed] + + 8e9bd93 Mon Oct 7 20:47:09 2013 -0700 + Merge pull request #42 from pwendell/shuffle-read-perf + [Fix inconsistent and incorrect log messages in shuffle read path] + + f2cdcc4 Mon Oct 7 15:49:32 2013 -0700 + Merge pull request #40 from pwendell/branch-0.8 + [Adding Shark 0.7.1 to EC2 scripts [branch 0.8 version]] + + 023e3fd Mon Oct 7 10:47:45 2013 -0700 + Merge pull request #31 from sundeepn/branch-0.8 + [Resolving package conflicts with hadoop 0.23.9] + + 3cb9040 Thu Sep 26 14:37:06 2013 -0700 + Merge pull request #17 from rxin/optimize + [Remove -optimize flag] + + 35bcf32 Thu Sep 26 14:17:00 2013 -0700 + Merge pull request #930 from holdenk/master + [Add mapPartitionsWithIndex] + + 976fe60 Thu Sep 26 14:16:17 2013 -0700 + Merge pull request #14 from kayousterhout/untangle_scheduler + [Improved organization of scheduling packages.] + + 8cbc96b Thu Sep 26 13:16:05 2013 -0700 + Merge pull request #7 from wannabeast/memorystore-fixes + [some minor fixes to MemoryStore] + + 240ca93 Thu Sep 26 13:12:06 2013 -0700 + Merge pull request #9 from rxin/limit + [Smarter take/limit implementation.] + + a186792 Thu Sep 26 13:10:59 2013 -0700 + Merge pull request #937 from jerryshao/localProperties-fix + [Fix PR926 local properties issues in Spark Streaming like scenarios] + + f3c60c9 Thu Sep 26 13:10:24 2013 -0700 + Merge pull request #941 from ilikerps/master + [Add "org.apache." prefix to packages in spark-class] + + d5a8dbf Thu Sep 26 13:09:30 2013 -0700 + Merge pull request #928 from jerryshao/fairscheduler-refactor + [Refactor FairSchedulableBuilder] + +Release 0.8.0-incubating +>>>>>>> ba05afd29c81e152a84461f95b0e61a783897d7a + cc33f9f Wed Dec 4 15:57:47 2013 -0800 Merge pull request #227 from pwendell/master diff --git a/README.md b/README.md index 456b8060ef328..363fbf443c16d 100644 --- a/README.md +++ b/README.md @@ -55,7 +55,7 @@ versions without YARN, use: # Cloudera CDH 4.2.0 with MapReduce v1 $ SPARK_HADOOP_VERSION=2.0.0-mr1-cdh4.2.0 sbt/sbt assembly -For Apache Hadoop 2.x, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions +For Apache Hadoop 2.0.X, 2.1.X, 2.2.X, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with YARN, also set `SPARK_YARN=true`: # Apache Hadoop 2.0.5-alpha @@ -64,8 +64,8 @@ with YARN, also set `SPARK_YARN=true`: # Cloudera CDH 4.2.0 with MapReduce v2 $ SPARK_HADOOP_VERSION=2.0.0-cdh4.2.0 SPARK_YARN=true sbt/sbt assembly -For convenience, these variables may also be set through the `conf/spark-env.sh` file -described below. + # Apache Hadoop 2.2.0 with YARN + $ SPARK_HADOOP_VERSION=2.2.0 SPARK_YARN=true sbt/sbt assembly When developing a Spark application, specify the Hadoop version by adding the "hadoop-client" artifact to your project's dependencies. For example, if you're diff --git a/assembly/pom.xml b/assembly/pom.xml index 9a59f363c7ca7..b245e602e1eb7 100644 --- a/assembly/pom.xml +++ b/assembly/pom.xml @@ -46,6 +46,23 @@ + + ${akka.group} + akka-actor + + + ${akka.group} + akka-remote + + + ${akka.group} + akka-slf4j + + + ${akka.group} + akka-zeromq + + org.apache.spark spark-core_2.9.3 @@ -140,6 +157,17 @@ + + new-yarn + + + org.apache.spark + spark-yarn_2.9.3 + ${project.version} + + + + bigtop-dist " + stageIdToStage.size) - - sizeBefore = shuffleToMapStage.size - shuffleToMapStage.clearOldValues(cleanupTime) - logInfo("shuffleToMapStage " + sizeBefore + " --> " + shuffleToMapStage.size) - - sizeBefore = pendingTasks.size - pendingTasks.clearOldValues(cleanupTime) - logInfo("pendingTasks " + sizeBefore + " --> " + pendingTasks.size) - - sizeBefore = stageToInfos.size - stageToInfos.clearOldValues(cleanupTime) - logInfo("stageToInfos " + sizeBefore + " --> " + stageToInfos.size) + Map( + "stageIdToStage" -> stageIdToStage, + "shuffleToMapStage" -> shuffleToMapStage, + "pendingTasks" -> pendingTasks, + "stageToInfos" -> stageToInfos, + "jobIdToStageIds" -> jobIdToStageIds, + "stageIdToJobIds" -> stageIdToJobIds). + foreach { case(s, t) => { + val sizeBefore = t.size + t.clearOldValues(cleanupTime) + logInfo("%s %d --> %d".format(s, sizeBefore, t.size)) + }} } def removeStages(job: ActiveJob) = { diff --git a/core/src/main/scala/org/apache/spark/scheduler/DAGSchedulerEvent.scala b/core/src/main/scala/org/apache/spark/scheduler/DAGSchedulerEvent.scala index 708d221d60caf..9713a889cda45 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/DAGSchedulerEvent.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/DAGSchedulerEvent.scala @@ -65,8 +65,7 @@ private[scheduler] case class CompletionEvent( taskMetrics: TaskMetrics) extends DAGSchedulerEvent -private[scheduler] -case class ExecutorGained(execId: String, host: String) extends DAGSchedulerEvent +private[scheduler] case class ExecutorGained(execId: String, host: String) extends DAGSchedulerEvent private[scheduler] case class ExecutorLost(execId: String) extends DAGSchedulerEvent diff --git a/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala b/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala index a35081f7b10d7..3841b5616dca2 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/SparkListener.scala @@ -37,7 +37,7 @@ case class SparkListenerTaskGettingResult( case class SparkListenerTaskEnd(task: Task[_], reason: TaskEndReason, taskInfo: TaskInfo, taskMetrics: TaskMetrics) extends SparkListenerEvents -case class SparkListenerJobStart(job: ActiveJob, properties: Properties = null) +case class SparkListenerJobStart(job: ActiveJob, stageIds: Array[Int], properties: Properties = null) extends SparkListenerEvents case class SparkListenerJobEnd(job: ActiveJob, jobResult: JobResult) diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterScheduler.scala index 27145ccd5f102..281e65abc9d35 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterScheduler.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterScheduler.scala @@ -180,7 +180,9 @@ private[spark] class ClusterScheduler(val sc: SparkContext) backend.killTask(tid, execId) } } - tsm.error("Stage %d was cancelled".format(stageId)) + logInfo("Stage %d was cancelled".format(stageId)) + tsm.removeAllRunningTasks() + taskSetFinished(tsm) } } diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterTaskSetManager.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterTaskSetManager.scala index 4c5eca8537cd6..5afd3f3e0629d 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterTaskSetManager.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/ClusterTaskSetManager.scala @@ -573,7 +573,7 @@ private[spark] class ClusterTaskSetManager( runningTasks = runningTasksSet.size } - private def removeAllRunningTasks() { + private[cluster] def removeAllRunningTasks() { val numRunningTasks = runningTasksSet.size runningTasksSet.clear() if (parent != null) { diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala index a45bee536ca9d..d0ba5bf55dcfd 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/CoarseGrainedSchedulerBackend.scala @@ -199,6 +199,7 @@ class CoarseGrainedSchedulerBackend(scheduler: ClusterScheduler, actorSystem: Ac } override def stop() { + stopExecutors() try { if (driverActor != null) { val future = driverActor.ask(StopDriver)(timeout) diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala index 0ea35e2b7a311..e000531a26f7e 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala @@ -62,7 +62,6 @@ private[spark] class SimrSchedulerBackend( val conf = new Configuration() val fs = FileSystem.get(conf) fs.delete(new Path(driverFilePath), false) - super.stopExecutors() super.stop() } } diff --git a/core/src/main/scala/org/apache/spark/scheduler/local/LocalScheduler.scala b/core/src/main/scala/org/apache/spark/scheduler/local/LocalScheduler.scala index 2699f0b33e8d3..1c227fefe48d3 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/local/LocalScheduler.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/local/LocalScheduler.scala @@ -144,7 +144,8 @@ private[spark] class LocalScheduler(threads: Int, val maxFailures: Int, val sc: localActor ! KillTask(tid) } } - tsm.error("Stage %d was cancelled".format(stageId)) + logInfo("Stage %d was cancelled".format(stageId)) + taskSetFinished(tsm) } } @@ -192,17 +193,19 @@ private[spark] class LocalScheduler(threads: Int, val maxFailures: Int, val sc: synchronized { taskIdToTaskSetId.get(taskId) match { case Some(taskSetId) => - val taskSetManager = activeTaskSets(taskSetId) - taskSetTaskIds(taskSetId) -= taskId - - state match { - case TaskState.FINISHED => - taskSetManager.taskEnded(taskId, state, serializedData) - case TaskState.FAILED => - taskSetManager.taskFailed(taskId, state, serializedData) - case TaskState.KILLED => - taskSetManager.error("Task %d was killed".format(taskId)) - case _ => {} + val taskSetManager = activeTaskSets.get(taskSetId) + taskSetManager.foreach { tsm => + taskSetTaskIds(taskSetId) -= taskId + + state match { + case TaskState.FINISHED => + tsm.taskEnded(taskId, state, serializedData) + case TaskState.FAILED => + tsm.taskFailed(taskId, state, serializedData) + case TaskState.KILLED => + tsm.error("Task %d was killed".format(taskId)) + case _ => {} + } } case None => logInfo("Ignoring update from TID " + taskId + " because its task set is gone") diff --git a/core/src/main/scala/org/apache/spark/storage/StoragePerfTester.scala b/core/src/main/scala/org/apache/spark/storage/StoragePerfTester.scala index 68893a2bf49b1..369a2e536b068 100644 --- a/core/src/main/scala/org/apache/spark/storage/StoragePerfTester.scala +++ b/core/src/main/scala/org/apache/spark/storage/StoragePerfTester.scala @@ -1,3 +1,20 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + package org.apache.spark.storage import java.util.concurrent.atomic.AtomicLong diff --git a/core/src/main/scala/org/apache/spark/ui/jobs/StagePage.scala b/core/src/main/scala/org/apache/spark/ui/jobs/StagePage.scala index c8625716e9d8e..baccc4281a06c 100644 --- a/core/src/main/scala/org/apache/spark/ui/jobs/StagePage.scala +++ b/core/src/main/scala/org/apache/spark/ui/jobs/StagePage.scala @@ -133,7 +133,7 @@ private[spark] class StagePage(parent: JobProgressUI) { summary ++

Summary Metrics for {numCompleted} Completed Tasks

++
{summaryTable.getOrElse("No tasks have reported metrics yet.")}
++ -

Tasks

++ taskTable; +

Tasks

++ taskTable headerSparkPage(content, parent.sc, "Details for Stage %d".format(stageId), Stages) } diff --git a/core/src/test/scala/org/apache/spark/JobCancellationSuite.scala b/core/src/test/scala/org/apache/spark/JobCancellationSuite.scala index d8a0e983b228f..1121e06e2e6cc 100644 --- a/core/src/test/scala/org/apache/spark/JobCancellationSuite.scala +++ b/core/src/test/scala/org/apache/spark/JobCancellationSuite.scala @@ -114,7 +114,7 @@ class JobCancellationSuite extends FunSuite with ShouldMatchers with BeforeAndAf // Once A is cancelled, job B should finish fairly quickly. assert(jobB.get() === 100) } - +/* test("two jobs sharing the same stage") { // sem1: make sure cancel is issued after some tasks are launched // sem2: make sure the first stage is not finished until cancel is issued @@ -148,7 +148,7 @@ class JobCancellationSuite extends FunSuite with ShouldMatchers with BeforeAndAf intercept[SparkException] { f1.get() } intercept[SparkException] { f2.get() } } - + */ def testCount() { // Cancel before launching any tasks { diff --git a/core/src/test/scala/org/apache/spark/LocalSparkContext.scala b/core/src/test/scala/org/apache/spark/LocalSparkContext.scala index 6ec124da9c7b1..03f7c0b43a71e 100644 --- a/core/src/test/scala/org/apache/spark/LocalSparkContext.scala +++ b/core/src/test/scala/org/apache/spark/LocalSparkContext.scala @@ -30,7 +30,7 @@ trait LocalSparkContext extends BeforeAndAfterEach with BeforeAndAfterAll { self @transient var sc: SparkContext = _ override def beforeAll() { - InternalLoggerFactory.setDefaultFactory(new Slf4JLoggerFactory()); + InternalLoggerFactory.setDefaultFactory(new Slf4JLoggerFactory()) super.beforeAll() } diff --git a/core/src/test/scala/org/apache/spark/PartitioningSuite.scala b/core/src/test/scala/org/apache/spark/PartitioningSuite.scala index 7d938917f2650..1374d01774693 100644 --- a/core/src/test/scala/org/apache/spark/PartitioningSuite.scala +++ b/core/src/test/scala/org/apache/spark/PartitioningSuite.scala @@ -142,11 +142,11 @@ class PartitioningSuite extends FunSuite with SharedSparkContext { .filter(_ >= 0.0) // Run the partitions, including the consecutive empty ones, through StatCounter - val stats: StatCounter = rdd.stats(); - assert(abs(6.0 - stats.sum) < 0.01); - assert(abs(6.0/2 - rdd.mean) < 0.01); - assert(abs(1.0 - rdd.variance) < 0.01); - assert(abs(1.0 - rdd.stdev) < 0.01); + val stats: StatCounter = rdd.stats() + assert(abs(6.0 - stats.sum) < 0.01) + assert(abs(6.0/2 - rdd.mean) < 0.01) + assert(abs(1.0 - rdd.variance) < 0.01) + assert(abs(1.0 - rdd.stdev) < 0.01) // Add other tests here for classes that should be able to handle empty partitions correctly } diff --git a/core/src/test/scala/org/apache/spark/deploy/worker/ExecutorRunnerTest.scala b/core/src/test/scala/org/apache/spark/deploy/worker/ExecutorRunnerTest.scala index 8f0954122b322..4cb4ddc9cd66a 100644 --- a/core/src/test/scala/org/apache/spark/deploy/worker/ExecutorRunnerTest.scala +++ b/core/src/test/scala/org/apache/spark/deploy/worker/ExecutorRunnerTest.scala @@ -1,3 +1,20 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + package org.apache.spark.deploy.worker import java.io.File diff --git a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala index 0f9b9992bd4d6..03fc8c020e005 100644 --- a/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala +++ b/core/src/test/scala/org/apache/spark/scheduler/DAGSchedulerSuite.scala @@ -206,6 +206,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont submit(rdd, Array(0)) complete(taskSets(0), List((Success, 42))) assert(results === Map(0 -> 42)) + assertDataStructuresEmpty } test("local job") { @@ -219,6 +220,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont val jobId = scheduler.nextJobId.getAndIncrement() runEvent(JobSubmitted(jobId, rdd, jobComputeFunc, Array(0), true, null, listener)) assert(results === Map(0 -> 42)) + assertDataStructuresEmpty } test("run trivial job w/ dependency") { @@ -227,6 +229,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont submit(finalRdd, Array(0)) complete(taskSets(0), Seq((Success, 42))) assert(results === Map(0 -> 42)) + assertDataStructuresEmpty } test("cache location preferences w/ dependency") { @@ -239,12 +242,14 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont assertLocations(taskSet, Seq(Seq("hostA", "hostB"))) complete(taskSet, Seq((Success, 42))) assert(results === Map(0 -> 42)) + assertDataStructuresEmpty } test("trivial job failure") { submit(makeRdd(1, Nil), Array(0)) failed(taskSets(0), "some failure") assert(failure.getMessage === "Job aborted: some failure") + assertDataStructuresEmpty } test("run trivial shuffle") { @@ -260,6 +265,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont Array(makeBlockManagerId("hostA"), makeBlockManagerId("hostB"))) complete(taskSets(1), Seq((Success, 42))) assert(results === Map(0 -> 42)) + assertDataStructuresEmpty } test("run trivial shuffle with fetch failure") { @@ -285,6 +291,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont assert(mapOutputTracker.getServerStatuses(shuffleId, 0).map(_._1.host) === Array("hostA", "hostB")) complete(taskSets(3), Seq((Success, 43))) assert(results === Map(0 -> 42, 1 -> 43)) + assertDataStructuresEmpty } test("ignore late map task completions") { @@ -313,6 +320,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont Array(makeBlockManagerId("hostB"), makeBlockManagerId("hostA"))) complete(taskSets(1), Seq((Success, 42), (Success, 43))) assert(results === Map(0 -> 42, 1 -> 43)) + assertDataStructuresEmpty } test("run trivial shuffle with out-of-band failure and retry") { @@ -329,15 +337,16 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont complete(taskSets(0), Seq( (Success, makeMapStatus("hostA", 1)), (Success, makeMapStatus("hostB", 1)))) - // have hostC complete the resubmitted task - complete(taskSets(1), Seq((Success, makeMapStatus("hostC", 1)))) - assert(mapOutputTracker.getServerStatuses(shuffleId, 0).map(_._1) === - Array(makeBlockManagerId("hostC"), makeBlockManagerId("hostB"))) - complete(taskSets(2), Seq((Success, 42))) - assert(results === Map(0 -> 42)) - } - - test("recursive shuffle failures") { + // have hostC complete the resubmitted task + complete(taskSets(1), Seq((Success, makeMapStatus("hostC", 1)))) + assert(mapOutputTracker.getServerStatuses(shuffleId, 0).map(_._1) === + Array(makeBlockManagerId("hostC"), makeBlockManagerId("hostB"))) + complete(taskSets(2), Seq((Success, 42))) + assert(results === Map(0 -> 42)) + assertDataStructuresEmpty + } + + test("recursive shuffle failures") { val shuffleOneRdd = makeRdd(2, Nil) val shuffleDepOne = new ShuffleDependency(shuffleOneRdd, null) val shuffleTwoRdd = makeRdd(2, List(shuffleDepOne)) @@ -363,6 +372,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont complete(taskSets(4), Seq((Success, makeMapStatus("hostA", 1)))) complete(taskSets(5), Seq((Success, 42))) assert(results === Map(0 -> 42)) + assertDataStructuresEmpty } test("cached post-shuffle") { @@ -394,6 +404,7 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont complete(taskSets(3), Seq((Success, makeMapStatus("hostD", 1)))) complete(taskSets(4), Seq((Success, 42))) assert(results === Map(0 -> 42)) + assertDataStructuresEmpty } // test("oneGoodJob") { @@ -447,16 +458,19 @@ class DAGSchedulerSuite extends FunSuite with BeforeAndAfter with LocalSparkCont private def makeBlockManagerId(host: String): BlockManagerId = BlockManagerId("exec-" + host, host, 12345, 0) - private def assertDagSchedulerEmpty(dagScheduler: DAGScheduler) = { - assert(dagScheduler.pendingTasks.isEmpty) - assert(dagScheduler.activeJobs.isEmpty) - assert(dagScheduler.failed.isEmpty) - assert(dagScheduler.jobIdToStageIds.isEmpty) - assert(dagScheduler.stageIdToStage.isEmpty) - assert(dagScheduler.resultStageToJob.isEmpty) - assert(dagScheduler.running.isEmpty) - assert(dagScheduler.shuffleToMapStage.isEmpty) - assert(dagScheduler.waiting.isEmpty) + private def assertDataStructuresEmpty = { + assert(scheduler.pendingTasks.isEmpty) + assert(scheduler.activeJobs.isEmpty) + assert(scheduler.failed.isEmpty) + assert(scheduler.idToActiveJob.isEmpty) + assert(scheduler.jobIdToStageIds.isEmpty) + assert(scheduler.stageIdToJobIds.isEmpty) + assert(scheduler.stageIdToStage.isEmpty) + assert(scheduler.stageToInfos.isEmpty) + assert(scheduler.resultStageToJob.isEmpty) + assert(scheduler.running.isEmpty) + assert(scheduler.shuffleToMapStage.isEmpty) + assert(scheduler.waiting.isEmpty) } } diff --git a/core/src/test/scala/org/apache/spark/scheduler/JobLoggerSuite.scala b/core/src/test/scala/org/apache/spark/scheduler/JobLoggerSuite.scala index 984881861c9a9..22babe8d2ef78 100644 --- a/core/src/test/scala/org/apache/spark/scheduler/JobLoggerSuite.scala +++ b/core/src/test/scala/org/apache/spark/scheduler/JobLoggerSuite.scala @@ -31,6 +31,8 @@ import org.apache.spark.rdd.RDD class JobLoggerSuite extends FunSuite with LocalSparkContext with ShouldMatchers { + /** Length of time to wait while draining listener events. */ + val WAIT_TIMEOUT_MILLIS = 10000 test("inner method") { sc = new SparkContext("local", "joblogger") @@ -91,6 +93,7 @@ class JobLoggerSuite extends FunSuite with LocalSparkContext with ShouldMatchers sc.addSparkListener(joblogger) val rdd = sc.parallelize(1 to 1e2.toInt, 4).map{ i => (i % 12, 2 * i) } rdd.reduceByKey(_+_).collect() + assert(sc.dagScheduler.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) val user = System.getProperty("user.name", SparkContext.SPARK_UNKNOWN_USER) @@ -119,8 +122,9 @@ class JobLoggerSuite extends FunSuite with LocalSparkContext with ShouldMatchers } sc.addSparkListener(joblogger) val rdd = sc.parallelize(1 to 1e2.toInt, 4).map{ i => (i % 12, 2 * i) } - rdd.reduceByKey(_+_).collect() - + rdd.reduceByKey(_+_).collect() + assert(sc.dagScheduler.listenerBus.waitUntilEmpty(WAIT_TIMEOUT_MILLIS)) + joblogger.onJobStartCount should be (1) joblogger.onJobEndCount should be (1) joblogger.onTaskEndCount should be (8) diff --git a/core/src/test/scala/org/apache/spark/storage/DiskBlockManagerSuite.scala b/core/src/test/scala/org/apache/spark/storage/DiskBlockManagerSuite.scala index ef4c4c0f143f9..070982e798f34 100644 --- a/core/src/test/scala/org/apache/spark/storage/DiskBlockManagerSuite.scala +++ b/core/src/test/scala/org/apache/spark/storage/DiskBlockManagerSuite.scala @@ -1,3 +1,20 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + package org.apache.spark.storage import java.io.{FileWriter, File} diff --git a/core/src/test/scala/org/apache/spark/util/collection/OpenHashMapSuite.scala b/core/src/test/scala/org/apache/spark/util/collection/OpenHashMapSuite.scala index ca3f684668d60..80ee59f26f49e 100644 --- a/core/src/test/scala/org/apache/spark/util/collection/OpenHashMapSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/collection/OpenHashMapSuite.scala @@ -1,3 +1,20 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + package org.apache.spark.util.collection import scala.collection.mutable.HashSet diff --git a/core/src/test/scala/org/apache/spark/util/collection/OpenHashSetSuite.scala b/core/src/test/scala/org/apache/spark/util/collection/OpenHashSetSuite.scala index 4e11e8a628b44..5ad7ea74f186f 100644 --- a/core/src/test/scala/org/apache/spark/util/collection/OpenHashSetSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/collection/OpenHashSetSuite.scala @@ -1,3 +1,20 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + package org.apache.spark.util.collection import org.scalatest.FunSuite diff --git a/core/src/test/scala/org/apache/spark/util/collection/PrimitiveKeyOpenHashSetSuite.scala b/core/src/test/scala/org/apache/spark/util/collection/PrimitiveKeyOpenHashSetSuite.scala index dfd6aed2c4bcc..0342195161dc0 100644 --- a/core/src/test/scala/org/apache/spark/util/collection/PrimitiveKeyOpenHashSetSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/collection/PrimitiveKeyOpenHashSetSuite.scala @@ -1,3 +1,20 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + package org.apache.spark.util.collection import scala.collection.mutable.HashSet diff --git a/docs/_layouts/global.html b/docs/_layouts/global.html index 0c1d657cde470..ad7969d012283 100755 --- a/docs/_layouts/global.html +++ b/docs/_layouts/global.html @@ -74,12 +74,12 @@ diff --git a/docs/bagel-programming-guide.md b/docs/bagel-programming-guide.md index 140190a38cfca..de001e6c52f85 100644 --- a/docs/bagel-programming-guide.md +++ b/docs/bagel-programming-guide.md @@ -106,7 +106,7 @@ _Example_ ## Operations -Here are the actions and types in the Bagel API. See [Bagel.scala](https://github.com/apache/incubator-spark/blob/master/bagel/src/main/scala/spark/bagel/Bagel.scala) for details. +Here are the actions and types in the Bagel API. See [Bagel.scala](https://github.com/apache/incubator-spark/blob/master/bagel/src/main/scala/org/apache/spark/bagel/Bagel.scala) for details. ### Actions diff --git a/docs/building-with-maven.md b/docs/building-with-maven.md index 19c01e179f35f..b2744b002cca3 100644 --- a/docs/building-with-maven.md +++ b/docs/building-with-maven.md @@ -45,6 +45,12 @@ For Apache Hadoop 2.x, 0.23.x, Cloudera CDH MRv2, and other Hadoop versions with # Cloudera CDH 4.2.0 with MapReduce v2 $ mvn -Phadoop2-yarn -Dhadoop.version=2.0.0-cdh4.2.0 -Dyarn.version=2.0.0-chd4.2.0 -DskipTests clean package +Hadoop versions 2.2.x and newer can be built by setting the ```new-yarn``` and the ```yarn.version``` as follows: + + # Apache Hadoop 2.2.X and newer + $ mvn -Pnew-yarn -Dhadoop.version=2.2.0 -Dyarn.version=2.2.0 -DskipTests clean package + +The build process handles Hadoop 2.2.x as a special case that uses the directory ```new-yarn```, which supports the new YARN API. Furthermore, for this version, the build depends on artifacts published by the spark-project to enable Akka 2.0.5 to work with protobuf 2.5. ## Spark Tests in Maven ## diff --git a/docs/cluster-overview.md b/docs/cluster-overview.md index 5927f736f3579..e16703292cc22 100644 --- a/docs/cluster-overview.md +++ b/docs/cluster-overview.md @@ -45,7 +45,7 @@ The system currently supports three cluster managers: easy to set up a cluster. * [Apache Mesos](running-on-mesos.html) -- a general cluster manager that can also run Hadoop MapReduce and service applications. -* [Hadoop YARN](running-on-yarn.html) -- the resource manager in Hadoop 2.0. +* [Hadoop YARN](running-on-yarn.html) -- the resource manager in Hadoop 2. In addition, Spark's [EC2 launch scripts](ec2-scripts.html) make it easy to launch a standalone cluster on Amazon EC2. diff --git a/docs/configuration.md b/docs/configuration.md index 22abe1c5a9943..2accfe84c606e 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -331,10 +331,9 @@ Apart from these, the following properties are also available, and may be useful spark.shuffle.consolidateFiles false - If set to "true", consolidates intermediate files created during a shuffle. Creating fewer files can improve filesystem performance if you run shuffles with large numbers of reduce tasks. + If set to "true", consolidates intermediate files created during a shuffle. Creating fewer files can improve filesystem performance for shuffles with large numbers of reduce tasks. It is recomended to set this to "true" when using ext4 or xfs filesystems. On ext3, this option might degrade performance on machines with many (>8) cores due to filesystem limitations. - spark.speculation false diff --git a/docs/hadoop-third-party-distributions.md b/docs/hadoop-third-party-distributions.md index b33af2cf24d77..de6a2b0a43bd5 100644 --- a/docs/hadoop-third-party-distributions.md +++ b/docs/hadoop-third-party-distributions.md @@ -10,7 +10,7 @@ with these distributions: # Compile-time Hadoop Version When compiling Spark, you'll need to -[set the SPARK_HADOOP_VERSION flag](http://localhost:4000/index.html#a-note-about-hadoop-versions): +[set the SPARK_HADOOP_VERSION flag](index.html#a-note-about-hadoop-versions): SPARK_HADOOP_VERSION=1.0.4 sbt/sbt assembly @@ -40,6 +40,7 @@ the _exact_ Hadoop version you are running to avoid any compatibility errors. HDP 1.21.1.2 HDP 1.11.0.3 HDP 1.01.0.3 + HDP 2.02.2.0 diff --git a/docs/index.md b/docs/index.md index bd386a8a8fdb6..d3ac696d1e818 100644 --- a/docs/index.md +++ b/docs/index.md @@ -56,14 +56,16 @@ Hadoop, you must build Spark against the same version that your cluster uses. By default, Spark links to Hadoop 1.0.4. You can change this by setting the `SPARK_HADOOP_VERSION` variable when compiling: - SPARK_HADOOP_VERSION=1.2.1 sbt/sbt assembly + SPARK_HADOOP_VERSION=2.2.0 sbt/sbt assembly -In addition, if you wish to run Spark on [YARN](running-on-yarn.md), set +In addition, if you wish to run Spark on [YARN](running-on-yarn.html), set `SPARK_YARN` to `true`: SPARK_HADOOP_VERSION=2.0.5-alpha SPARK_YARN=true sbt/sbt assembly -(Note that on Windows, you need to set the environment variables on separate lines, e.g., `set SPARK_HADOOP_VERSION=1.2.1`.) +Note that on Windows, you need to set the environment variables on separate lines, e.g., `set SPARK_HADOOP_VERSION=1.2.1`. + +For this version of Spark (0.8.1) Hadoop 2.2.x (or newer) users will have to build Spark and publish it locally. See [Launching Spark on YARN](running-on-yarn.html). This is needed because Hadoop 2.2 has non backwards compatible API changes. # Where to Go from Here diff --git a/docs/job-scheduling.md b/docs/job-scheduling.md index d304c5497bdb3..dbcb9ae343357 100644 --- a/docs/job-scheduling.md +++ b/docs/job-scheduling.md @@ -91,7 +91,7 @@ The fair scheduler also supports grouping jobs into _pools_, and setting differe (e.g. weight) for each pool. This can be useful to create a "high-priority" pool for more important jobs, for example, or to group the jobs of each user together and give _users_ equal shares regardless of how many concurrent jobs they have instead of giving _jobs_ equal shares. This approach is modeled after the -[Hadoop Fair Scheduler](http://hadoop.apache.org/docs/stable/fair_scheduler.html). +[Hadoop Fair Scheduler](http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html). Without any intervention, newly submitted jobs go into a _default pool_, but jobs' pools can be set by adding the `spark.scheduler.pool` "local property" to the SparkContext in the thread that's submitting them. diff --git a/docs/running-on-yarn.md b/docs/running-on-yarn.md index 6fd1d0d150306..9e4c4e123f0af 100644 --- a/docs/running-on-yarn.md +++ b/docs/running-on-yarn.md @@ -17,6 +17,7 @@ This can be built by setting the Hadoop version and `SPARK_YARN` environment var The assembled JAR will be something like this: `./assembly/target/scala-{{site.SCALA_VERSION}}/spark-assembly_{{site.SPARK_VERSION}}-hadoop2.0.5.jar`. +The build process now also supports new YARN versions (2.2.x). See below. # Preparations @@ -37,12 +38,18 @@ System Properties: * 'spark.yarn.applicationMaster.waitTries', property to set the number of times the ApplicationMaster waits for the the spark master and then also the number of tries it waits for the Spark Context to be intialized. Default is 10. * 'spark.yarn.submit.file.replication', the HDFS replication level for the files uploaded into HDFS for the application. These include things like the spark jar, the app jar, and any distributed cache files/archives. * 'spark.yarn.preserve.staging.files', set to true to preserve the staged files(spark jar, app jar, distributed cache files) at the end of the job rather then delete them. +* 'spark.yarn.scheduler.heartbeat.interval-ms', the interval in ms in which the Spark application master heartbeats into the YARN ResourceManager. Default is 5 seconds. +* 'spark.yarn.max.worker.failures', the maximum number of worker failures before failing the application. Default is the number of workers requested times 2 with minimum of 3. # Launching Spark on YARN Ensure that HADOOP_CONF_DIR or YARN_CONF_DIR points to the directory which contains the (client side) configuration files for the hadoop cluster. This would be used to connect to the cluster, write to the dfs and submit jobs to the resource manager. +There are two scheduler mode that can be used to launch spark application on YARN. + +## Launch spark application by YARN Client with yarn-standalone mode. + The command to launch the YARN Client is as follows: SPARK_JAR= ./spark-class org.apache.spark.deploy.yarn.Client \ @@ -50,6 +57,7 @@ The command to launch the YARN Client is as follows: --class \ --args \ --num-workers \ + --master-class --master-memory \ --worker-memory \ --worker-cores \ @@ -83,12 +91,37 @@ For example: $ cat $YARN_APP_LOGS_DIR/$YARN_APP_ID/container*_000001/stdout Pi is roughly 3.13794 -The above starts a YARN Client programs which periodically polls the Application Master for status updates and displays them in the console. The client will exit once your application has finished running. +The above starts a YARN Client programs which start the default Application Master. Then SparkPi will be run as a child thread of Application Master, YARN Client will periodically polls the Application Master for status updates and displays them in the console. The client will exit once your application has finished running. + +With this mode, your application is actually run on the remote machine where the Application Master is run upon. Thus application that involve local interaction will not work well, e.g. spark-shell. + +## Launch spark application with yarn-client mode. + +With yarn-client mode, the application will be launched locally. Just like running application or spark-shell on Local / Mesos / Standalone mode. The launch method is also the similar with them, just make sure that when you need to specify a master url, use "yarn-client" instead. And you also need to export the env value for SPARK_JAR and SPARK_YARN_APP_JAR + +In order to tune worker core/number/memory etc. You need to export SPARK_WORKER_CORES, SPARK_WORKER_MEMORY, SPARK_WORKER_INSTANCES e.g. by ./conf/spark-env.sh + +For example: + + SPARK_JAR=./assembly/target/scala-{{site.SCALA_VERSION}}/spark-assembly-{{site.SPARK_VERSION}}-hadoop2.0.5-alpha.jar \ + SPARK_YARN_APP_JAR=examples/target/scala-{{site.SCALA_VERSION}}/spark-examples-assembly-{{site.SPARK_VERSION}}.jar \ + ./run-example org.apache.spark.examples.SparkPi yarn-client + + + SPARK_JAR=./assembly/target/scala-{{site.SCALA_VERSION}}/spark-assembly-{{site.SPARK_VERSION}}-hadoop2.0.5-alpha.jar \ + SPARK_YARN_APP_JAR=examples/target/scala-{{site.SCALA_VERSION}}/spark-examples-assembly-{{site.SPARK_VERSION}}.jar \ + MASTER=yarn-client ./spark-shell + +# Building Spark for Hadoop/YARN 2.2.x + +Hadoop 2.2.x users must build Spark and publish it locally. The SBT build process handles Hadoop 2.2.x as a special case. This version of Hadoop has new YARN API changes and depends on a Protobuf version (2.5) that is not compatible with the Akka version (2.0.5) that Spark uses. Therefore, if the Hadoop version (e.g. set through ```SPARK_HADOOP_VERSION```) starts with 2.2.0 or higher then the build process will depend on Akka artifacts distributed by the Spark project compatible with Protobuf 2.5. Furthermore, the build process then uses the directory ```new-yarn``` (instead of ```yarn```), which supports the new YARN API. The build process should seamlessly work out of the box. + +See [Building Spark with Maven](building-with-maven.html) for instructions on how to build Spark using the Maven process. # Important Notes -- When your application instantiates a Spark context it must use a special "yarn-standalone" master url. This starts the scheduler without forcing it to connect to a cluster. A good way to handle this is to pass "yarn-standalone" as an argument to your program, as shown in the example above. - We do not requesting container resources based on the number of cores. Thus the numbers of cores given via command line arguments cannot be guaranteed. - The local directories used for spark will be the local directories configured for YARN (Hadoop Yarn config yarn.nodemanager.local-dirs). If the user specifies spark.local.dir, it will be ignored. - The --files and --archives options support specifying file names with the # similar to Hadoop. For example you can specify: --files localtest.txt#appSees.txt and this will upload the file you have locally named localtest.txt into HDFS but this will be linked to by the name appSees.txt and your application should use the name as appSees.txt to reference it when running on YARN. - The --addJars option allows the SparkContext.addJar function to work if you are using it with local files. It does not need to be used if you are using it with HDFS, HTTP, HTTPS, or FTP files. +- YARN 2.2.x users cannot simply depend on the Spark packages without building Spark, as the published Spark artifacts are compiled to work with the pre 2.2 API. Those users must build Spark and publish it locally. diff --git a/docs/streaming-programming-guide.md b/docs/streaming-programming-guide.md index 851e30fe761af..82f42e0b8d16a 100644 --- a/docs/streaming-programming-guide.md +++ b/docs/streaming-programming-guide.md @@ -214,7 +214,7 @@ ssc.stop() {% endhighlight %} # Example -A simple example to start off is the [NetworkWordCount](https://github.com/apache/incubator-spark/tree/master/examples/src/main/scala/spark/streaming/examples/NetworkWordCount.scala). This example counts the words received from a network server every second. Given below is the relevant sections of the source code. You can find the full source code in `/streaming/src/main/scala/spark/streaming/examples/NetworkWordCount.scala` . +A simple example to start off is the [NetworkWordCount](https://github.com/apache/incubator-spark/tree/master/examples/src/main/scala/org/apache/spark/streaming/examples/NetworkWordCount.scala). This example counts the words received from a network server every second. Given below is the relevant sections of the source code. You can find the full source code in `/streaming/src/main/scala/org/apache/spark/streaming/examples/NetworkWordCount.scala` . {% highlight scala %} import org.apache.spark.streaming.{Seconds, StreamingContext} @@ -283,7 +283,7 @@ Time: 1357008430000 ms -You can find more examples in `/streaming/src/main/scala/spark/streaming/examples/`. They can be run in the similar manner using `./run-example org.apache.spark.streaming.examples....` . Executing without any parameter would give the required parameter list. Further explanation to run them can be found in comments in the files. +You can find more examples in `/streaming/src/main/scala/org/apache/spark/streaming/examples/`. They can be run in the similar manner using `./run-example org.apache.spark.streaming.examples....` . Executing without any parameter would give the required parameter list. Further explanation to run them can be found in comments in the files. # DStream Persistence Similar to RDDs, DStreams also allow developers to persist the stream's data in memory. That is, using `persist()` method on a DStream would automatically persist every RDD of that DStream in memory. This is useful if the data in the DStream will be computed multiple times (e.g., multiple operations on the same data). For window-based operations like `reduceByWindow` and `reduceByKeyAndWindow` and state-based operations like `updateStateByKey`, this is implicitly true. Hence, DStreams generated by window-based operations are automatically persisted in memory, without the developer calling `persist()`. @@ -483,7 +483,7 @@ Similar to [Spark's Java API](java-programming-guide.html), we also provide a Ja 1. Functions for transformations must be implemented as subclasses of [Function](api/core/index.html#org.apache.spark.api.java.function.Function) and [Function2](api/core/index.html#org.apache.spark.api.java.function.Function2) 1. Unlike the Scala API, the Java API handles DStreams for key-value pairs using a separate [JavaPairDStream](api/streaming/index.html#org.apache.spark.streaming.api.java.JavaPairDStream) class(similar to [JavaRDD and JavaPairRDD](java-programming-guide.html#rdd-classes). DStream functions like `map` and `filter` are implemented separately by JavaDStreams and JavaPairDStream to return DStreams of appropriate types. -Spark's [Java Programming Guide](java-programming-guide.html) gives more ideas about using the Java API. To extends the ideas presented for the RDDs to DStreams, we present parts of the Java version of the same NetworkWordCount example presented above. The full source code is given at `/examples/src/main/java/spark/streaming/examples/JavaNetworkWordCount.java` +Spark's [Java Programming Guide](java-programming-guide.html) gives more ideas about using the Java API. To extends the ideas presented for the RDDs to DStreams, we present parts of the Java version of the same NetworkWordCount example presented above. The full source code is given at `/examples/src/main/java/org/apache/spark/streaming/examples/JavaNetworkWordCount.java` The streaming context and the socket stream from input source is started by using a `JavaStreamingContext`, that has the same parameters and provides the same input streams as its Scala counterpart. @@ -527,5 +527,5 @@ JavaPairDStream wordCounts = words.map( # Where to Go from Here * API docs - [Scala](api/streaming/index.html#org.apache.spark.streaming.package) and [Java](api/streaming/index.html#org.apache.spark.streaming.api.java.package) -* More examples - [Scala](https://github.com/apache/incubator-spark/tree/master/examples/src/main/scala/spark/streaming/examples) and [Java](https://github.com/apache/incubator-spark/tree/master/examples/src/main/java/spark/streaming/examples) +* More examples - [Scala](https://github.com/apache/incubator-spark/tree/master/examples/src/main/scala/org/apache/spark/streaming/examples) and [Java](https://github.com/apache/incubator-spark/tree/master/examples/src/main/java/org/apache/spark/streaming/examples) * [Paper describing Spark Streaming](http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-259.pdf) diff --git a/examples/pom.xml b/examples/pom.xml index 7055c72082506..47ef2d3c9cb10 100644 --- a/examples/pom.xml +++ b/examples/pom.xml @@ -40,6 +40,23 @@ + + ${akka.group} + akka-actor + + + ${akka.group} + akka-remote + + + ${akka.group} + akka-slf4j + + + ${akka.group} + akka-zeromq + + org.apache.spark spark-core_2.9.3 diff --git a/examples/src/main/scala/org/apache/spark/examples/LocalALS.scala b/examples/src/main/scala/org/apache/spark/examples/LocalALS.scala index 4af45b2b4a067..83db8b9e26411 100644 --- a/examples/src/main/scala/org/apache/spark/examples/LocalALS.scala +++ b/examples/src/main/scala/org/apache/spark/examples/LocalALS.scala @@ -120,7 +120,7 @@ object LocalALS { System.exit(1) } } - printf("Running with M=%d, U=%d, F=%d, iters=%d\n", M, U, F, ITERATIONS); + printf("Running with M=%d, U=%d, F=%d, iters=%d\n", M, U, F, ITERATIONS) val R = generateR() diff --git a/examples/src/main/scala/org/apache/spark/examples/SparkTC.scala b/examples/src/main/scala/org/apache/spark/examples/SparkTC.scala index 5a7a9d1bd8f74..8543ce0e3285e 100644 --- a/examples/src/main/scala/org/apache/spark/examples/SparkTC.scala +++ b/examples/src/main/scala/org/apache/spark/examples/SparkTC.scala @@ -65,7 +65,7 @@ object SparkTC { oldCount = nextCount // Perform the join, obtaining an RDD of (y, (z, x)) pairs, // then project the result to obtain the new (x, z) paths. - tc = tc.union(tc.join(edges).map(x => (x._2._2, x._2._1))).distinct().cache(); + tc = tc.union(tc.join(edges).map(x => (x._2._2, x._2._1))).distinct().cache() nextCount = tc.count() } while (nextCount != oldCount) diff --git a/examples/src/main/scala/org/apache/spark/streaming/examples/ActorWordCount.scala b/examples/src/main/scala/org/apache/spark/streaming/examples/ActorWordCount.scala index cd3423a07b6b7..af52b7e9a12f1 100644 --- a/examples/src/main/scala/org/apache/spark/streaming/examples/ActorWordCount.scala +++ b/examples/src/main/scala/org/apache/spark/streaming/examples/ActorWordCount.scala @@ -120,7 +120,7 @@ object FeederActor { println("Feeder started as:" + feeder) - actorSystem.awaitTermination(); + actorSystem.awaitTermination() } } diff --git a/mllib/pom.xml b/mllib/pom.xml index ed8a076a58937..af3f89a98e730 100644 --- a/mllib/pom.xml +++ b/mllib/pom.xml @@ -32,6 +32,18 @@ http://spark.incubator.apache.org/ + + ${akka.group} + akka-actor + + + ${akka.group} + akka-remote + + + ${akka.group} + akka-slf4j + org.apache.spark spark-core_2.9.3 diff --git a/new-yarn/pom.xml b/new-yarn/pom.xml new file mode 100644 index 0000000000000..d15404cf2e670 --- /dev/null +++ b/new-yarn/pom.xml @@ -0,0 +1,177 @@ + + + + 4.0.0 + + org.apache.spark + spark-parent + 0.8.1-incubating + ../pom.xml + + + org.apache.spark + spark-yarn_2.9.3 + jar + Spark Project YARN Support + http://spark.incubator.apache.org/ + + + + ${akka.group} + akka-actor + + + ${akka.group} + akka-remote + + + ${akka.group} + akka-slf4j + + + ${akka.group} + akka-zeromq + + + org.apache.spark + spark-core_2.9.3 + ${project.version} + + + org.apache.hadoop + hadoop-yarn-api + + + org.apache.hadoop + hadoop-yarn-common + + + org.apache.hadoop + hadoop-yarn-client + + + org.apache.hadoop + hadoop-client + ${yarn.version} + + + org.apache.avro + avro + + + org.apache.avro + avro-ipc + + + org.scalatest + scalatest_2.9.3 + test + + + org.mockito + mockito-all + test + + + + + target/scala-${scala.version}/classes + target/scala-${scala.version}/test-classes + + + org.apache.maven.plugins + maven-shade-plugin + + false + ${project.build.directory}/${project.artifactId}-${project.version}-shaded.jar + + + *:* + + + + + *:* + + META-INF/*.SF + META-INF/*.DSA + META-INF/*.RSA + + + + + + + package + + shade + + + + + + reference.conf + + + + + + + + org.apache.maven.plugins + maven-antrun-plugin + + + test + + run + + + true + + + + + + + + + + + + + + + + + + + + org.scalatest + scalatest-maven-plugin + + + ${basedir}/.. + 1 + ${spark.classpath} + + + + + + diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala new file mode 100644 index 0000000000000..eeeca3ea8a33e --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala @@ -0,0 +1,446 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.io.IOException +import java.net.Socket +import java.util.concurrent.CopyOnWriteArrayList +import java.util.concurrent.atomic.{AtomicInteger, AtomicReference} + +import scala.collection.JavaConversions._ + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.fs.{FileSystem, Path} +import org.apache.hadoop.net.NetUtils +import org.apache.hadoop.security.UserGroupInformation +import org.apache.hadoop.util.ShutdownHookManager +import org.apache.hadoop.yarn.api._ +import org.apache.hadoop.yarn.api.protocolrecords._ +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.client.api.AMRMClient +import org.apache.hadoop.yarn.client.api.AMRMClient.ContainerRequest +import org.apache.hadoop.yarn.conf.YarnConfiguration +import org.apache.hadoop.yarn.ipc.YarnRPC +import org.apache.hadoop.yarn.util.{ConverterUtils, Records} + +import org.apache.spark.{SparkContext, Logging} +import org.apache.spark.util.Utils + + +class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) extends Logging { + + def this(args: ApplicationMasterArguments) = this(args, new Configuration()) + + private var rpc: YarnRPC = YarnRPC.create(conf) + private val yarnConf: YarnConfiguration = new YarnConfiguration(conf) + private var appAttemptId: ApplicationAttemptId = _ + private var userThread: Thread = _ + private val fs = FileSystem.get(yarnConf) + + private var yarnAllocator: YarnAllocationHandler = _ + private var isFinished: Boolean = false + private var uiAddress: String = _ + private val maxAppAttempts: Int = conf.getInt( + YarnConfiguration.RM_AM_MAX_ATTEMPTS, YarnConfiguration.DEFAULT_RM_AM_MAX_ATTEMPTS) + private var isLastAMRetry: Boolean = true + private var amClient: AMRMClient[ContainerRequest] = _ + + // Default to numWorkers * 2, with minimum of 3 + private val maxNumWorkerFailures = System.getProperty("spark.yarn.max.worker.failures", + math.max(args.numWorkers * 2, 3).toString()).toInt + + def run() { + // Setup the directories so things go to YARN approved directories rather + // than user specified and /tmp. + System.setProperty("spark.local.dir", getLocalDirs()) + + // Use priority 30 as it's higher then HDFS. It's same priority as MapReduce is using. + ShutdownHookManager.get().addShutdownHook(new AppMasterShutdownHook(this), 30) + + appAttemptId = getApplicationAttemptId() + isLastAMRetry = appAttemptId.getAttemptId() >= maxAppAttempts + amClient = AMRMClient.createAMRMClient() + amClient.init(yarnConf) + amClient.start() + + // Workaround until hadoop moves to something which has + // https://issues.apache.org/jira/browse/HADOOP-8406 - fixed in (2.0.2-alpha but no 0.23 line) + // org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(conf) + + ApplicationMaster.register(this) + + // Start the user's JAR + userThread = startUserClass() + + // This a bit hacky, but we need to wait until the spark.driver.port property has + // been set by the Thread executing the user class. + waitForSparkMaster() + + waitForSparkContextInitialized() + + // Do this after Spark master is up and SparkContext is created so that we can register UI Url. + val appMasterResponse: RegisterApplicationMasterResponse = registerApplicationMaster() + + // Allocate all containers + allocateWorkers() + + // Wait for the user class to Finish + userThread.join() + + System.exit(0) + } + + /** Get the Yarn approved local directories. */ + private def getLocalDirs(): String = { + // Hadoop 0.23 and 2.x have different Environment variable names for the + // local dirs, so lets check both. We assume one of the 2 is set. + // LOCAL_DIRS => 2.X, YARN_LOCAL_DIRS => 0.23.X + val localDirs = Option(System.getenv("YARN_LOCAL_DIRS")) + .getOrElse(Option(System.getenv("LOCAL_DIRS")) + .getOrElse("")) + + if (localDirs.isEmpty()) { + throw new Exception("Yarn Local dirs can't be empty") + } + localDirs + } + + private def getApplicationAttemptId(): ApplicationAttemptId = { + val envs = System.getenv() + val containerIdString = envs.get(ApplicationConstants.Environment.CONTAINER_ID.name()) + val containerId = ConverterUtils.toContainerId(containerIdString) + val appAttemptId = containerId.getApplicationAttemptId() + logInfo("ApplicationAttemptId: " + appAttemptId) + appAttemptId + } + + private def registerApplicationMaster(): RegisterApplicationMasterResponse = { + logInfo("Registering the ApplicationMaster") + amClient.registerApplicationMaster(Utils.localHostName(), 0, uiAddress) + } + + private def waitForSparkMaster() { + logInfo("Waiting for Spark driver to be reachable.") + var driverUp = false + var tries = 0 + val numTries = System.getProperty("spark.yarn.applicationMaster.waitTries", "10").toInt + while (!driverUp && tries < numTries) { + val driverHost = System.getProperty("spark.driver.host") + val driverPort = System.getProperty("spark.driver.port") + try { + val socket = new Socket(driverHost, driverPort.toInt) + socket.close() + logInfo("Driver now available: %s:%s".format(driverHost, driverPort)) + driverUp = true + } catch { + case e: Exception => { + logWarning("Failed to connect to driver at %s:%s, retrying ...". + format(driverHost, driverPort)) + Thread.sleep(100) + tries = tries + 1 + } + } + } + } + + private def startUserClass(): Thread = { + logInfo("Starting the user JAR in a separate Thread") + val mainMethod = Class.forName( + args.userClass, + false /* initialize */, + Thread.currentThread.getContextClassLoader).getMethod("main", classOf[Array[String]]) + val t = new Thread { + override def run() { + var successed = false + try { + // Copy + var mainArgs: Array[String] = new Array[String](args.userArgs.size) + args.userArgs.copyToArray(mainArgs, 0, args.userArgs.size) + mainMethod.invoke(null, mainArgs) + // some job script has "System.exit(0)" at the end, for example SparkPi, SparkLR + // userThread will stop here unless it has uncaught exception thrown out + // It need shutdown hook to set SUCCEEDED + successed = true + } finally { + logDebug("finishing main") + isLastAMRetry = true + if (successed) { + ApplicationMaster.this.finishApplicationMaster(FinalApplicationStatus.SUCCEEDED) + } else { + ApplicationMaster.this.finishApplicationMaster(FinalApplicationStatus.FAILED) + } + } + } + } + t.start() + t + } + + // This need to happen before allocateWorkers() + private def waitForSparkContextInitialized() { + logInfo("Waiting for Spark context initialization") + try { + var sparkContext: SparkContext = null + ApplicationMaster.sparkContextRef.synchronized { + var numTries = 0 + val waitTime = 10000L + val maxNumTries = System.getProperty("spark.yarn.ApplicationMaster.waitTries", "10").toInt + while (ApplicationMaster.sparkContextRef.get() == null && numTries < maxNumTries) { + logInfo("Waiting for Spark context initialization ... " + numTries) + numTries = numTries + 1 + ApplicationMaster.sparkContextRef.wait(waitTime) + } + sparkContext = ApplicationMaster.sparkContextRef.get() + assert(sparkContext != null || numTries >= maxNumTries) + + if (sparkContext != null) { + uiAddress = sparkContext.ui.appUIAddress + this.yarnAllocator = YarnAllocationHandler.newAllocator( + yarnConf, + amClient, + appAttemptId, + args, + sparkContext.preferredNodeLocationData) + } else { + logWarning("Unable to retrieve SparkContext inspite of waiting for %d, maxNumTries = %d". + format(numTries * waitTime, maxNumTries)) + this.yarnAllocator = YarnAllocationHandler.newAllocator( + yarnConf, + amClient, + appAttemptId, + args) + } + } + } finally { + // In case of exceptions, etc - ensure that count is at least ALLOCATOR_LOOP_WAIT_COUNT : + // so that the loop (in ApplicationMaster.sparkContextInitialized) breaks. + ApplicationMaster.incrementAllocatorLoop(ApplicationMaster.ALLOCATOR_LOOP_WAIT_COUNT) + } + } + + private def allocateWorkers() { + try { + logInfo("Allocating " + args.numWorkers + " workers.") + // Wait until all containers have finished + // TODO: This is a bit ugly. Can we make it nicer? + // TODO: Handle container failure + yarnAllocator.addResourceRequests(args.numWorkers) + // Exits the loop if the user thread exits. + while (yarnAllocator.getNumWorkersRunning < args.numWorkers && userThread.isAlive) { + if (yarnAllocator.getNumWorkersFailed >= maxNumWorkerFailures) { + finishApplicationMaster(FinalApplicationStatus.FAILED, + "max number of worker failures reached") + } + yarnAllocator.allocateResources() + ApplicationMaster.incrementAllocatorLoop(1) + Thread.sleep(100) + } + } finally { + // In case of exceptions, etc - ensure that count is at least ALLOCATOR_LOOP_WAIT_COUNT, + // so that the loop in ApplicationMaster#sparkContextInitialized() breaks. + ApplicationMaster.incrementAllocatorLoop(ApplicationMaster.ALLOCATOR_LOOP_WAIT_COUNT) + } + logInfo("All workers have launched.") + + // Launch a progress reporter thread, else the app will get killed after expiration + // (def: 10mins) timeout. + if (userThread.isAlive) { + // Ensure that progress is sent before YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS elapses. + val timeoutInterval = yarnConf.getInt(YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS, 120000) + + // we want to be reasonably responsive without causing too many requests to RM. + val schedulerInterval = + System.getProperty("spark.yarn.scheduler.heartbeat.interval-ms", "5000").toLong + + // must be <= timeoutInterval / 2. + val interval = math.min(timeoutInterval / 2, schedulerInterval) + + launchReporterThread(interval) + } + } + + private def launchReporterThread(_sleepTime: Long): Thread = { + val sleepTime = if (_sleepTime <= 0 ) 0 else _sleepTime + + val t = new Thread { + override def run() { + while (userThread.isAlive) { + if (yarnAllocator.getNumWorkersFailed >= maxNumWorkerFailures) { + finishApplicationMaster(FinalApplicationStatus.FAILED, + "max number of worker failures reached") + } + val missingWorkerCount = args.numWorkers - yarnAllocator.getNumWorkersRunning - + yarnAllocator.getNumPendingAllocate + if (missingWorkerCount > 0) { + logInfo("Allocating %d containers to make up for (potentially) lost containers". + format(missingWorkerCount)) + yarnAllocator.addResourceRequests(missingWorkerCount) + } + sendProgress() + Thread.sleep(sleepTime) + } + } + } + // Setting to daemon status, though this is usually not a good idea. + t.setDaemon(true) + t.start() + logInfo("Started progress reporter thread - sleep time : " + sleepTime) + t + } + + private def sendProgress() { + logDebug("Sending progress") + // Simulated with an allocate request with no nodes requested. + yarnAllocator.allocateResources() + } + + /* + def printContainers(containers: List[Container]) = { + for (container <- containers) { + logInfo("Launching shell command on a new container." + + ", containerId=" + container.getId() + + ", containerNode=" + container.getNodeId().getHost() + + ":" + container.getNodeId().getPort() + + ", containerNodeURI=" + container.getNodeHttpAddress() + + ", containerState" + container.getState() + + ", containerResourceMemory" + + container.getResource().getMemory()) + } + } + */ + + def finishApplicationMaster(status: FinalApplicationStatus, diagnostics: String = "") { + synchronized { + if (isFinished) { + return + } + isFinished = true + } + + logInfo("finishApplicationMaster with " + status) + // Set tracking URL to empty since we don't have a history server. + amClient.unregisterApplicationMaster(status, "" /* appMessage */, "" /* appTrackingUrl */) + } + + /** + * Clean up the staging directory. + */ + private def cleanupStagingDir() { + var stagingDirPath: Path = null + try { + val preserveFiles = System.getProperty("spark.yarn.preserve.staging.files", "false").toBoolean + if (!preserveFiles) { + stagingDirPath = new Path(System.getenv("SPARK_YARN_STAGING_DIR")) + if (stagingDirPath == null) { + logError("Staging directory is null") + return + } + logInfo("Deleting staging directory " + stagingDirPath) + fs.delete(stagingDirPath, true) + } + } catch { + case ioe: IOException => + logError("Failed to cleanup staging dir " + stagingDirPath, ioe) + } + } + + // The shutdown hook that runs when a signal is received AND during normal close of the JVM. + class AppMasterShutdownHook(appMaster: ApplicationMaster) extends Runnable { + + def run() { + logInfo("AppMaster received a signal.") + // we need to clean up staging dir before HDFS is shut down + // make sure we don't delete it until this is the last AM + if (appMaster.isLastAMRetry) appMaster.cleanupStagingDir() + } + } +} + +object ApplicationMaster { + // Number of times to wait for the allocator loop to complete. + // Each loop iteration waits for 100ms, so maximum of 3 seconds. + // This is to ensure that we have reasonable number of containers before we start + // TODO: Currently, task to container is computed once (TaskSetManager) - which need not be + // optimal as more containers are available. Might need to handle this better. + private val ALLOCATOR_LOOP_WAIT_COUNT = 30 + + private val applicationMasters = new CopyOnWriteArrayList[ApplicationMaster]() + + val sparkContextRef: AtomicReference[SparkContext] = + new AtomicReference[SparkContext](null /* initialValue */) + + val yarnAllocatorLoop: AtomicInteger = new AtomicInteger(0) + + def incrementAllocatorLoop(by: Int) { + val count = yarnAllocatorLoop.getAndAdd(by) + if (count >= ALLOCATOR_LOOP_WAIT_COUNT) { + yarnAllocatorLoop.synchronized { + // to wake threads off wait ... + yarnAllocatorLoop.notifyAll() + } + } + } + + def register(master: ApplicationMaster) { + applicationMasters.add(master) + } + + // TODO(harvey): See whether this should be discarded - it isn't used anywhere atm... + def sparkContextInitialized(sc: SparkContext): Boolean = { + var modified = false + sparkContextRef.synchronized { + modified = sparkContextRef.compareAndSet(null, sc) + sparkContextRef.notifyAll() + } + + // Add a shutdown hook - as a best case effort in case users do not call sc.stop or do + // System.exit. + // Should not really have to do this, but it helps YARN to evict resources earlier. + // Not to mention, prevent the Client from declaring failure even though we exited properly. + // Note that this will unfortunately not properly clean up the staging files because it gets + // called too late, after the filesystem is already shutdown. + if (modified) { + Runtime.getRuntime().addShutdownHook(new Thread with Logging { + // This is not only logs, but also ensures that log system is initialized for this instance + // when we are actually 'run'-ing. + logInfo("Adding shutdown hook for context " + sc) + override def run() { + logInfo("Invoking sc stop from shutdown hook") + sc.stop() + // Best case ... + for (master <- applicationMasters) { + master.finishApplicationMaster(FinalApplicationStatus.SUCCEEDED) + } + } + } ) + } + + // Wait for initialization to complete and atleast 'some' nodes can get allocated. + yarnAllocatorLoop.synchronized { + while (yarnAllocatorLoop.get() <= ALLOCATOR_LOOP_WAIT_COUNT) { + yarnAllocatorLoop.wait(1000L) + } + } + modified + } + + def main(argStrings: Array[String]) { + val args = new ApplicationMasterArguments(argStrings) + new ApplicationMaster(args).run() + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala new file mode 100644 index 0000000000000..f76a5ddd39e90 --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala @@ -0,0 +1,94 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import org.apache.spark.util.IntParam +import collection.mutable.ArrayBuffer + +class ApplicationMasterArguments(val args: Array[String]) { + var userJar: String = null + var userClass: String = null + var userArgs: Seq[String] = Seq[String]() + var workerMemory = 1024 + var workerCores = 1 + var numWorkers = 2 + + parseArgs(args.toList) + + private def parseArgs(inputArgs: List[String]): Unit = { + val userArgsBuffer = new ArrayBuffer[String]() + + var args = inputArgs + + while (! args.isEmpty) { + + args match { + case ("--jar") :: value :: tail => + userJar = value + args = tail + + case ("--class") :: value :: tail => + userClass = value + args = tail + + case ("--args") :: value :: tail => + userArgsBuffer += value + args = tail + + case ("--num-workers") :: IntParam(value) :: tail => + numWorkers = value + args = tail + + case ("--worker-memory") :: IntParam(value) :: tail => + workerMemory = value + args = tail + + case ("--worker-cores") :: IntParam(value) :: tail => + workerCores = value + args = tail + + case Nil => + if (userJar == null || userClass == null) { + printUsageAndExit(1) + } + + case _ => + printUsageAndExit(1, args) + } + } + + userArgs = userArgsBuffer.readOnly + } + + def printUsageAndExit(exitCode: Int, unknownParam: Any = null) { + if (unknownParam != null) { + System.err.println("Unknown/unsupported param " + unknownParam) + } + System.err.println( + "Usage: org.apache.spark.deploy.yarn.ApplicationMaster [options] \n" + + "Options:\n" + + " --jar JAR_PATH Path to your application's JAR file (required)\n" + + " --class CLASS_NAME Name of your application's main class (required)\n" + + " --args ARGS Arguments to be passed to your application's main class.\n" + + " Mutliple invocations are possible, each will be passed in order.\n" + + " --num-workers NUM Number of workers to start (Default: 2)\n" + + " --worker-cores NUM Number of cores for the workers (Default: 1)\n" + + " --worker-memory MEM Memory per Worker (e.g. 1000M, 2G) (Default: 1G)\n") + System.exit(exitCode) + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala new file mode 100644 index 0000000000000..94678815e806a --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala @@ -0,0 +1,519 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.net.{InetAddress, UnknownHostException, URI} +import java.nio.ByteBuffer + +import scala.collection.JavaConversions._ +import scala.collection.mutable.HashMap +import scala.collection.mutable.Map + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.fs.{FileContext, FileStatus, FileSystem, Path, FileUtil} +import org.apache.hadoop.fs.permission.FsPermission; +import org.apache.hadoop.io.DataOutputBuffer +import org.apache.hadoop.mapred.Master +import org.apache.hadoop.net.NetUtils +import org.apache.hadoop.security.UserGroupInformation +import org.apache.hadoop.yarn.api._ +import org.apache.hadoop.yarn.api.ApplicationConstants.Environment +import org.apache.hadoop.yarn.api.protocolrecords._ +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.client.api.impl.YarnClientImpl +import org.apache.hadoop.yarn.conf.YarnConfiguration +import org.apache.hadoop.yarn.ipc.YarnRPC +import org.apache.hadoop.yarn.util.{Apps, Records} + +import org.apache.spark.Logging +import org.apache.spark.util.Utils +import org.apache.spark.deploy.SparkHadoopUtil + + +/** + * The entry point (starting in Client#main() and Client#run()) for launching Spark on YARN. The + * Client submits an application to the global ResourceManager to launch Spark's ApplicationMaster, + * which will launch a Spark master process and negotiate resources throughout its duration. + */ +class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl with Logging { + + var rpc: YarnRPC = YarnRPC.create(conf) + val yarnConf: YarnConfiguration = new YarnConfiguration(conf) + val credentials = UserGroupInformation.getCurrentUser().getCredentials() + private val SPARK_STAGING: String = ".sparkStaging" + private val distCacheMgr = new ClientDistributedCacheManager() + + // Staging directory is private! -> rwx-------- + val STAGING_DIR_PERMISSION: FsPermission = FsPermission.createImmutable(0700: Short) + // App files are world-wide readable and owner writable -> rw-r--r-- + val APP_FILE_PERMISSION: FsPermission = FsPermission.createImmutable(0644: Short) + + def this(args: ClientArguments) = this(new Configuration(), args) + + def runApp(): ApplicationId = { + validateArgs() + // Initialize and start the client service. + init(yarnConf) + start() + + // Log details about this YARN cluster (e.g, the number of slave machines/NodeManagers). + logClusterResourceDetails() + + // Prepare to submit a request to the ResourcManager (specifically its ApplicationsManager (ASM) + // interface). + + // Get a new client application. + val newApp = super.createApplication() + val newAppResponse = newApp.getNewApplicationResponse() + val appId = newAppResponse.getApplicationId() + + verifyClusterResources(newAppResponse) + + // Set up resource and environment variables. + val appStagingDir = getAppStagingDir(appId) + val localResources = prepareLocalResources(appStagingDir) + val launchEnv = setupLaunchEnv(localResources, appStagingDir) + val amContainer = createContainerLaunchContext(newAppResponse, localResources, launchEnv) + + // Set up an application submission context. + val appContext = newApp.getApplicationSubmissionContext() + appContext.setApplicationName(args.appName) + appContext.setQueue(args.amQueue) + appContext.setAMContainerSpec(amContainer) + + // Memory for the ApplicationMaster. + val memoryResource = Records.newRecord(classOf[Resource]).asInstanceOf[Resource] + memoryResource.setMemory(args.amMemory + YarnAllocationHandler.MEMORY_OVERHEAD) + appContext.setResource(memoryResource) + + // Finally, submit and monitor the application. + submitApp(appContext) + appId + } + + def run() { + val appId = runApp() + monitorApplication(appId) + System.exit(0) + } + + // TODO(harvey): This could just go in ClientArguments. + def validateArgs() = { + Map( + (System.getenv("SPARK_JAR") == null) -> "Error: You must set SPARK_JAR environment variable!", + (args.userJar == null) -> "Error: You must specify a user jar!", + (args.userClass == null) -> "Error: You must specify a user class!", + (args.numWorkers <= 0) -> "Error: You must specify atleast 1 worker!", + (args.amMemory <= YarnAllocationHandler.MEMORY_OVERHEAD) -> ("Error: AM memory size must be" + + "greater than: " + YarnAllocationHandler.MEMORY_OVERHEAD), + (args.workerMemory <= YarnAllocationHandler.MEMORY_OVERHEAD) -> ("Error: Worker memory size" + + "must be greater than: " + YarnAllocationHandler.MEMORY_OVERHEAD.toString) + ).foreach { case(cond, errStr) => + if (cond) { + logError(errStr) + args.printUsageAndExit(1) + } + } + } + + def getAppStagingDir(appId: ApplicationId): String = { + SPARK_STAGING + Path.SEPARATOR + appId.toString() + Path.SEPARATOR + } + + def logClusterResourceDetails() { + val clusterMetrics: YarnClusterMetrics = super.getYarnClusterMetrics + logInfo("Got Cluster metric info from ApplicationsManager (ASM), number of NodeManagers: " + + clusterMetrics.getNumNodeManagers) + + val queueInfo: QueueInfo = super.getQueueInfo(args.amQueue) + logInfo("""Queue info ... queueName: %s, queueCurrentCapacity: %s, queueMaxCapacity: %s, + queueApplicationCount = %s, queueChildQueueCount = %s""".format( + queueInfo.getQueueName, + queueInfo.getCurrentCapacity, + queueInfo.getMaximumCapacity, + queueInfo.getApplications.size, + queueInfo.getChildQueues.size)) + } + + def verifyClusterResources(app: GetNewApplicationResponse) = { + val maxMem = app.getMaximumResourceCapability().getMemory() + logInfo("Max mem capabililty of a single resource in this cluster " + maxMem) + + // If we have requested more then the clusters max for a single resource then exit. + if (args.workerMemory > maxMem) { + logError("Required worker memory (%d MB), is above the max threshold (%d MB) of this cluster.". + format(args.workerMemory, maxMem)) + System.exit(1) + } + val amMem = args.amMemory + YarnAllocationHandler.MEMORY_OVERHEAD + if (amMem > maxMem) { + logError("Required AM memory (%d) is above the max threshold (%d) of this cluster". + format(args.amMemory, maxMem)) + System.exit(1) + } + + // We could add checks to make sure the entire cluster has enough resources but that involves + // getting all the node reports and computing ourselves. + } + + /** See if two file systems are the same or not. */ + private def compareFs(srcFs: FileSystem, destFs: FileSystem): Boolean = { + val srcUri = srcFs.getUri() + val dstUri = destFs.getUri() + if (srcUri.getScheme() == null) { + return false + } + if (!srcUri.getScheme().equals(dstUri.getScheme())) { + return false + } + var srcHost = srcUri.getHost() + var dstHost = dstUri.getHost() + if ((srcHost != null) && (dstHost != null)) { + try { + srcHost = InetAddress.getByName(srcHost).getCanonicalHostName() + dstHost = InetAddress.getByName(dstHost).getCanonicalHostName() + } catch { + case e: UnknownHostException => + return false + } + if (!srcHost.equals(dstHost)) { + return false + } + } else if (srcHost == null && dstHost != null) { + return false + } else if (srcHost != null && dstHost == null) { + return false + } + //check for ports + if (srcUri.getPort() != dstUri.getPort()) { + return false + } + return true + } + + /** Copy the file into HDFS if needed. */ + private def copyRemoteFile( + dstDir: Path, + originalPath: Path, + replication: Short, + setPerms: Boolean = false): Path = { + val fs = FileSystem.get(conf) + val remoteFs = originalPath.getFileSystem(conf) + var newPath = originalPath + if (! compareFs(remoteFs, fs)) { + newPath = new Path(dstDir, originalPath.getName()) + logInfo("Uploading " + originalPath + " to " + newPath) + FileUtil.copy(remoteFs, originalPath, fs, newPath, false, conf) + fs.setReplication(newPath, replication) + if (setPerms) fs.setPermission(newPath, new FsPermission(APP_FILE_PERMISSION)) + } + // Resolve any symlinks in the URI path so using a "current" symlink to point to a specific + // version shows the specific version in the distributed cache configuration + val qualPath = fs.makeQualified(newPath) + val fc = FileContext.getFileContext(qualPath.toUri(), conf) + val destPath = fc.resolvePath(qualPath) + destPath + } + + def prepareLocalResources(appStagingDir: String): HashMap[String, LocalResource] = { + logInfo("Preparing Local resources") + // Upload Spark and the application JAR to the remote file system if necessary. Add them as + // local resources to the application master. + val fs = FileSystem.get(conf) + + val delegTokenRenewer = Master.getMasterPrincipal(conf) + if (UserGroupInformation.isSecurityEnabled()) { + if (delegTokenRenewer == null || delegTokenRenewer.length() == 0) { + logError("Can't get Master Kerberos principal for use as renewer") + System.exit(1) + } + } + val dst = new Path(fs.getHomeDirectory(), appStagingDir) + val replication = System.getProperty("spark.yarn.submit.file.replication", "3").toShort + + if (UserGroupInformation.isSecurityEnabled()) { + val dstFs = dst.getFileSystem(conf) + dstFs.addDelegationTokens(delegTokenRenewer, credentials) + } + + val localResources = HashMap[String, LocalResource]() + FileSystem.mkdirs(fs, dst, new FsPermission(STAGING_DIR_PERMISSION)) + + val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() + + Map( + Client.SPARK_JAR -> System.getenv("SPARK_JAR"), Client.APP_JAR -> args.userJar, + Client.LOG4J_PROP -> System.getenv("SPARK_LOG4J_CONF") + ).foreach { case(destName, _localPath) => + val localPath: String = if (_localPath != null) _localPath.trim() else "" + if (! localPath.isEmpty()) { + var localURI = new URI(localPath) + // If not specified assume these are in the local filesystem to keep behavior like Hadoop + if (localURI.getScheme() == null) { + localURI = new URI(FileSystem.getLocal(conf).makeQualified(new Path(localPath)).toString) + } + val setPermissions = if (destName.equals(Client.APP_JAR)) true else false + val destPath = copyRemoteFile(dst, new Path(localURI), replication, setPermissions) + distCacheMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.FILE, + destName, statCache) + } + } + + // Handle jars local to the ApplicationMaster. + if ((args.addJars != null) && (!args.addJars.isEmpty())){ + args.addJars.split(',').foreach { case file: String => + val localURI = new URI(file.trim()) + val localPath = new Path(localURI) + val linkname = Option(localURI.getFragment()).getOrElse(localPath.getName()) + val destPath = copyRemoteFile(dst, localPath, replication) + // Only add the resource to the Spark ApplicationMaster. + val appMasterOnly = true + distCacheMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.FILE, + linkname, statCache, appMasterOnly) + } + } + + // Handle any distributed cache files + if ((args.files != null) && (!args.files.isEmpty())){ + args.files.split(',').foreach { case file: String => + val localURI = new URI(file.trim()) + val localPath = new Path(localURI) + val linkname = Option(localURI.getFragment()).getOrElse(localPath.getName()) + val destPath = copyRemoteFile(dst, localPath, replication) + distCacheMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.FILE, + linkname, statCache) + } + } + + // Handle any distributed cache archives + if ((args.archives != null) && (!args.archives.isEmpty())) { + args.archives.split(',').foreach { case file:String => + val localURI = new URI(file.trim()) + val localPath = new Path(localURI) + val linkname = Option(localURI.getFragment()).getOrElse(localPath.getName()) + val destPath = copyRemoteFile(dst, localPath, replication) + distCacheMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.ARCHIVE, + linkname, statCache) + } + } + + UserGroupInformation.getCurrentUser().addCredentials(credentials) + localResources + } + + def setupLaunchEnv( + localResources: HashMap[String, LocalResource], + stagingDir: String): HashMap[String, String] = { + logInfo("Setting up the launch environment") + val log4jConfLocalRes = localResources.getOrElse(Client.LOG4J_PROP, null) + + val env = new HashMap[String, String]() + + Client.populateClasspath(yarnConf, log4jConfLocalRes != null, env) + env("SPARK_YARN_MODE") = "true" + env("SPARK_YARN_STAGING_DIR") = stagingDir + + // Set the environment variables to be passed on to the Workers. + distCacheMgr.setDistFilesEnv(env) + distCacheMgr.setDistArchivesEnv(env) + + // Allow users to specify some environment variables. + Apps.setEnvFromInputString(env, System.getenv("SPARK_YARN_USER_ENV")) + + // Add each SPARK_* key to the environment. + System.getenv().filterKeys(_.startsWith("SPARK")).foreach { case (k,v) => env(k) = v } + + env + } + + def userArgsToString(clientArgs: ClientArguments): String = { + val prefix = " --args " + val args = clientArgs.userArgs + val retval = new StringBuilder() + for (arg <- args){ + retval.append(prefix).append(" '").append(arg).append("' ") + } + retval.toString + } + + def createContainerLaunchContext( + newApp: GetNewApplicationResponse, + localResources: HashMap[String, LocalResource], + env: HashMap[String, String]): ContainerLaunchContext = { + logInfo("Setting up container launch context") + val amContainer = Records.newRecord(classOf[ContainerLaunchContext]) + amContainer.setLocalResources(localResources) + amContainer.setEnvironment(env) + + // TODO: Need a replacement for the following code to fix -Xmx? + // val minResMemory: Int = newApp.getMinimumResourceCapability().getMemory() + // var amMemory = ((args.amMemory / minResMemory) * minResMemory) + + // ((if ((args.amMemory % minResMemory) == 0) 0 else minResMemory) - + // YarnAllocationHandler.MEMORY_OVERHEAD) + + // Extra options for the JVM + var JAVA_OPTS = "" + + // Add Xmx for AM memory + JAVA_OPTS += "-Xmx" + args.amMemory + "m" + + val tmpDir = new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + JAVA_OPTS += " -Djava.io.tmpdir=" + tmpDir + + // TODO: Remove once cpuset version is pushed out. + // The context is, default gc for server class machines ends up using all cores to do gc - + // hence if there are multiple containers in same node, Spark GC affects all other containers' + // performance (which can be that of other Spark containers) + // Instead of using this, rely on cpusets by YARN to enforce "proper" Spark behavior in + // multi-tenant environments. Not sure how default Java GC behaves if it is limited to subset + // of cores on a node. + val useConcurrentAndIncrementalGC = env.isDefinedAt("SPARK_USE_CONC_INCR_GC") && + java.lang.Boolean.parseBoolean(env("SPARK_USE_CONC_INCR_GC")) + if (useConcurrentAndIncrementalGC) { + // In our expts, using (default) throughput collector has severe perf ramifications in + // multi-tenant machines + JAVA_OPTS += " -XX:+UseConcMarkSweepGC " + JAVA_OPTS += " -XX:+CMSIncrementalMode " + JAVA_OPTS += " -XX:+CMSIncrementalPacing " + JAVA_OPTS += " -XX:CMSIncrementalDutyCycleMin=0 " + JAVA_OPTS += " -XX:CMSIncrementalDutyCycle=10 " + } + + if (env.isDefinedAt("SPARK_JAVA_OPTS")) { + JAVA_OPTS += " " + env("SPARK_JAVA_OPTS") + } + + // Command for the ApplicationMaster + var javaCommand = "java" + val javaHome = System.getenv("JAVA_HOME") + if ((javaHome != null && !javaHome.isEmpty()) || env.isDefinedAt("JAVA_HOME")) { + javaCommand = Environment.JAVA_HOME.$() + "/bin/java" + } + + val commands = List[String]( + javaCommand + + " -server " + + JAVA_OPTS + + " " + args.amClass + + " --class " + args.userClass + + " --jar " + args.userJar + + userArgsToString(args) + + " --worker-memory " + args.workerMemory + + " --worker-cores " + args.workerCores + + " --num-workers " + args.numWorkers + + " 1> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" + + " 2> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr") + + logInfo("Command for starting the Spark ApplicationMaster: " + commands(0)) + amContainer.setCommands(commands) + + // Setup security tokens. + val dob = new DataOutputBuffer() + credentials.writeTokenStorageToStream(dob) + amContainer.setTokens(ByteBuffer.wrap(dob.getData())) + + amContainer + } + + def submitApp(appContext: ApplicationSubmissionContext) = { + // Submit the application to the applications manager. + logInfo("Submitting application to ASM") + super.submitApplication(appContext) + } + + def monitorApplication(appId: ApplicationId): Boolean = { + while (true) { + Thread.sleep(1000) + val report = super.getApplicationReport(appId) + + logInfo("Application report from ASM: \n" + + "\t application identifier: " + appId.toString() + "\n" + + "\t appId: " + appId.getId() + "\n" + + "\t clientToAMToken: " + report.getClientToAMToken() + "\n" + + "\t appDiagnostics: " + report.getDiagnostics() + "\n" + + "\t appMasterHost: " + report.getHost() + "\n" + + "\t appQueue: " + report.getQueue() + "\n" + + "\t appMasterRpcPort: " + report.getRpcPort() + "\n" + + "\t appStartTime: " + report.getStartTime() + "\n" + + "\t yarnAppState: " + report.getYarnApplicationState() + "\n" + + "\t distributedFinalState: " + report.getFinalApplicationStatus() + "\n" + + "\t appTrackingUrl: " + report.getTrackingUrl() + "\n" + + "\t appUser: " + report.getUser() + ) + + val state = report.getYarnApplicationState() + val dsStatus = report.getFinalApplicationStatus() + if (state == YarnApplicationState.FINISHED || + state == YarnApplicationState.FAILED || + state == YarnApplicationState.KILLED) { + return true + } + } + true + } +} + +object Client { + val SPARK_JAR: String = "spark.jar" + val APP_JAR: String = "app.jar" + val LOG4J_PROP: String = "log4j.properties" + + def main(argStrings: Array[String]) { + // Set an env variable indicating we are running in YARN mode. + // Note: anything env variable with SPARK_ prefix gets propagated to all (remote) processes - + // see Client#setupLaunchEnv(). + System.setProperty("SPARK_YARN_MODE", "true") + + val args = new ClientArguments(argStrings) + + (new Client(args)).run() + } + + // Based on code from org.apache.hadoop.mapreduce.v2.util.MRApps + def populateHadoopClasspath(conf: Configuration, env: HashMap[String, String]) { + for (c <- conf.getStrings(YarnConfiguration.YARN_APPLICATION_CLASSPATH)) { + Apps.addToEnvironment(env, Environment.CLASSPATH.name, c.trim) + } + } + + def populateClasspath(conf: Configuration, addLog4j: Boolean, env: HashMap[String, String]) { + Apps.addToEnvironment(env, Environment.CLASSPATH.name, Environment.PWD.$()) + // If log4j present, ensure ours overrides all others + if (addLog4j) { + Apps.addToEnvironment(env, Environment.CLASSPATH.name, Environment.PWD.$() + + Path.SEPARATOR + LOG4J_PROP) + } + // Normally the users app.jar is last in case conflicts with spark jars + val userClasspathFirst = System.getProperty("spark.yarn.user.classpath.first", "false") + .toBoolean + if (userClasspathFirst) { + Apps.addToEnvironment(env, Environment.CLASSPATH.name, Environment.PWD.$() + + Path.SEPARATOR + APP_JAR) + } + Apps.addToEnvironment(env, Environment.CLASSPATH.name, Environment.PWD.$() + + Path.SEPARATOR + SPARK_JAR) + Client.populateHadoopClasspath(conf, env) + + if (!userClasspathFirst) { + Apps.addToEnvironment(env, Environment.CLASSPATH.name, Environment.PWD.$() + + Path.SEPARATOR + APP_JAR) + } + Apps.addToEnvironment(env, Environment.CLASSPATH.name, Environment.PWD.$() + + Path.SEPARATOR + "*") + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala new file mode 100644 index 0000000000000..9efb28a942672 --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala @@ -0,0 +1,148 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import scala.collection.mutable.{ArrayBuffer, HashMap} + +import org.apache.spark.scheduler.{InputFormatInfo, SplitInfo} +import org.apache.spark.util.IntParam +import org.apache.spark.util.MemoryParam + + +// TODO: Add code and support for ensuring that yarn resource 'tasks' are location aware ! +class ClientArguments(val args: Array[String]) { + var addJars: String = null + var files: String = null + var archives: String = null + var userJar: String = null + var userClass: String = null + var userArgs: Seq[String] = Seq[String]() + var workerMemory = 1024 // MB + var workerCores = 1 + var numWorkers = 2 + var amQueue = System.getProperty("QUEUE", "default") + var amMemory: Int = 512 // MB + var amClass: String = "org.apache.spark.deploy.yarn.ApplicationMaster" + var appName: String = "Spark" + // TODO + var inputFormatInfo: List[InputFormatInfo] = null + // TODO(harvey) + var priority = 0 + + parseArgs(args.toList) + + private def parseArgs(inputArgs: List[String]): Unit = { + val userArgsBuffer: ArrayBuffer[String] = new ArrayBuffer[String]() + val inputFormatMap: HashMap[String, InputFormatInfo] = new HashMap[String, InputFormatInfo]() + + var args = inputArgs + + while (!args.isEmpty) { + args match { + case ("--jar") :: value :: tail => + userJar = value + args = tail + + case ("--class") :: value :: tail => + userClass = value + args = tail + + case ("--args") :: value :: tail => + userArgsBuffer += value + args = tail + + case ("--master-class") :: value :: tail => + amClass = value + args = tail + + case ("--master-memory") :: MemoryParam(value) :: tail => + amMemory = value + args = tail + + case ("--num-workers") :: IntParam(value) :: tail => + numWorkers = value + args = tail + + case ("--worker-memory") :: MemoryParam(value) :: tail => + workerMemory = value + args = tail + + case ("--worker-cores") :: IntParam(value) :: tail => + workerCores = value + args = tail + + case ("--queue") :: value :: tail => + amQueue = value + args = tail + + case ("--name") :: value :: tail => + appName = value + + case ("--addJars") :: value :: tail => + addJars = value + args = tail + + case ("--files") :: value :: tail => + files = value + args = tail + + case ("--archives") :: value :: tail => + archives = value + args = tail + + case Nil => + if (userJar == null || userClass == null) { + printUsageAndExit(1) + } + + case _ => + printUsageAndExit(1, args) + } + } + + userArgs = userArgsBuffer.readOnly + inputFormatInfo = inputFormatMap.values.toList + } + + + def printUsageAndExit(exitCode: Int, unknownParam: Any = null) { + if (unknownParam != null) { + System.err.println("Unknown/unsupported param " + unknownParam) + } + System.err.println( + "Usage: org.apache.spark.deploy.yarn.Client [options] \n" + + "Options:\n" + + " --jar JAR_PATH Path to your application's JAR file (required)\n" + + " --class CLASS_NAME Name of your application's main class (required)\n" + + " --args ARGS Arguments to be passed to your application's main class.\n" + + " Mutliple invocations are possible, each will be passed in order.\n" + + " --num-workers NUM Number of workers to start (Default: 2)\n" + + " --worker-cores NUM Number of cores for the workers (Default: 1). This is unsused right now.\n" + + " --master-class CLASS_NAME Class Name for Master (Default: spark.deploy.yarn.ApplicationMaster)\n" + + " --master-memory MEM Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)\n" + + " --worker-memory MEM Memory per Worker (e.g. 1000M, 2G) (Default: 1G)\n" + + " --name NAME The name of your application (Default: Spark)\n" + + " --queue QUEUE The hadoop queue to use for allocation requests (Default: 'default')\n" + + " --addJars jars Comma separated list of local jars that want SparkContext.addJar to work with.\n" + + " --files files Comma separated list of files to be distributed with the job.\n" + + " --archives archives Comma separated list of archives to be distributed with the job." + ) + System.exit(exitCode) + } + +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManager.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManager.scala new file mode 100644 index 0000000000000..5f159b073f537 --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManager.scala @@ -0,0 +1,228 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.net.URI + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.fs.FileStatus +import org.apache.hadoop.fs.FileSystem +import org.apache.hadoop.fs.Path +import org.apache.hadoop.fs.permission.FsAction +import org.apache.hadoop.yarn.api.records.LocalResource +import org.apache.hadoop.yarn.api.records.LocalResourceVisibility +import org.apache.hadoop.yarn.api.records.LocalResourceType +import org.apache.hadoop.yarn.util.{Records, ConverterUtils} + +import org.apache.spark.Logging + +import scala.collection.mutable.HashMap +import scala.collection.mutable.LinkedHashMap +import scala.collection.mutable.Map + + +/** Client side methods to setup the Hadoop distributed cache */ +class ClientDistributedCacheManager() extends Logging { + private val distCacheFiles: Map[String, Tuple3[String, String, String]] = + LinkedHashMap[String, Tuple3[String, String, String]]() + private val distCacheArchives: Map[String, Tuple3[String, String, String]] = + LinkedHashMap[String, Tuple3[String, String, String]]() + + + /** + * Add a resource to the list of distributed cache resources. This list can + * be sent to the ApplicationMaster and possibly the workers so that it can + * be downloaded into the Hadoop distributed cache for use by this application. + * Adds the LocalResource to the localResources HashMap passed in and saves + * the stats of the resources to they can be sent to the workers and verified. + * + * @param fs FileSystem + * @param conf Configuration + * @param destPath path to the resource + * @param localResources localResource hashMap to insert the resource into + * @param resourceType LocalResourceType + * @param link link presented in the distributed cache to the destination + * @param statCache cache to store the file/directory stats + * @param appMasterOnly Whether to only add the resource to the app master + */ + def addResource( + fs: FileSystem, + conf: Configuration, + destPath: Path, + localResources: HashMap[String, LocalResource], + resourceType: LocalResourceType, + link: String, + statCache: Map[URI, FileStatus], + appMasterOnly: Boolean = false) = { + val destStatus = fs.getFileStatus(destPath) + val amJarRsrc = Records.newRecord(classOf[LocalResource]).asInstanceOf[LocalResource] + amJarRsrc.setType(resourceType) + val visibility = getVisibility(conf, destPath.toUri(), statCache) + amJarRsrc.setVisibility(visibility) + amJarRsrc.setResource(ConverterUtils.getYarnUrlFromPath(destPath)) + amJarRsrc.setTimestamp(destStatus.getModificationTime()) + amJarRsrc.setSize(destStatus.getLen()) + if (link == null || link.isEmpty()) throw new Exception("You must specify a valid link name") + localResources(link) = amJarRsrc + + if (appMasterOnly == false) { + val uri = destPath.toUri() + val pathURI = new URI(uri.getScheme(), uri.getAuthority(), uri.getPath(), null, link) + if (resourceType == LocalResourceType.FILE) { + distCacheFiles(pathURI.toString()) = (destStatus.getLen().toString(), + destStatus.getModificationTime().toString(), visibility.name()) + } else { + distCacheArchives(pathURI.toString()) = (destStatus.getLen().toString(), + destStatus.getModificationTime().toString(), visibility.name()) + } + } + } + + /** + * Adds the necessary cache file env variables to the env passed in + * @param env + */ + def setDistFilesEnv(env: Map[String, String]) = { + val (keys, tupleValues) = distCacheFiles.unzip + val (sizes, timeStamps, visibilities) = tupleValues.unzip3 + + if (keys.size > 0) { + env("SPARK_YARN_CACHE_FILES") = keys.reduceLeft[String] { (acc,n) => acc + "," + n } + env("SPARK_YARN_CACHE_FILES_TIME_STAMPS") = + timeStamps.reduceLeft[String] { (acc,n) => acc + "," + n } + env("SPARK_YARN_CACHE_FILES_FILE_SIZES") = + sizes.reduceLeft[String] { (acc,n) => acc + "," + n } + env("SPARK_YARN_CACHE_FILES_VISIBILITIES") = + visibilities.reduceLeft[String] { (acc,n) => acc + "," + n } + } + } + + /** + * Adds the necessary cache archive env variables to the env passed in + * @param env + */ + def setDistArchivesEnv(env: Map[String, String]) = { + val (keys, tupleValues) = distCacheArchives.unzip + val (sizes, timeStamps, visibilities) = tupleValues.unzip3 + + if (keys.size > 0) { + env("SPARK_YARN_CACHE_ARCHIVES") = keys.reduceLeft[String] { (acc,n) => acc + "," + n } + env("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS") = + timeStamps.reduceLeft[String] { (acc,n) => acc + "," + n } + env("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES") = + sizes.reduceLeft[String] { (acc,n) => acc + "," + n } + env("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES") = + visibilities.reduceLeft[String] { (acc,n) => acc + "," + n } + } + } + + /** + * Returns the local resource visibility depending on the cache file permissions + * @param conf + * @param uri + * @param statCache + * @return LocalResourceVisibility + */ + def getVisibility(conf: Configuration, uri: URI, statCache: Map[URI, FileStatus]): + LocalResourceVisibility = { + if (isPublic(conf, uri, statCache)) { + return LocalResourceVisibility.PUBLIC + } + return LocalResourceVisibility.PRIVATE + } + + /** + * Returns a boolean to denote whether a cache file is visible to all(public) + * or not + * @param conf + * @param uri + * @param statCache + * @return true if the path in the uri is visible to all, false otherwise + */ + def isPublic(conf: Configuration, uri: URI, statCache: Map[URI, FileStatus]): Boolean = { + val fs = FileSystem.get(uri, conf) + val current = new Path(uri.getPath()) + //the leaf level file should be readable by others + if (!checkPermissionOfOther(fs, current, FsAction.READ, statCache)) { + return false + } + return ancestorsHaveExecutePermissions(fs, current.getParent(), statCache) + } + + /** + * Returns true if all ancestors of the specified path have the 'execute' + * permission set for all users (i.e. that other users can traverse + * the directory heirarchy to the given path) + * @param fs + * @param path + * @param statCache + * @return true if all ancestors have the 'execute' permission set for all users + */ + def ancestorsHaveExecutePermissions(fs: FileSystem, path: Path, + statCache: Map[URI, FileStatus]): Boolean = { + var current = path + while (current != null) { + //the subdirs in the path should have execute permissions for others + if (!checkPermissionOfOther(fs, current, FsAction.EXECUTE, statCache)) { + return false + } + current = current.getParent() + } + return true + } + + /** + * Checks for a given path whether the Other permissions on it + * imply the permission in the passed FsAction + * @param fs + * @param path + * @param action + * @param statCache + * @return true if the path in the uri is visible to all, false otherwise + */ + def checkPermissionOfOther(fs: FileSystem, path: Path, + action: FsAction, statCache: Map[URI, FileStatus]): Boolean = { + val status = getFileStatus(fs, path.toUri(), statCache) + val perms = status.getPermission() + val otherAction = perms.getOtherAction() + if (otherAction.implies(action)) { + return true + } + return false + } + + /** + * Checks to see if the given uri exists in the cache, if it does it + * returns the existing FileStatus, otherwise it stats the uri, stores + * it in the cache, and returns the FileStatus. + * @param fs + * @param uri + * @param statCache + * @return FileStatus + */ + def getFileStatus(fs: FileSystem, uri: URI, statCache: Map[URI, FileStatus]): FileStatus = { + val stat = statCache.get(uri) match { + case Some(existstat) => existstat + case None => + val newStat = fs.getFileStatus(new Path(uri)) + statCache.put(uri, newStat) + newStat + } + return stat + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerLauncher.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerLauncher.scala new file mode 100644 index 0000000000000..c38f33e212fbf --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerLauncher.scala @@ -0,0 +1,223 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.net.Socket +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.net.NetUtils +import org.apache.hadoop.yarn.api._ +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.api.protocolrecords._ +import org.apache.hadoop.yarn.conf.YarnConfiguration +import org.apache.hadoop.yarn.util.{ConverterUtils, Records} +import akka.actor._ +import akka.remote.{RemoteClientShutdown, RemoteClientDisconnected, RemoteClientLifeCycleEvent} +import akka.actor.Terminated +import org.apache.spark.{SparkContext, Logging} +import org.apache.spark.util.{Utils, AkkaUtils} +import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend +import org.apache.spark.scheduler.SplitInfo +import org.apache.hadoop.yarn.client.api.AMRMClient +import org.apache.hadoop.yarn.client.api.AMRMClient.ContainerRequest + +class WorkerLauncher(args: ApplicationMasterArguments, conf: Configuration) extends Logging { + + def this(args: ApplicationMasterArguments) = this(args, new Configuration()) + + private var appAttemptId: ApplicationAttemptId = _ + private var reporterThread: Thread = _ + private val yarnConf: YarnConfiguration = new YarnConfiguration(conf) + + private var yarnAllocator: YarnAllocationHandler = _ + private var driverClosed:Boolean = false + + private var amClient: AMRMClient[ContainerRequest] = _ + + val actorSystem : ActorSystem = AkkaUtils.createActorSystem("sparkYarnAM", Utils.localHostName, 0)._1 + var actor: ActorRef = _ + + // This actor just working as a monitor to watch on Driver Actor. + class MonitorActor(driverUrl: String) extends Actor { + + var driver: ActorRef = null + + override def preStart() { + logInfo("Listen to driver: " + driverUrl) + driver = context.actorFor(driverUrl) + context.system.eventStream.subscribe(self, classOf[RemoteClientLifeCycleEvent]) + context.watch(driver) // Doesn't work with remote actors, but useful for testing + } + + override def receive = { + case Terminated(_) | RemoteClientDisconnected(_, _) | RemoteClientShutdown(_, _) => + logInfo("Driver terminated or disconnected! Shutting down.") + driverClosed = true + } + } + + def run() { + + amClient = AMRMClient.createAMRMClient() + amClient.init(yarnConf) + amClient.start() + + appAttemptId = getApplicationAttemptId() + registerApplicationMaster() + + waitForSparkMaster() + + // Allocate all containers + allocateWorkers() + + // Launch a progress reporter thread, else app will get killed after expiration (def: 10mins) timeout + // ensure that progress is sent before YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS elapse. + + val timeoutInterval = yarnConf.getInt(YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS, 120000) + // must be <= timeoutInterval/ 2. + // On other hand, also ensure that we are reasonably responsive without causing too many requests to RM. + // so atleast 1 minute or timeoutInterval / 10 - whichever is higher. + val interval = math.min(timeoutInterval / 2, math.max(timeoutInterval/ 10, 60000L)) + reporterThread = launchReporterThread(interval) + + // Wait for the reporter thread to Finish. + reporterThread.join() + + finishApplicationMaster(FinalApplicationStatus.SUCCEEDED) + actorSystem.shutdown() + + logInfo("Exited") + System.exit(0) + } + + private def getApplicationAttemptId(): ApplicationAttemptId = { + val envs = System.getenv() + val containerIdString = envs.get(ApplicationConstants.Environment.CONTAINER_ID.name()) + val containerId = ConverterUtils.toContainerId(containerIdString) + val appAttemptId = containerId.getApplicationAttemptId() + logInfo("ApplicationAttemptId: " + appAttemptId) + appAttemptId + } + + private def registerApplicationMaster(): RegisterApplicationMasterResponse = { + logInfo("Registering the ApplicationMaster") + // TODO:(Raymond) Find out Spark UI address and fill in here? + amClient.registerApplicationMaster(Utils.localHostName(), 0, "") + } + + private def waitForSparkMaster() { + logInfo("Waiting for Spark driver to be reachable.") + var driverUp = false + val hostport = args.userArgs(0) + val (driverHost, driverPort) = Utils.parseHostPort(hostport) + while(!driverUp) { + try { + val socket = new Socket(driverHost, driverPort) + socket.close() + logInfo("Driver now available: %s:%s".format(driverHost, driverPort)) + driverUp = true + } catch { + case e: Exception => + logError("Failed to connect to driver at %s:%s, retrying ...". + format(driverHost, driverPort)) + Thread.sleep(100) + } + } + System.setProperty("spark.driver.host", driverHost) + System.setProperty("spark.driver.port", driverPort.toString) + + val driverUrl = "akka://spark@%s:%s/user/%s".format( + driverHost, driverPort.toString, CoarseGrainedSchedulerBackend.ACTOR_NAME) + + actor = actorSystem.actorOf(Props(new MonitorActor(driverUrl)), name = "YarnAM") + } + + + private def allocateWorkers() { + + // Fixme: should get preferredNodeLocationData from SparkContext, just fake a empty one for now. + val preferredNodeLocationData: scala.collection.Map[String, scala.collection.Set[SplitInfo]] = + scala.collection.immutable.Map() + + yarnAllocator = YarnAllocationHandler.newAllocator( + yarnConf, + amClient, + appAttemptId, + args, + preferredNodeLocationData) + + logInfo("Allocating " + args.numWorkers + " workers.") + // Wait until all containers have finished + // TODO: This is a bit ugly. Can we make it nicer? + // TODO: Handle container failure + + yarnAllocator.addResourceRequests(args.numWorkers) + while(yarnAllocator.getNumWorkersRunning < args.numWorkers) { + yarnAllocator.allocateResources() + Thread.sleep(100) + } + + logInfo("All workers have launched.") + + } + + // TODO: We might want to extend this to allocate more containers in case they die ! + private def launchReporterThread(_sleepTime: Long): Thread = { + val sleepTime = if (_sleepTime <= 0 ) 0 else _sleepTime + + val t = new Thread { + override def run() { + while (!driverClosed) { + val missingWorkerCount = args.numWorkers - yarnAllocator.getNumWorkersRunning - + yarnAllocator.getNumPendingAllocate + if (missingWorkerCount > 0) { + logInfo("Allocating %d containers to make up for (potentially) lost containers". + format(missingWorkerCount)) + yarnAllocator.addResourceRequests(missingWorkerCount) + } + sendProgress() + Thread.sleep(sleepTime) + } + } + } + // setting to daemon status, though this is usually not a good idea. + t.setDaemon(true) + t.start() + logInfo("Started progress reporter thread - sleep time : " + sleepTime) + t + } + + private def sendProgress() { + logDebug("Sending progress") + // simulated with an allocate request with no nodes requested ... + yarnAllocator.allocateResources() + } + + def finishApplicationMaster(status: FinalApplicationStatus) { + logInfo("finish ApplicationMaster with " + status) + amClient.unregisterApplicationMaster(status, "" /* appMessage */, "" /* appTrackingUrl */) + } + +} + + +object WorkerLauncher { + def main(argStrings: Array[String]) { + val args = new ApplicationMasterArguments(argStrings) + new WorkerLauncher(args).run() + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerRunnable.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerRunnable.scala new file mode 100644 index 0000000000000..9f5523c4b97a8 --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerRunnable.scala @@ -0,0 +1,209 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.net.URI +import java.nio.ByteBuffer +import java.security.PrivilegedExceptionAction + +import scala.collection.JavaConversions._ +import scala.collection.mutable.HashMap + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.fs.Path +import org.apache.hadoop.io.DataOutputBuffer +import org.apache.hadoop.net.NetUtils +import org.apache.hadoop.security.UserGroupInformation +import org.apache.hadoop.yarn.api._ +import org.apache.hadoop.yarn.api.ApplicationConstants.Environment +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.api.records.impl.pb.ProtoUtils +import org.apache.hadoop.yarn.api.protocolrecords._ +import org.apache.hadoop.yarn.client.api.NMClient +import org.apache.hadoop.yarn.conf.YarnConfiguration +import org.apache.hadoop.yarn.ipc.YarnRPC +import org.apache.hadoop.yarn.util.{Apps, ConverterUtils, Records} + +import org.apache.spark.Logging + + +class WorkerRunnable( + container: Container, + conf: Configuration, + masterAddress: String, + slaveId: String, + hostname: String, + workerMemory: Int, + workerCores: Int) + extends Runnable with Logging { + + var rpc: YarnRPC = YarnRPC.create(conf) + var nmClient: NMClient = _ + val yarnConf: YarnConfiguration = new YarnConfiguration(conf) + + def run = { + logInfo("Starting Worker Container") + nmClient = NMClient.createNMClient() + nmClient.init(yarnConf) + nmClient.start() + startContainer + } + + def startContainer = { + logInfo("Setting up ContainerLaunchContext") + + val ctx = Records.newRecord(classOf[ContainerLaunchContext]) + .asInstanceOf[ContainerLaunchContext] + + val localResources = prepareLocalResources + ctx.setLocalResources(localResources) + + val env = prepareEnvironment + ctx.setEnvironment(env) + + // Extra options for the JVM + var JAVA_OPTS = "" + // Set the JVM memory + val workerMemoryString = workerMemory + "m" + JAVA_OPTS += "-Xms" + workerMemoryString + " -Xmx" + workerMemoryString + " " + if (env.isDefinedAt("SPARK_JAVA_OPTS")) { + JAVA_OPTS += env("SPARK_JAVA_OPTS") + " " + } + + JAVA_OPTS += " -Djava.io.tmpdir=" + + new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + " " + + // Commenting it out for now - so that people can refer to the properties if required. Remove + // it once cpuset version is pushed out. + // The context is, default gc for server class machines end up using all cores to do gc - hence + // if there are multiple containers in same node, spark gc effects all other containers + // performance (which can also be other spark containers) + // Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in + // multi-tenant environments. Not sure how default java gc behaves if it is limited to subset + // of cores on a node. +/* + else { + // If no java_opts specified, default to using -XX:+CMSIncrementalMode + // It might be possible that other modes/config is being done in SPARK_JAVA_OPTS, so we dont + // want to mess with it. + // In our expts, using (default) throughput collector has severe perf ramnifications in + // multi-tennent machines + // The options are based on + // http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html#0.0.0.%20When%20to%20Use%20the%20Concurrent%20Low%20Pause%20Collector|outline + JAVA_OPTS += " -XX:+UseConcMarkSweepGC " + JAVA_OPTS += " -XX:+CMSIncrementalMode " + JAVA_OPTS += " -XX:+CMSIncrementalPacing " + JAVA_OPTS += " -XX:CMSIncrementalDutyCycleMin=0 " + JAVA_OPTS += " -XX:CMSIncrementalDutyCycle=10 " + } +*/ + + val credentials = UserGroupInformation.getCurrentUser().getCredentials() + val dob = new DataOutputBuffer() + credentials.writeTokenStorageToStream(dob) + ctx.setTokens(ByteBuffer.wrap(dob.getData())) + + var javaCommand = "java" + val javaHome = System.getenv("JAVA_HOME") + if ((javaHome != null && !javaHome.isEmpty()) || env.isDefinedAt("JAVA_HOME")) { + javaCommand = Environment.JAVA_HOME.$() + "/bin/java" + } + + val commands = List[String](javaCommand + + " -server " + + // Kill if OOM is raised - leverage yarn's failure handling to cause rescheduling. + // Not killing the task leaves various aspects of the worker and (to some extent) the jvm in + // an inconsistent state. + // TODO: If the OOM is not recoverable by rescheduling it on different node, then do + // 'something' to fail job ... akin to blacklisting trackers in mapred ? + " -XX:OnOutOfMemoryError='kill %p' " + + JAVA_OPTS + + " org.apache.spark.executor.CoarseGrainedExecutorBackend " + + masterAddress + " " + + slaveId + " " + + hostname + " " + + workerCores + + " 1> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stdout" + + " 2> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr") + logInfo("Setting up worker with commands: " + commands) + ctx.setCommands(commands) + + // Send the start request to the ContainerManager + nmClient.startContainer(container, ctx) + } + + private def setupDistributedCache( + file: String, + rtype: LocalResourceType, + localResources: HashMap[String, LocalResource], + timestamp: String, + size: String, + vis: String) = { + val uri = new URI(file) + val amJarRsrc = Records.newRecord(classOf[LocalResource]).asInstanceOf[LocalResource] + amJarRsrc.setType(rtype) + amJarRsrc.setVisibility(LocalResourceVisibility.valueOf(vis)) + amJarRsrc.setResource(ConverterUtils.getYarnUrlFromURI(uri)) + amJarRsrc.setTimestamp(timestamp.toLong) + amJarRsrc.setSize(size.toLong) + localResources(uri.getFragment()) = amJarRsrc + } + + def prepareLocalResources: HashMap[String, LocalResource] = { + logInfo("Preparing Local resources") + val localResources = HashMap[String, LocalResource]() + + if (System.getenv("SPARK_YARN_CACHE_FILES") != null) { + val timeStamps = System.getenv("SPARK_YARN_CACHE_FILES_TIME_STAMPS").split(',') + val fileSizes = System.getenv("SPARK_YARN_CACHE_FILES_FILE_SIZES").split(',') + val distFiles = System.getenv("SPARK_YARN_CACHE_FILES").split(',') + val visibilities = System.getenv("SPARK_YARN_CACHE_FILES_VISIBILITIES").split(',') + for( i <- 0 to distFiles.length - 1) { + setupDistributedCache(distFiles(i), LocalResourceType.FILE, localResources, timeStamps(i), + fileSizes(i), visibilities(i)) + } + } + + if (System.getenv("SPARK_YARN_CACHE_ARCHIVES") != null) { + val timeStamps = System.getenv("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS").split(',') + val fileSizes = System.getenv("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES").split(',') + val distArchives = System.getenv("SPARK_YARN_CACHE_ARCHIVES").split(',') + val visibilities = System.getenv("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES").split(',') + for( i <- 0 to distArchives.length - 1) { + setupDistributedCache(distArchives(i), LocalResourceType.ARCHIVE, localResources, + timeStamps(i), fileSizes(i), visibilities(i)) + } + } + + logInfo("Prepared Local resources " + localResources) + localResources + } + + def prepareEnvironment: HashMap[String, String] = { + val env = new HashMap[String, String]() + + Client.populateClasspath(yarnConf, System.getenv("SPARK_YARN_LOG4J_PATH") != null, env) + + // Allow users to specify some environment variables + Apps.setEnvFromInputString(env, System.getenv("SPARK_YARN_USER_ENV")) + + System.getenv().filterKeys(_.startsWith("SPARK")).foreach { case (k,v) => env(k) = v } + env + } + +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala new file mode 100644 index 0000000000000..dba0f7640e67c --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala @@ -0,0 +1,687 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.lang.{Boolean => JBoolean} +import java.util.{Collections, Set => JSet} +import java.util.concurrent.{CopyOnWriteArrayList, ConcurrentHashMap} +import java.util.concurrent.atomic.AtomicInteger + +import scala.collection +import scala.collection.JavaConversions._ +import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet} + +import org.apache.spark.Logging +import org.apache.spark.scheduler.SplitInfo +import org.apache.spark.scheduler.cluster.{ClusterScheduler, CoarseGrainedSchedulerBackend} +import org.apache.spark.util.Utils + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.yarn.api.ApplicationMasterProtocol +import org.apache.hadoop.yarn.api.records.ApplicationAttemptId +import org.apache.hadoop.yarn.api.records.{Container, ContainerId, ContainerStatus} +import org.apache.hadoop.yarn.api.records.{Priority, Resource, ResourceRequest} +import org.apache.hadoop.yarn.api.protocolrecords.{AllocateRequest, AllocateResponse} +import org.apache.hadoop.yarn.client.api.AMRMClient +import org.apache.hadoop.yarn.client.api.AMRMClient.ContainerRequest +import org.apache.hadoop.yarn.util.{RackResolver, Records} + + +object AllocationType extends Enumeration ("HOST", "RACK", "ANY") { + type AllocationType = Value + val HOST, RACK, ANY = Value +} + +// TODO: +// Too many params. +// Needs to be mt-safe +// Need to refactor this to make it 'cleaner' ... right now, all computation is reactive - should +// make it more proactive and decoupled. + +// Note that right now, we assume all node asks as uniform in terms of capabilities and priority +// Refer to http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/ for +// more info on how we are requesting for containers. +private[yarn] class YarnAllocationHandler( + val conf: Configuration, + val amClient: AMRMClient[ContainerRequest], + val appAttemptId: ApplicationAttemptId, + val maxWorkers: Int, + val workerMemory: Int, + val workerCores: Int, + val preferredHostToCount: Map[String, Int], + val preferredRackToCount: Map[String, Int]) + extends Logging { + // These three are locked on allocatedHostToContainersMap. Complementary data structures + // allocatedHostToContainersMap : containers which are running : host, Set + // allocatedContainerToHostMap: container to host mapping. + private val allocatedHostToContainersMap = + new HashMap[String, collection.mutable.Set[ContainerId]]() + + private val allocatedContainerToHostMap = new HashMap[ContainerId, String]() + + // allocatedRackCount is populated ONLY if allocation happens (or decremented if this is an + // allocated node) + // As with the two data structures above, tightly coupled with them, and to be locked on + // allocatedHostToContainersMap + private val allocatedRackCount = new HashMap[String, Int]() + + // Containers which have been released. + private val releasedContainerList = new CopyOnWriteArrayList[ContainerId]() + // Containers to be released in next request to RM + private val pendingReleaseContainers = new ConcurrentHashMap[ContainerId, Boolean] + + // Number of container requests that have been sent to, but not yet allocated by the + // ApplicationMaster. + private val numPendingAllocate = new AtomicInteger() + private val numWorkersRunning = new AtomicInteger() + // Used to generate a unique id per worker + private val workerIdCounter = new AtomicInteger() + private val lastResponseId = new AtomicInteger() + private val numWorkersFailed = new AtomicInteger() + + def getNumPendingAllocate: Int = numPendingAllocate.intValue + + def getNumWorkersRunning: Int = numWorkersRunning.intValue + + def getNumWorkersFailed: Int = numWorkersFailed.intValue + + def isResourceConstraintSatisfied(container: Container): Boolean = { + container.getResource.getMemory >= (workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD) + } + + def releaseContainer(container: Container) { + val containerId = container.getId + pendingReleaseContainers.put(containerId, true) + amClient.releaseAssignedContainer(containerId) + } + + def allocateResources() { + // We have already set the container request. Poll the ResourceManager for a response. + // This doubles as a heartbeat if there are no pending container requests. + val progressIndicator = 0.1f + val allocateResponse = amClient.allocate(progressIndicator) + + val allocatedContainers = allocateResponse.getAllocatedContainers() + if (allocatedContainers.size > 0) { + var numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * allocatedContainers.size) + + if (numPendingAllocateNow < 0) { + numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * numPendingAllocateNow) + } + + logDebug(""" + Allocated containers: %d + Current worker count: %d + Containers released: %s + Containers to-be-released: %s + Cluster resources: %s + """.format( + allocatedContainers.size, + numWorkersRunning.get(), + releasedContainerList, + pendingReleaseContainers, + allocateResponse.getAvailableResources)) + + val hostToContainers = new HashMap[String, ArrayBuffer[Container]]() + + for (container <- allocatedContainers) { + if (isResourceConstraintSatisfied(container)) { + // Add the accepted `container` to the host's list of already accepted, + // allocated containers + val host = container.getNodeId.getHost + val containersForHost = hostToContainers.getOrElseUpdate(host, + new ArrayBuffer[Container]()) + containersForHost += container + } else { + // Release container, since it doesn't satisfy resource constraints. + releaseContainer(container) + } + } + + // Find the appropriate containers to use. + // TODO: Cleanup this group-by... + val dataLocalContainers = new HashMap[String, ArrayBuffer[Container]]() + val rackLocalContainers = new HashMap[String, ArrayBuffer[Container]]() + val offRackContainers = new HashMap[String, ArrayBuffer[Container]]() + + for (candidateHost <- hostToContainers.keySet) { + val maxExpectedHostCount = preferredHostToCount.getOrElse(candidateHost, 0) + val requiredHostCount = maxExpectedHostCount - allocatedContainersOnHost(candidateHost) + + val remainingContainersOpt = hostToContainers.get(candidateHost) + assert(remainingContainersOpt.isDefined) + var remainingContainers = remainingContainersOpt.get + + if (requiredHostCount >= remainingContainers.size) { + // Since we have <= required containers, add all remaining containers to + // `dataLocalContainers`. + dataLocalContainers.put(candidateHost, remainingContainers) + // There are no more free containers remaining. + remainingContainers = null + } else if (requiredHostCount > 0) { + // Container list has more containers than we need for data locality. + // Split the list into two: one based on the data local container count, + // (`remainingContainers.size` - `requiredHostCount`), and the other to hold remaining + // containers. + val (dataLocal, remaining) = remainingContainers.splitAt( + remainingContainers.size - requiredHostCount) + dataLocalContainers.put(candidateHost, dataLocal) + + // Invariant: remainingContainers == remaining + + // YARN has a nasty habit of allocating a ton of containers on a host - discourage this. + // Add each container in `remaining` to list of containers to release. If we have an + // insufficient number of containers, then the next allocation cycle will reallocate + // (but won't treat it as data local). + // TODO(harvey): Rephrase this comment some more. + for (container <- remaining) releaseContainer(container) + remainingContainers = null + } + + // For rack local containers + if (remainingContainers != null) { + val rack = YarnAllocationHandler.lookupRack(conf, candidateHost) + if (rack != null) { + val maxExpectedRackCount = preferredRackToCount.getOrElse(rack, 0) + val requiredRackCount = maxExpectedRackCount - allocatedContainersOnRack(rack) - + rackLocalContainers.getOrElse(rack, List()).size + + if (requiredRackCount >= remainingContainers.size) { + // Add all remaining containers to to `dataLocalContainers`. + dataLocalContainers.put(rack, remainingContainers) + remainingContainers = null + } else if (requiredRackCount > 0) { + // Container list has more containers that we need for data locality. + // Split the list into two: one based on the data local container count, + // (`remainingContainers.size` - `requiredHostCount`), and the other to hold remaining + // containers. + val (rackLocal, remaining) = remainingContainers.splitAt( + remainingContainers.size - requiredRackCount) + val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, + new ArrayBuffer[Container]()) + + existingRackLocal ++= rackLocal + + remainingContainers = remaining + } + } + } + + if (remainingContainers != null) { + // Not all containers have been consumed - add them to the list of off-rack containers. + offRackContainers.put(candidateHost, remainingContainers) + } + } + + // Now that we have split the containers into various groups, go through them in order: + // first host-local, then rack-local, and finally off-rack. + // Note that the list we create below tries to ensure that not all containers end up within + // a host if there is a sufficiently large number of hosts/containers. + val allocatedContainersToProcess = new ArrayBuffer[Container](allocatedContainers.size) + allocatedContainersToProcess ++= ClusterScheduler.prioritizeContainers(dataLocalContainers) + allocatedContainersToProcess ++= ClusterScheduler.prioritizeContainers(rackLocalContainers) + allocatedContainersToProcess ++= ClusterScheduler.prioritizeContainers(offRackContainers) + + // Run each of the allocated containers. + for (container <- allocatedContainersToProcess) { + val numWorkersRunningNow = numWorkersRunning.incrementAndGet() + val workerHostname = container.getNodeId.getHost + val containerId = container.getId + + val workerMemoryOverhead = (workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD) + assert(container.getResource.getMemory >= workerMemoryOverhead) + + if (numWorkersRunningNow > maxWorkers) { + logInfo("""Ignoring container %s at host %s, since we already have the required number of + containers for it.""".format(containerId, workerHostname)) + releaseContainer(container) + numWorkersRunning.decrementAndGet() + } else { + val workerId = workerIdCounter.incrementAndGet().toString + val driverUrl = "akka://spark@%s:%s/user/%s".format( + System.getProperty("spark.driver.host"), + System.getProperty("spark.driver.port"), + CoarseGrainedSchedulerBackend.ACTOR_NAME) + + logInfo("Launching container %s for on host %s".format(containerId, workerHostname)) + + // To be safe, remove the container from `pendingReleaseContainers`. + pendingReleaseContainers.remove(containerId) + + val rack = YarnAllocationHandler.lookupRack(conf, workerHostname) + allocatedHostToContainersMap.synchronized { + val containerSet = allocatedHostToContainersMap.getOrElseUpdate(workerHostname, + new HashSet[ContainerId]()) + + containerSet += containerId + allocatedContainerToHostMap.put(containerId, workerHostname) + + if (rack != null) { + allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1) + } + } + logInfo("Launching WorkerRunnable. driverUrl: %s, workerHostname: %s".format(driverUrl, workerHostname)) + val workerRunnable = new WorkerRunnable( + container, + conf, + driverUrl, + workerId, + workerHostname, + workerMemory, + workerCores) + new Thread(workerRunnable).start() + } + } + logDebug(""" + Finished allocating %s containers (from %s originally). + Current number of workers running: %d, + releasedContainerList: %s, + pendingReleaseContainers: %s + """.format( + allocatedContainersToProcess, + allocatedContainers, + numWorkersRunning.get(), + releasedContainerList, + pendingReleaseContainers)) + } + + val completedContainers = allocateResponse.getCompletedContainersStatuses() + if (completedContainers.size > 0) { + logDebug("Completed %d containers".format(completedContainers.size)) + + for (completedContainer <- completedContainers) { + val containerId = completedContainer.getContainerId + + if (pendingReleaseContainers.containsKey(containerId)) { + // YarnAllocationHandler already marked the container for release, so remove it from + // `pendingReleaseContainers`. + pendingReleaseContainers.remove(containerId) + } else { + // Decrement the number of workers running. The next iteration of the ApplicationMaster's + // reporting thread will take care of allocating. + numWorkersRunning.decrementAndGet() + logInfo("Completed container %s (state: %s, exit status: %s)".format( + containerId, + completedContainer.getState, + completedContainer.getExitStatus())) + // Hadoop 2.2.X added a ContainerExitStatus we should switch to use + // there are some exit status' we shouldn't necessarily count against us, but for + // now I think its ok as none of the containers are expected to exit + if (completedContainer.getExitStatus() != 0) { + logInfo("Container marked as failed: " + containerId) + numWorkersFailed.incrementAndGet() + } + } + + allocatedHostToContainersMap.synchronized { + if (allocatedContainerToHostMap.containsKey(containerId)) { + val hostOpt = allocatedContainerToHostMap.get(containerId) + assert(hostOpt.isDefined) + val host = hostOpt.get + + val containerSetOpt = allocatedHostToContainersMap.get(host) + assert(containerSetOpt.isDefined) + val containerSet = containerSetOpt.get + + containerSet.remove(containerId) + if (containerSet.isEmpty) { + allocatedHostToContainersMap.remove(host) + } else { + allocatedHostToContainersMap.update(host, containerSet) + } + + allocatedContainerToHostMap.remove(containerId) + + // TODO: Move this part outside the synchronized block? + val rack = YarnAllocationHandler.lookupRack(conf, host) + if (rack != null) { + val rackCount = allocatedRackCount.getOrElse(rack, 0) - 1 + if (rackCount > 0) { + allocatedRackCount.put(rack, rackCount) + } else { + allocatedRackCount.remove(rack) + } + } + } + } + } + logDebug(""" + Finished processing %d completed containers. + Current number of workers running: %d, + releasedContainerList: %s, + pendingReleaseContainers: %s + """.format( + completedContainers.size, + numWorkersRunning.get(), + releasedContainerList, + pendingReleaseContainers)) + } + } + + def createRackResourceRequests( + hostContainers: ArrayBuffer[ContainerRequest] + ): ArrayBuffer[ContainerRequest] = { + // Generate modified racks and new set of hosts under it before issuing requests. + val rackToCounts = new HashMap[String, Int]() + + for (container <- hostContainers) { + val candidateHost = container.getNodes.last + assert(YarnAllocationHandler.ANY_HOST != candidateHost) + + val rack = YarnAllocationHandler.lookupRack(conf, candidateHost) + if (rack != null) { + var count = rackToCounts.getOrElse(rack, 0) + count += 1 + rackToCounts.put(rack, count) + } + } + + val requestedContainers = new ArrayBuffer[ContainerRequest](rackToCounts.size) + for ((rack, count) <- rackToCounts) { + requestedContainers ++= createResourceRequests( + AllocationType.RACK, + rack, + count, + YarnAllocationHandler.PRIORITY) + } + + requestedContainers + } + + def allocatedContainersOnHost(host: String): Int = { + var retval = 0 + allocatedHostToContainersMap.synchronized { + retval = allocatedHostToContainersMap.getOrElse(host, Set()).size + } + retval + } + + def allocatedContainersOnRack(rack: String): Int = { + var retval = 0 + allocatedHostToContainersMap.synchronized { + retval = allocatedRackCount.getOrElse(rack, 0) + } + retval + } + + def addResourceRequests(numWorkers: Int) { + val containerRequests: List[ContainerRequest] = + if (numWorkers <= 0 || preferredHostToCount.isEmpty) { + logDebug("numWorkers: " + numWorkers + ", host preferences: " + + preferredHostToCount.isEmpty) + createResourceRequests( + AllocationType.ANY, + resource = null, + numWorkers, + YarnAllocationHandler.PRIORITY).toList + } else { + // Request for all hosts in preferred nodes and for numWorkers - + // candidates.size, request by default allocation policy. + val hostContainerRequests = new ArrayBuffer[ContainerRequest](preferredHostToCount.size) + for ((candidateHost, candidateCount) <- preferredHostToCount) { + val requiredCount = candidateCount - allocatedContainersOnHost(candidateHost) + + if (requiredCount > 0) { + hostContainerRequests ++= createResourceRequests( + AllocationType.HOST, + candidateHost, + requiredCount, + YarnAllocationHandler.PRIORITY) + } + } + val rackContainerRequests: List[ContainerRequest] = createRackResourceRequests( + hostContainerRequests).toList + + val anyContainerRequests = createResourceRequests( + AllocationType.ANY, + resource = null, + numWorkers, + YarnAllocationHandler.PRIORITY) + + val containerRequestBuffer = new ArrayBuffer[ContainerRequest]( + hostContainerRequests.size + rackContainerRequests.size() + anyContainerRequests.size) + + containerRequestBuffer ++= hostContainerRequests + containerRequestBuffer ++= rackContainerRequests + containerRequestBuffer ++= anyContainerRequests + containerRequestBuffer.toList + } + + for (request <- containerRequests) { + amClient.addContainerRequest(request) + } + + if (numWorkers > 0) { + numPendingAllocate.addAndGet(numWorkers) + logInfo("Will Allocate %d worker containers, each with %d memory".format( + numWorkers, + (workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD))) + } else { + logDebug("Empty allocation request ...") + } + + for (request <- containerRequests) { + val nodes = request.getNodes + var hostStr = if (nodes == null || nodes.isEmpty) { + "Any" + } else { + nodes.last + } + logInfo("Container request (host: %s, priority: %s, capability: %s".format( + hostStr, + request.getPriority().getPriority, + request.getCapability)) + } + } + + private def createResourceRequests( + requestType: AllocationType.AllocationType, + resource: String, + numWorkers: Int, + priority: Int + ): ArrayBuffer[ContainerRequest] = { + + // If hostname is specified, then we need at least two requests - node local and rack local. + // There must be a third request, which is ANY. That will be specially handled. + requestType match { + case AllocationType.HOST => { + assert(YarnAllocationHandler.ANY_HOST != resource) + val hostname = resource + val nodeLocal = constructContainerRequests( + Array(hostname), + racks = null, + numWorkers, + priority) + + // Add `hostname` to the global (singleton) host->rack mapping in YarnAllocationHandler. + YarnAllocationHandler.populateRackInfo(conf, hostname) + nodeLocal + } + case AllocationType.RACK => { + val rack = resource + constructContainerRequests(hosts = null, Array(rack), numWorkers, priority) + } + case AllocationType.ANY => constructContainerRequests( + hosts = null, racks = null, numWorkers, priority) + case _ => throw new IllegalArgumentException( + "Unexpected/unsupported request type: " + requestType) + } + } + + private def constructContainerRequests( + hosts: Array[String], + racks: Array[String], + numWorkers: Int, + priority: Int + ): ArrayBuffer[ContainerRequest] = { + + val memoryResource = Records.newRecord(classOf[Resource]) + memoryResource.setMemory(workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD) + + val prioritySetting = Records.newRecord(classOf[Priority]) + prioritySetting.setPriority(priority) + + val requests = new ArrayBuffer[ContainerRequest]() + for (i <- 0 until numWorkers) { + requests += new ContainerRequest(memoryResource, hosts, racks, prioritySetting) + } + requests + } +} + +object YarnAllocationHandler { + + val ANY_HOST = "*" + // All requests are issued with same priority : we do not (yet) have any distinction between + // request types (like map/reduce in hadoop for example) + val PRIORITY = 1 + + // Additional memory overhead - in mb. + val MEMORY_OVERHEAD = 384 + + // Host to rack map - saved from allocation requests. We are expecting this not to change. + // Note that it is possible for this to change : and ResurceManager will indicate that to us via + // update response to allocate. But we are punting on handling that for now. + private val hostToRack = new ConcurrentHashMap[String, String]() + private val rackToHostSet = new ConcurrentHashMap[String, JSet[String]]() + + + def newAllocator( + conf: Configuration, + amClient: AMRMClient[ContainerRequest], + appAttemptId: ApplicationAttemptId, + args: ApplicationMasterArguments + ): YarnAllocationHandler = { + new YarnAllocationHandler( + conf, + amClient, + appAttemptId, + args.numWorkers, + args.workerMemory, + args.workerCores, + Map[String, Int](), + Map[String, Int]()) + } + + def newAllocator( + conf: Configuration, + amClient: AMRMClient[ContainerRequest], + appAttemptId: ApplicationAttemptId, + args: ApplicationMasterArguments, + map: collection.Map[String, + collection.Set[SplitInfo]] + ): YarnAllocationHandler = { + val (hostToSplitCount, rackToSplitCount) = generateNodeToWeight(conf, map) + new YarnAllocationHandler( + conf, + amClient, + appAttemptId, + args.numWorkers, + args.workerMemory, + args.workerCores, + hostToSplitCount, + rackToSplitCount) + } + + def newAllocator( + conf: Configuration, + amClient: AMRMClient[ContainerRequest], + appAttemptId: ApplicationAttemptId, + maxWorkers: Int, + workerMemory: Int, + workerCores: Int, + map: collection.Map[String, collection.Set[SplitInfo]] + ): YarnAllocationHandler = { + val (hostToCount, rackToCount) = generateNodeToWeight(conf, map) + new YarnAllocationHandler( + conf, + amClient, + appAttemptId, + maxWorkers, + workerMemory, + workerCores, + hostToCount, + rackToCount) + } + + // A simple method to copy the split info map. + private def generateNodeToWeight( + conf: Configuration, + input: collection.Map[String, collection.Set[SplitInfo]] + ): (Map[String, Int], Map[String, Int]) = { + + if (input == null) { + return (Map[String, Int](), Map[String, Int]()) + } + + val hostToCount = new HashMap[String, Int] + val rackToCount = new HashMap[String, Int] + + for ((host, splits) <- input) { + val hostCount = hostToCount.getOrElse(host, 0) + hostToCount.put(host, hostCount + splits.size) + + val rack = lookupRack(conf, host) + if (rack != null){ + val rackCount = rackToCount.getOrElse(host, 0) + rackToCount.put(host, rackCount + splits.size) + } + } + + (hostToCount.toMap, rackToCount.toMap) + } + + def lookupRack(conf: Configuration, host: String): String = { + if (!hostToRack.contains(host)) { + populateRackInfo(conf, host) + } + hostToRack.get(host) + } + + def fetchCachedHostsForRack(rack: String): Option[Set[String]] = { + Option(rackToHostSet.get(rack)).map { set => + val convertedSet: collection.mutable.Set[String] = set + // TODO: Better way to get a Set[String] from JSet. + convertedSet.toSet + } + } + + def populateRackInfo(conf: Configuration, hostname: String) { + Utils.checkHost(hostname) + + if (!hostToRack.containsKey(hostname)) { + // If there are repeated failures to resolve, all to an ignore list. + val rackInfo = RackResolver.resolve(conf, hostname) + if (rackInfo != null && rackInfo.getNetworkLocation != null) { + val rack = rackInfo.getNetworkLocation + hostToRack.put(hostname, rack) + if (! rackToHostSet.containsKey(rack)) { + rackToHostSet.putIfAbsent(rack, + Collections.newSetFromMap(new ConcurrentHashMap[String, JBoolean]())) + } + rackToHostSet.get(rack).add(hostname) + + // TODO(harvey): Figure out what this comment means... + // Since RackResolver caches, we are disabling this for now ... + } /* else { + // right ? Else we will keep calling rack resolver in case we cant resolve rack info ... + hostToRack.put(hostname, null) + } */ + } + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala new file mode 100644 index 0000000000000..2ba2366ead171 --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala @@ -0,0 +1,43 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import org.apache.spark.deploy.SparkHadoopUtil +import org.apache.hadoop.mapred.JobConf +import org.apache.hadoop.security.UserGroupInformation +import org.apache.hadoop.yarn.conf.YarnConfiguration +import org.apache.hadoop.conf.Configuration + +/** + * Contains util methods to interact with Hadoop from spark. + */ +class YarnSparkHadoopUtil extends SparkHadoopUtil { + + // Note that all params which start with SPARK are propagated all the way through, so if in yarn mode, this MUST be set to true. + override def isYarnMode(): Boolean = { true } + + // Return an appropriate (subclass) of Configuration. Creating config can initializes some hadoop subsystems + // Always create a new config, dont reuse yarnConf. + override def newConfiguration(): Configuration = new YarnConfiguration(new Configuration()) + + // add any user credentials to the job conf which are necessary for running on a secure Hadoop cluster + override def addCredentials(conf: JobConf) { + val jobCreds = conf.getCredentials() + jobCreds.mergeAll(UserGroupInformation.getCurrentUser().getCredentials()) + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientClusterScheduler.scala b/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientClusterScheduler.scala new file mode 100644 index 0000000000000..63a0449e5a073 --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientClusterScheduler.scala @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.scheduler.cluster + +import org.apache.spark._ +import org.apache.hadoop.conf.Configuration +import org.apache.spark.deploy.yarn.YarnAllocationHandler +import org.apache.spark.util.Utils + +/** + * + * This scheduler launch worker through Yarn - by call into Client to launch WorkerLauncher as AM. + */ +private[spark] class YarnClientClusterScheduler(sc: SparkContext, conf: Configuration) extends ClusterScheduler(sc) { + + def this(sc: SparkContext) = this(sc, new Configuration()) + + // By default, rack is unknown + override def getRackForHost(hostPort: String): Option[String] = { + val host = Utils.parseHostPort(hostPort)._1 + val retval = YarnAllocationHandler.lookupRack(conf, host) + if (retval != null) Some(retval) else None + } + + override def postStartHook() { + + // The yarn application is running, but the worker might not yet ready + // Wait for a few seconds for the slaves to bootstrap and register with master - best case attempt + Thread.sleep(2000L) + logInfo("YarnClientClusterScheduler.postStartHook done") + } +} diff --git a/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala b/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala new file mode 100644 index 0000000000000..b206780c7806e --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala @@ -0,0 +1,109 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.scheduler.cluster + +import org.apache.hadoop.yarn.api.records.{ApplicationId, YarnApplicationState} +import org.apache.spark.{SparkException, Logging, SparkContext} +import org.apache.spark.deploy.yarn.{Client, ClientArguments} + +private[spark] class YarnClientSchedulerBackend( + scheduler: ClusterScheduler, + sc: SparkContext) + extends CoarseGrainedSchedulerBackend(scheduler, sc.env.actorSystem) + with Logging { + + var client: Client = null + var appId: ApplicationId = null + + override def start() { + super.start() + + val defalutWorkerCores = "2" + val defalutWorkerMemory = "512m" + val defaultWorkerNumber = "1" + + val userJar = System.getenv("SPARK_YARN_APP_JAR") + var workerCores = System.getenv("SPARK_WORKER_CORES") + var workerMemory = System.getenv("SPARK_WORKER_MEMORY") + var workerNumber = System.getenv("SPARK_WORKER_INSTANCES") + + if (userJar == null) + throw new SparkException("env SPARK_YARN_APP_JAR is not set") + + if (workerCores == null) + workerCores = defalutWorkerCores + if (workerMemory == null) + workerMemory = defalutWorkerMemory + if (workerNumber == null) + workerNumber = defaultWorkerNumber + + val driverHost = System.getProperty("spark.driver.host") + val driverPort = System.getProperty("spark.driver.port") + val hostport = driverHost + ":" + driverPort + + val argsArray = Array[String]( + "--class", "notused", + "--jar", userJar, + "--args", hostport, + "--worker-memory", workerMemory, + "--worker-cores", workerCores, + "--num-workers", workerNumber, + "--master-class", "org.apache.spark.deploy.yarn.WorkerLauncher" + ) + + val args = new ClientArguments(argsArray) + client = new Client(args) + appId = client.runApp() + waitForApp() + } + + def waitForApp() { + + // TODO : need a better way to find out whether the workers are ready or not + // maybe by resource usage report? + while(true) { + val report = client.getApplicationReport(appId) + + logInfo("Application report from ASM: \n" + + "\t appMasterRpcPort: " + report.getRpcPort() + "\n" + + "\t appStartTime: " + report.getStartTime() + "\n" + + "\t yarnAppState: " + report.getYarnApplicationState() + "\n" + ) + + // Ready to go, or already gone. + val state = report.getYarnApplicationState() + if (state == YarnApplicationState.RUNNING) { + return + } else if (state == YarnApplicationState.FINISHED || + state == YarnApplicationState.FAILED || + state == YarnApplicationState.KILLED) { + throw new SparkException("Yarn application already ended," + + "might be killed or not able to launch application master.") + } + + Thread.sleep(1000) + } + } + + override def stop() { + super.stop() + client.stop() + logInfo("Stoped") + } + +} diff --git a/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterScheduler.scala b/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterScheduler.scala new file mode 100644 index 0000000000000..29b3f22e13697 --- /dev/null +++ b/new-yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClusterScheduler.scala @@ -0,0 +1,55 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.scheduler.cluster + +import org.apache.spark._ +import org.apache.spark.deploy.yarn.{ApplicationMaster, YarnAllocationHandler} +import org.apache.spark.util.Utils +import org.apache.hadoop.conf.Configuration + +/** + * + * This is a simple extension to ClusterScheduler - to ensure that appropriate initialization of ApplicationMaster, etc is done + */ +private[spark] class YarnClusterScheduler(sc: SparkContext, conf: Configuration) extends ClusterScheduler(sc) { + + logInfo("Created YarnClusterScheduler") + + def this(sc: SparkContext) = this(sc, new Configuration()) + + // Nothing else for now ... initialize application master : which needs sparkContext to determine how to allocate + // Note that only the first creation of SparkContext influences (and ideally, there must be only one SparkContext, right ?) + // Subsequent creations are ignored - since nodes are already allocated by then. + + + // By default, rack is unknown + override def getRackForHost(hostPort: String): Option[String] = { + val host = Utils.parseHostPort(hostPort)._1 + val retval = YarnAllocationHandler.lookupRack(conf, host) + if (retval != null) Some(retval) else None + } + + override def postStartHook() { + val sparkContextInitialized = ApplicationMaster.sparkContextInitialized(sc) + if (sparkContextInitialized){ + // Wait for a few seconds for the slaves to bootstrap and register with master - best case attempt + Thread.sleep(3000L) + } + logInfo("YarnClusterScheduler.postStartHook done") + } +} diff --git a/new-yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManagerSuite.scala b/new-yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManagerSuite.scala new file mode 100644 index 0000000000000..2941356bc55f9 --- /dev/null +++ b/new-yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManagerSuite.scala @@ -0,0 +1,220 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.net.URI + +import org.scalatest.FunSuite +import org.scalatest.mock.MockitoSugar +import org.mockito.Mockito.when + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.fs.FileStatus +import org.apache.hadoop.fs.FileSystem +import org.apache.hadoop.fs.Path +import org.apache.hadoop.fs.permission.FsAction +import org.apache.hadoop.yarn.api.records.LocalResource +import org.apache.hadoop.yarn.api.records.LocalResourceVisibility +import org.apache.hadoop.yarn.api.records.LocalResourceType +import org.apache.hadoop.yarn.util.{Records, ConverterUtils} + +import scala.collection.mutable.HashMap +import scala.collection.mutable.Map + + +class ClientDistributedCacheManagerSuite extends FunSuite with MockitoSugar { + + class MockClientDistributedCacheManager extends ClientDistributedCacheManager { + override def getVisibility(conf: Configuration, uri: URI, statCache: Map[URI, FileStatus]): + LocalResourceVisibility = { + return LocalResourceVisibility.PRIVATE + } + } + + test("test getFileStatus empty") { + val distMgr = new ClientDistributedCacheManager() + val fs = mock[FileSystem] + val uri = new URI("/tmp/testing") + when(fs.getFileStatus(new Path(uri))).thenReturn(new FileStatus()) + val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() + val stat = distMgr.getFileStatus(fs, uri, statCache) + assert(stat.getPath() === null) + } + + test("test getFileStatus cached") { + val distMgr = new ClientDistributedCacheManager() + val fs = mock[FileSystem] + val uri = new URI("/tmp/testing") + val realFileStatus = new FileStatus(10, false, 1, 1024, 10, 10, null, "testOwner", + null, new Path("/tmp/testing")) + when(fs.getFileStatus(new Path(uri))).thenReturn(new FileStatus()) + val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus](uri -> realFileStatus) + val stat = distMgr.getFileStatus(fs, uri, statCache) + assert(stat.getPath().toString() === "/tmp/testing") + } + + test("test addResource") { + val distMgr = new MockClientDistributedCacheManager() + val fs = mock[FileSystem] + val conf = new Configuration() + val destPath = new Path("file:///foo.invalid.com:8080/tmp/testing") + val localResources = HashMap[String, LocalResource]() + val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() + when(fs.getFileStatus(destPath)).thenReturn(new FileStatus()) + + distMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.FILE, "link", + statCache, false) + val resource = localResources("link") + assert(resource.getVisibility() === LocalResourceVisibility.PRIVATE) + assert(ConverterUtils.getPathFromYarnURL(resource.getResource()) === destPath) + assert(resource.getTimestamp() === 0) + assert(resource.getSize() === 0) + assert(resource.getType() === LocalResourceType.FILE) + + val env = new HashMap[String, String]() + distMgr.setDistFilesEnv(env) + assert(env("SPARK_YARN_CACHE_FILES") === "file:/foo.invalid.com:8080/tmp/testing#link") + assert(env("SPARK_YARN_CACHE_FILES_TIME_STAMPS") === "0") + assert(env("SPARK_YARN_CACHE_FILES_FILE_SIZES") === "0") + assert(env("SPARK_YARN_CACHE_FILES_VISIBILITIES") === LocalResourceVisibility.PRIVATE.name()) + + distMgr.setDistArchivesEnv(env) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES") === None) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS") === None) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES") === None) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES") === None) + + //add another one and verify both there and order correct + val realFileStatus = new FileStatus(20, false, 1, 1024, 10, 30, null, "testOwner", + null, new Path("/tmp/testing2")) + val destPath2 = new Path("file:///foo.invalid.com:8080/tmp/testing2") + when(fs.getFileStatus(destPath2)).thenReturn(realFileStatus) + distMgr.addResource(fs, conf, destPath2, localResources, LocalResourceType.FILE, "link2", + statCache, false) + val resource2 = localResources("link2") + assert(resource2.getVisibility() === LocalResourceVisibility.PRIVATE) + assert(ConverterUtils.getPathFromYarnURL(resource2.getResource()) === destPath2) + assert(resource2.getTimestamp() === 10) + assert(resource2.getSize() === 20) + assert(resource2.getType() === LocalResourceType.FILE) + + val env2 = new HashMap[String, String]() + distMgr.setDistFilesEnv(env2) + val timestamps = env2("SPARK_YARN_CACHE_FILES_TIME_STAMPS").split(',') + val files = env2("SPARK_YARN_CACHE_FILES").split(',') + val sizes = env2("SPARK_YARN_CACHE_FILES_FILE_SIZES").split(',') + val visibilities = env2("SPARK_YARN_CACHE_FILES_VISIBILITIES") .split(',') + assert(files(0) === "file:/foo.invalid.com:8080/tmp/testing#link") + assert(timestamps(0) === "0") + assert(sizes(0) === "0") + assert(visibilities(0) === LocalResourceVisibility.PRIVATE.name()) + + assert(files(1) === "file:/foo.invalid.com:8080/tmp/testing2#link2") + assert(timestamps(1) === "10") + assert(sizes(1) === "20") + assert(visibilities(1) === LocalResourceVisibility.PRIVATE.name()) + } + + test("test addResource link null") { + val distMgr = new MockClientDistributedCacheManager() + val fs = mock[FileSystem] + val conf = new Configuration() + val destPath = new Path("file:///foo.invalid.com:8080/tmp/testing") + val localResources = HashMap[String, LocalResource]() + val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() + when(fs.getFileStatus(destPath)).thenReturn(new FileStatus()) + + intercept[Exception] { + distMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.FILE, null, + statCache, false) + } + assert(localResources.get("link") === None) + assert(localResources.size === 0) + } + + test("test addResource appmaster only") { + val distMgr = new MockClientDistributedCacheManager() + val fs = mock[FileSystem] + val conf = new Configuration() + val destPath = new Path("file:///foo.invalid.com:8080/tmp/testing") + val localResources = HashMap[String, LocalResource]() + val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() + val realFileStatus = new FileStatus(20, false, 1, 1024, 10, 30, null, "testOwner", + null, new Path("/tmp/testing")) + when(fs.getFileStatus(destPath)).thenReturn(realFileStatus) + + distMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.ARCHIVE, "link", + statCache, true) + val resource = localResources("link") + assert(resource.getVisibility() === LocalResourceVisibility.PRIVATE) + assert(ConverterUtils.getPathFromYarnURL(resource.getResource()) === destPath) + assert(resource.getTimestamp() === 10) + assert(resource.getSize() === 20) + assert(resource.getType() === LocalResourceType.ARCHIVE) + + val env = new HashMap[String, String]() + distMgr.setDistFilesEnv(env) + assert(env.get("SPARK_YARN_CACHE_FILES") === None) + assert(env.get("SPARK_YARN_CACHE_FILES_TIME_STAMPS") === None) + assert(env.get("SPARK_YARN_CACHE_FILES_FILE_SIZES") === None) + assert(env.get("SPARK_YARN_CACHE_FILES_VISIBILITIES") === None) + + distMgr.setDistArchivesEnv(env) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES") === None) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS") === None) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES") === None) + assert(env.get("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES") === None) + } + + test("test addResource archive") { + val distMgr = new MockClientDistributedCacheManager() + val fs = mock[FileSystem] + val conf = new Configuration() + val destPath = new Path("file:///foo.invalid.com:8080/tmp/testing") + val localResources = HashMap[String, LocalResource]() + val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() + val realFileStatus = new FileStatus(20, false, 1, 1024, 10, 30, null, "testOwner", + null, new Path("/tmp/testing")) + when(fs.getFileStatus(destPath)).thenReturn(realFileStatus) + + distMgr.addResource(fs, conf, destPath, localResources, LocalResourceType.ARCHIVE, "link", + statCache, false) + val resource = localResources("link") + assert(resource.getVisibility() === LocalResourceVisibility.PRIVATE) + assert(ConverterUtils.getPathFromYarnURL(resource.getResource()) === destPath) + assert(resource.getTimestamp() === 10) + assert(resource.getSize() === 20) + assert(resource.getType() === LocalResourceType.ARCHIVE) + + val env = new HashMap[String, String]() + + distMgr.setDistArchivesEnv(env) + assert(env("SPARK_YARN_CACHE_ARCHIVES") === "file:/foo.invalid.com:8080/tmp/testing#link") + assert(env("SPARK_YARN_CACHE_ARCHIVES_TIME_STAMPS") === "10") + assert(env("SPARK_YARN_CACHE_ARCHIVES_FILE_SIZES") === "20") + assert(env("SPARK_YARN_CACHE_ARCHIVES_VISIBILITIES") === LocalResourceVisibility.PRIVATE.name()) + + distMgr.setDistFilesEnv(env) + assert(env.get("SPARK_YARN_CACHE_FILES") === None) + assert(env.get("SPARK_YARN_CACHE_FILES_TIME_STAMPS") === None) + assert(env.get("SPARK_YARN_CACHE_FILES_FILE_SIZES") === None) + assert(env.get("SPARK_YARN_CACHE_FILES_VISIBILITIES") === None) + } + + +} diff --git a/pom.xml b/pom.xml index 0d89a357483c5..f85a3b5fd3e47 100644 --- a/pom.xml +++ b/pom.xml @@ -102,8 +102,10 @@ 1.5 2.9.3 0.13.0 + com.typesafe.akka 2.0.5 1.7.5 + 2.4.1 1.2.17 4.1.2 cdh${cdh.version} @@ -204,6 +206,145 @@ commons-io 2.4 + + org.apache.spark + spark-core_2.9.3 + ${project.version} + + + + com.typesafe.akka + akka-actor + + + com.typesafe.akka + akka-remote + + + com.typesafe.akka + akka-slf4j + + + com.typesafe.akka + akka-zeromq + + + + + org.apache.spark + spark-bagel_2.9.3 + ${project.version} + + + com.typesafe.akka + akka-actor + + + com.typesafe.akka + akka-remote + + + com.typesafe.akka + akka-slf4j + + + com.typesafe.akka + akka-zeromq + + + + + org.apache.spark + spark-mllib_2.9.3 + ${project.version} + + + com.typesafe.akka + akka-actor + + + com.typesafe.akka + akka-remote + + + com.typesafe.akka + akka-slf4j + + + com.typesafe.akka + akka-zeromq + + + + + org.apache.spark + spark-repl_2.9.3 + ${project.version} + + + com.typesafe.akka + akka-actor + + + com.typesafe.akka + akka-remote + + + com.typesafe.akka + akka-slf4j + + + com.typesafe.akka + akka-zeromq + + + + + org.apache.spark + spark-streaming_2.9.3 + ${project.version} + + + com.typesafe.akka + akka-actor + + + com.typesafe.akka + akka-remote + + + com.typesafe.akka + akka-slf4j + + + com.typesafe.akka + akka-zeromq + + + + + org.apache.spark + spark-yarn_2.9.3 + ${project.version} + + + com.typesafe.akka + akka-actor + + + com.typesafe.akka + akka-remote + + + com.typesafe.akka + akka-slf4j + + + com.typesafe.akka + akka-zeromq + + + org.eclipse.jetty jetty-server @@ -257,7 +398,7 @@ com.google.protobuf protobuf-java - 2.4.1 + ${protobuf.version} com.twitter @@ -270,20 +411,31 @@ 0.3.1 - com.typesafe.akka + ${akka.group} akka-actor ${akka.version} - com.typesafe.akka + ${akka.group} akka-remote ${akka.version} - com.typesafe.akka + ${akka.group} akka-slf4j ${akka.version} + + ${akka.group} + akka-zeromq + ${akka.version} + + + org.jboss.netty + netty + + + it.unimi.dsi fastutil @@ -294,11 +446,6 @@ colt 1.2.0 - - com.github.scala-incubator.io - scala-io-file_2.9.2 - 0.4.1 - org.apache.mesos mesos @@ -791,6 +938,41 @@
+ + + new-yarn + + org.spark-project + 2.0.5-protobuf-2.5-java-1.5 + 2 + 2.2.0 + 2.5.0 + + + + new-yarn + + + + + maven-root + Maven root repository + http://repo1.maven.org/maven2/ + + true + + + false + + + + + + + + + + repl-bin diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index 660f0e2eff822..03d4cae759bbf 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -28,6 +28,11 @@ object SparkBuild extends Build { // "2.0.0-mr1-cdh4.2.0" for Cloudera Hadoop. Note that these variables can be set // through the environment variables SPARK_HADOOP_VERSION and SPARK_YARN. val DEFAULT_HADOOP_VERSION = "1.0.4" + + // Whether the Hadoop version to build against is 2.2.x, or a variant of it. This can be set + // through the SPARK_IS_NEW_HADOOP environment variable. + val DEFAULT_IS_NEW_HADOOP = false + val DEFAULT_YARN = false // HBase version; set as appropriate. @@ -55,8 +60,6 @@ object SparkBuild extends Build { lazy val mllib = Project("mllib", file("mllib"), settings = mllibSettings) dependsOn(core) - lazy val yarn = Project("yarn", file("yarn"), settings = yarnSettings) dependsOn(core) - lazy val assemblyProj = Project("assembly", file("assembly"), settings = assemblyProjSettings) .dependsOn(core, bagel, mllib, repl, streaming) dependsOn(maybeYarn: _*) @@ -66,14 +69,28 @@ object SparkBuild extends Build { // Allows build configuration to be set through environment variables lazy val hadoopVersion = scala.util.Properties.envOrElse("SPARK_HADOOP_VERSION", DEFAULT_HADOOP_VERSION) + lazy val isNewHadoop = scala.util.Properties.envOrNone("SPARK_IS_NEW_HADOOP") match { + case None => { + val isNewHadoopVersion = "2.[2-9]+".r.findFirstIn(hadoopVersion).isDefined + (isNewHadoopVersion|| DEFAULT_IS_NEW_HADOOP) + } + case Some(v) => v.toBoolean + } lazy val isYarnEnabled = scala.util.Properties.envOrNone("SPARK_YARN") match { case None => DEFAULT_YARN case Some(v) => v.toBoolean } + // Build against a protobuf-2.5 compatible Akka if Hadoop 2 is used. + lazy val protobufVersion = if (isNewHadoop) "2.5.0" else "2.4.1" + lazy val akkaVersion = if (isNewHadoop) "2.0.5-protobuf-2.5-java-1.5" else "2.0.5" + lazy val akkaGroup = if (isNewHadoop) "org.spark-project" else "com.typesafe.akka" + // Conditionally include the yarn sub-project - lazy val maybeYarn = if(isYarnEnabled) Seq[ClasspathDependency](yarn) else Seq[ClasspathDependency]() - lazy val maybeYarnRef = if(isYarnEnabled) Seq[ProjectReference](yarn) else Seq[ProjectReference]() + lazy val yarn = Project("yarn", file(if (isNewHadoop) "new-yarn" else "yarn"), settings = yarnSettings) dependsOn(core) + lazy val maybeYarn = if (isYarnEnabled) Seq[ClasspathDependency](yarn) else Seq[ClasspathDependency]() + lazy val maybeYarnRef = if (isYarnEnabled) Seq[ProjectReference](yarn) else Seq[ProjectReference]() + lazy val allProjects = Seq[ProjectReference]( core, repl, examples, bagel, streaming, mllib, tools, assemblyProj) ++ maybeYarnRef @@ -203,10 +220,10 @@ object SparkBuild extends Build { "com.ning" % "compress-lzf" % "0.8.4", "org.xerial.snappy" % "snappy-java" % "1.0.5", "org.ow2.asm" % "asm" % "4.0", - "com.google.protobuf" % "protobuf-java" % "2.4.1", - "com.typesafe.akka" % "akka-actor" % "2.0.5" excludeAll(excludeNetty), - "com.typesafe.akka" % "akka-remote" % "2.0.5" excludeAll(excludeNetty), - "com.typesafe.akka" % "akka-slf4j" % "2.0.5" excludeAll(excludeNetty), + "com.google.protobuf" % "protobuf-java" % protobufVersion, + akkaGroup % "akka-actor" % akkaVersion excludeAll(excludeNetty), + akkaGroup % "akka-remote" % akkaVersion excludeAll(excludeNetty), + akkaGroup % "akka-slf4j" % akkaVersion excludeAll(excludeNetty), "it.unimi.dsi" % "fastutil" % "6.4.4", "colt" % "colt" % "1.2.0", "net.liftweb" % "lift-json_2.9.2" % "2.5", @@ -280,7 +297,7 @@ object SparkBuild extends Build { "org.apache.flume" % "flume-ng-sdk" % "1.2.0" % "compile" excludeAll(excludeNetty, excludeSnappy), "com.github.sgroschupf" % "zkclient" % "0.1" excludeAll(excludeNetty), "org.twitter4j" % "twitter4j-stream" % "3.0.3" excludeAll(excludeNetty), - "com.typesafe.akka" % "akka-zeromq" % "2.0.5" excludeAll(excludeNetty) + akkaGroup % "akka-zeromq" % akkaVersion excludeAll(excludeNetty) ) ) diff --git a/python/test_support/userlibrary.py b/python/test_support/userlibrary.py index 5bb6f5009ffbb..8e4a6292bc17c 100755 --- a/python/test_support/userlibrary.py +++ b/python/test_support/userlibrary.py @@ -1,3 +1,20 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + """ Used to test shipping of code depenencies with SparkContext.addPyFile(). """ diff --git a/repl/pom.xml b/repl/pom.xml index 70ba9f6d0749b..0b1496c8ca77d 100644 --- a/repl/pom.xml +++ b/repl/pom.xml @@ -37,6 +37,18 @@ + + ${akka.group} + akka-actor + + + ${akka.group} + akka-remote + + + ${akka.group} + akka-slf4j + org.apache.spark spark-core_2.9.3 diff --git a/streaming/pom.xml b/streaming/pom.xml index bfb72e0664cfd..5f527551ecb68 100644 --- a/streaming/pom.xml +++ b/streaming/pom.xml @@ -40,6 +40,18 @@ + + ${akka.group} + akka-actor + + + ${akka.group} + akka-remote + + + ${akka.group} + akka-slf4j + org.apache.spark spark-core_2.9.3 @@ -86,9 +98,8 @@ scala-library - com.typesafe.akka + ${akka.group} akka-zeromq - 2.0.3 org.scalatest diff --git a/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala b/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala index 2d8f07262426f..74069860c0e6e 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/Checkpoint.scala @@ -92,7 +92,7 @@ class CheckpointWriter(checkpointDir: String) extends Logging { fs.delete(file, false) fs.rename(writeFile, file) - val finishTime = System.currentTimeMillis(); + val finishTime = System.currentTimeMillis() logInfo("Checkpoint for time " + checkpointTime + " saved to file '" + file + "', took " + bytes.length + " bytes and " + (finishTime - startTime) + " milliseconds") return @@ -122,7 +122,9 @@ class CheckpointWriter(checkpointDir: String) extends Logging { def stop() { synchronized { - if (stopped) return ; + if (stopped) { + return + } stopped = true } executor.shutdown() diff --git a/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala b/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala index cfc1c2628cb13..4f6d479401d61 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/api/java/JavaStreamingContext.scala @@ -17,7 +17,7 @@ package org.apache.spark.streaming.api.java -import java.lang.{Long => JLong, Integer => JInt} +import java.lang.{Integer => JInt} import java.io.InputStream import java.util.{Map => JMap, List => JList} @@ -33,10 +33,9 @@ import twitter4j.auth.Authorization import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel import org.apache.spark.api.java.function.{Function => JFunction, Function2 => JFunction2} -import org.apache.spark.api.java.{JavaPairRDD, JavaRDDLike, JavaSparkContext, JavaRDD} +import org.apache.spark.api.java.{JavaPairRDD, JavaSparkContext, JavaRDD} import org.apache.spark.streaming._ import org.apache.spark.streaming.dstream._ -import org.apache.spark.streaming.receivers.{ActorReceiver, ReceiverSupervisorStrategy} /** * A StreamingContext is the main entry point for Spark Streaming functionality. Besides the basic @@ -302,7 +301,7 @@ class JavaStreamingContext(val ssc: StreamingContext) { implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[V]] implicit val cmf: ClassManifest[F] = implicitly[ClassManifest[AnyRef]].asInstanceOf[ClassManifest[F]] - ssc.fileStream[K, V, F](directory); + ssc.fileStream[K, V, F](directory) } /** diff --git a/streaming/src/main/scala/org/apache/spark/streaming/dstream/FlumeInputDStream.scala b/streaming/src/main/scala/org/apache/spark/streaming/dstream/FlumeInputDStream.scala index 18de772946805..a0189eca043c6 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/dstream/FlumeInputDStream.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/dstream/FlumeInputDStream.scala @@ -137,8 +137,8 @@ class FlumeReceiver( protected override def onStart() { val responder = new SpecificResponder( - classOf[AvroSourceProtocol], new FlumeEventServer(this)); - val server = new NettyServer(responder, new InetSocketAddress(host, port)); + classOf[AvroSourceProtocol], new FlumeEventServer(this)) + val server = new NettyServer(responder, new InetSocketAddress(host, port)) blockGenerator.start() server.start() logInfo("Flume receiver started") diff --git a/streaming/src/test/scala/org/apache/spark/streaming/InputStreamsSuite.scala b/streaming/src/test/scala/org/apache/spark/streaming/InputStreamsSuite.scala index ca2da6816a139..f398263a10da5 100644 --- a/streaming/src/test/scala/org/apache/spark/streaming/InputStreamsSuite.scala +++ b/streaming/src/test/scala/org/apache/spark/streaming/InputStreamsSuite.scala @@ -124,9 +124,9 @@ class InputStreamsSuite extends TestSuiteBase with BeforeAndAfter { val clock = ssc.scheduler.clock.asInstanceOf[ManualClock] val input = Seq(1, 2, 3, 4, 5) Thread.sleep(1000) - val transceiver = new NettyTransceiver(new InetSocketAddress("localhost", testPort)); + val transceiver = new NettyTransceiver(new InetSocketAddress("localhost", testPort)) val client = SpecificRequestor.getClient( - classOf[AvroSourceProtocol], transceiver); + classOf[AvroSourceProtocol], transceiver) for (i <- 0 until input.size) { val event = new AvroFlumeEvent diff --git a/streaming/src/test/scala/org/apache/spark/streaming/TestSuiteBase.scala b/streaming/src/test/scala/org/apache/spark/streaming/TestSuiteBase.scala index be140699c2964..8c8c359e6e865 100644 --- a/streaming/src/test/scala/org/apache/spark/streaming/TestSuiteBase.scala +++ b/streaming/src/test/scala/org/apache/spark/streaming/TestSuiteBase.scala @@ -251,7 +251,7 @@ trait TestSuiteBase extends FunSuite with BeforeAndAfter with Logging { Thread.sleep(500) // Give some time for the forgetting old RDDs to complete } catch { - case e: Exception => e.printStackTrace(); throw e; + case e: Exception => {e.printStackTrace(); throw e} } finally { ssc.stop() } diff --git a/yarn/pom.xml b/yarn/pom.xml index b8d1a9594a299..6bd54aea4e9a0 100644 --- a/yarn/pom.xml +++ b/yarn/pom.xml @@ -31,6 +31,22 @@ http://spark.incubator.apache.org/ + + ${akka.group} + akka-actor + + + ${akka.group} + akka-remote + + + ${akka.group} + akka-slf4j + + + ${akka.group} + akka-zeromq + org.apache.spark spark-core_2.9.3 diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala index 4302ef4cda261..240ed8b32ae93 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala @@ -17,14 +17,17 @@ package org.apache.spark.deploy.yarn -import java.io.IOException; +import java.io.IOException import java.net.Socket -import java.security.PrivilegedExceptionAction import java.util.concurrent.CopyOnWriteArrayList import java.util.concurrent.atomic.{AtomicInteger, AtomicReference} + +import scala.collection.JavaConversions._ + import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{FileSystem, Path} import org.apache.hadoop.net.NetUtils +import org.apache.hadoop.security.UserGroupInformation import org.apache.hadoop.util.ShutdownHookManager import org.apache.hadoop.yarn.api._ import org.apache.hadoop.yarn.api.records._ @@ -32,47 +35,49 @@ import org.apache.hadoop.yarn.api.protocolrecords._ import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.hadoop.yarn.ipc.YarnRPC import org.apache.hadoop.yarn.util.{ConverterUtils, Records} + import org.apache.spark.{SparkContext, Logging} import org.apache.spark.util.Utils -import org.apache.hadoop.security.UserGroupInformation -import scala.collection.JavaConversions._ + class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) extends Logging { def this(args: ApplicationMasterArguments) = this(args, new Configuration()) private var rpc: YarnRPC = YarnRPC.create(conf) - private var resourceManager: AMRMProtocol = null - private var appAttemptId: ApplicationAttemptId = null - private var userThread: Thread = null + private var resourceManager: AMRMProtocol = _ + private var appAttemptId: ApplicationAttemptId = _ + private var userThread: Thread = _ private val yarnConf: YarnConfiguration = new YarnConfiguration(conf) private val fs = FileSystem.get(yarnConf) - private var yarnAllocator: YarnAllocationHandler = null - private var isFinished:Boolean = false - private var uiAddress: String = "" + private var yarnAllocator: YarnAllocationHandler = _ + private var isFinished: Boolean = false + private var uiAddress: String = _ private val maxAppAttempts: Int = conf.getInt(YarnConfiguration.RM_AM_MAX_RETRIES, YarnConfiguration.DEFAULT_RM_AM_MAX_RETRIES) private var isLastAMRetry: Boolean = true - + // default to numWorkers * 2, with minimum of 3 + private val maxNumWorkerFailures = System.getProperty("spark.yarn.max.worker.failures", + math.max(args.numWorkers * 2, 3).toString()).toInt def run() { - // setup the directories so things go to yarn approved directories rather - // then user specified and /tmp + // Setup the directories so things go to yarn approved directories rather + // then user specified and /tmp. System.setProperty("spark.local.dir", getLocalDirs()) - // use priority 30 as its higher then HDFS. Its same priority as MapReduce is using + // Use priority 30 as its higher then HDFS. Its same priority as MapReduce is using. ShutdownHookManager.get().addShutdownHook(new AppMasterShutdownHook(this), 30) appAttemptId = getApplicationAttemptId() - isLastAMRetry = appAttemptId.getAttemptId() >= maxAppAttempts; + isLastAMRetry = appAttemptId.getAttemptId() >= maxAppAttempts resourceManager = registerWithResourceManager() // Workaround until hadoop moves to something which has // https://issues.apache.org/jira/browse/HADOOP-8406 - fixed in (2.0.2-alpha but no 0.23 line) - // ignore result + // ignore result. // This does not, unfortunately, always work reliably ... but alleviates the bug a lot of times - // Hence args.workerCores = numCore disabled above. Any better option ? + // Hence args.workerCores = numCore disabled above. Any better option? // Compute number of threads for akka //val minimumMemory = appMasterResponse.getMinimumResourceCapability().getMemory() @@ -98,7 +103,7 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e waitForSparkContextInitialized() - // do this after spark master is up and SparkContext is created so that we can register UI Url + // Do this after spark master is up and SparkContext is created so that we can register UI Url val appMasterResponse: RegisterApplicationMasterResponse = registerApplicationMaster() // Allocate all containers @@ -117,12 +122,12 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e // LOCAL_DIRS => 2.X, YARN_LOCAL_DIRS => 0.23.X val localDirs = Option(System.getenv("YARN_LOCAL_DIRS")) .getOrElse(Option(System.getenv("LOCAL_DIRS")) - .getOrElse("")) + .getOrElse("")) if (localDirs.isEmpty()) { throw new Exception("Yarn Local dirs can't be empty") } - return localDirs + localDirs } private def getApplicationAttemptId(): ApplicationAttemptId = { @@ -131,7 +136,7 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e val containerId = ConverterUtils.toContainerId(containerIdString) val appAttemptId = containerId.getApplicationAttemptId() logInfo("ApplicationAttemptId: " + appAttemptId) - return appAttemptId + appAttemptId } private def registerWithResourceManager(): AMRMProtocol = { @@ -139,7 +144,7 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e YarnConfiguration.RM_SCHEDULER_ADDRESS, YarnConfiguration.DEFAULT_RM_SCHEDULER_ADDRESS)) logInfo("Connecting to ResourceManager at " + rmAddress) - return rpc.getProxy(classOf[AMRMProtocol], rmAddress, conf).asInstanceOf[AMRMProtocol] + rpc.getProxy(classOf[AMRMProtocol], rmAddress, conf).asInstanceOf[AMRMProtocol] } private def registerApplicationMaster(): RegisterApplicationMasterResponse = { @@ -147,12 +152,13 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e val appMasterRequest = Records.newRecord(classOf[RegisterApplicationMasterRequest]) .asInstanceOf[RegisterApplicationMasterRequest] appMasterRequest.setApplicationAttemptId(appAttemptId) - // Setting this to master host,port - so that the ApplicationReport at client has some sensible info. + // Setting this to master host,port - so that the ApplicationReport at client has some + // sensible info. // Users can then monitor stderr/stdout on that node if required. appMasterRequest.setHost(Utils.localHostName()) appMasterRequest.setRpcPort(0) appMasterRequest.setTrackingUrl(uiAddress) - return resourceManager.registerApplicationMaster(appMasterRequest) + resourceManager.registerApplicationMaster(appMasterRequest) } private def waitForSparkMaster() { @@ -166,28 +172,32 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e try { val socket = new Socket(driverHost, driverPort.toInt) socket.close() - logInfo("Driver now available: " + driverHost + ":" + driverPort) + logInfo("Driver now available: %s:%s".format(driverHost, driverPort)) driverUp = true } catch { - case e: Exception => - logWarning("Failed to connect to driver at " + driverHost + ":" + driverPort + ", retrying") - Thread.sleep(100) - tries = tries + 1 + case e: Exception => { + logWarning("Failed to connect to driver at %s:%s, retrying ...". + format(driverHost, driverPort)) + Thread.sleep(100) + tries = tries + 1 + } } } } private def startUserClass(): Thread = { logInfo("Starting the user JAR in a separate Thread") - val mainMethod = Class.forName(args.userClass, false, Thread.currentThread.getContextClassLoader) - .getMethod("main", classOf[Array[String]]) + val mainMethod = Class.forName( + args.userClass, + false /* initialize */, + Thread.currentThread.getContextClassLoader).getMethod("main", classOf[Array[String]]) val t = new Thread { override def run() { var successed = false try { // Copy - var mainArgs: Array[String] = new Array[String](args.userArgs.size()) - args.userArgs.copyToArray(mainArgs, 0, args.userArgs.size()) + var mainArgs: Array[String] = new Array[String](args.userArgs.size) + args.userArgs.copyToArray(mainArgs, 0, args.userArgs.size) mainMethod.invoke(null, mainArgs) // some job script has "System.exit(0)" at the end, for example SparkPi, SparkLR // userThread will stop here unless it has uncaught exception thrown out @@ -195,7 +205,7 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e successed = true } finally { logDebug("finishing main") - isLastAMRetry = true; + isLastAMRetry = true if (successed) { ApplicationMaster.this.finishApplicationMaster(FinalApplicationStatus.SUCCEEDED) } else { @@ -205,7 +215,7 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e } } t.start() - return t + t } // this need to happen before allocateWorkers @@ -227,12 +237,20 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e if (null != sparkContext) { uiAddress = sparkContext.ui.appUIAddress - this.yarnAllocator = YarnAllocationHandler.newAllocator(yarnConf, resourceManager, appAttemptId, args, - sparkContext.preferredNodeLocationData) + this.yarnAllocator = YarnAllocationHandler.newAllocator( + yarnConf, + resourceManager, + appAttemptId, + args, + sparkContext.preferredNodeLocationData) } else { - logWarning("Unable to retrieve sparkContext inspite of waiting for " + count * waitTime + - ", numTries = " + numTries) - this.yarnAllocator = YarnAllocationHandler.newAllocator(yarnConf, resourceManager, appAttemptId, args) + logWarning("Unable to retrieve sparkContext inspite of waiting for %d, numTries = %d". + format(count * waitTime, numTries)) + this.yarnAllocator = YarnAllocationHandler.newAllocator( + yarnConf, + resourceManager, + appAttemptId, + args) } } } finally { @@ -248,44 +266,57 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e // Wait until all containers have finished // TODO: This is a bit ugly. Can we make it nicer? // TODO: Handle container failure - while(yarnAllocator.getNumWorkersRunning < args.numWorkers && - // If user thread exists, then quit ! - userThread.isAlive) { - this.yarnAllocator.allocateContainers(math.max(args.numWorkers - yarnAllocator.getNumWorkersRunning, 0)) - ApplicationMaster.incrementAllocatorLoop(1) - Thread.sleep(100) + // Exists the loop if the user thread exits. + while (yarnAllocator.getNumWorkersRunning < args.numWorkers && userThread.isAlive) { + if (yarnAllocator.getNumWorkersFailed >= maxNumWorkerFailures) { + finishApplicationMaster(FinalApplicationStatus.FAILED, + "max number of worker failures reached") + } + yarnAllocator.allocateContainers( + math.max(args.numWorkers - yarnAllocator.getNumWorkersRunning, 0)) + ApplicationMaster.incrementAllocatorLoop(1) + Thread.sleep(100) } } finally { - // in case of exceptions, etc - ensure that count is atleast ALLOCATOR_LOOP_WAIT_COUNT : - // so that the loop (in ApplicationMaster.sparkContextInitialized) breaks + // In case of exceptions, etc - ensure that count is at least ALLOCATOR_LOOP_WAIT_COUNT, + // so that the loop in ApplicationMaster#sparkContextInitialized() breaks. ApplicationMaster.incrementAllocatorLoop(ApplicationMaster.ALLOCATOR_LOOP_WAIT_COUNT) } logInfo("All workers have launched.") - // Launch a progress reporter thread, else app will get killed after expiration (def: 10mins) timeout + // Launch a progress reporter thread, else the app will get killed after expiration + // (def: 10mins) timeout. + // TODO(harvey): Verify the timeout if (userThread.isAlive) { - // ensure that progress is sent before YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS elapse. - + // Ensure that progress is sent before YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS elapses. val timeoutInterval = yarnConf.getInt(YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS, 120000) - // must be <= timeoutInterval/ 2. - // On other hand, also ensure that we are reasonably responsive without causing too many requests to RM. - // so atleast 1 minute or timeoutInterval / 10 - whichever is higher. - val interval = math.min(timeoutInterval / 2, math.max(timeoutInterval/ 10, 60000L)) + + // we want to be reasonably responsive without causing too many requests to RM. + val schedulerInterval = + System.getProperty("spark.yarn.scheduler.heartbeat.interval-ms", "5000").toLong + + // must be <= timeoutInterval / 2. + val interval = math.min(timeoutInterval / 2, schedulerInterval) + launchReporterThread(interval) } } - // TODO: We might want to extend this to allocate more containers in case they die ! private def launchReporterThread(_sleepTime: Long): Thread = { val sleepTime = if (_sleepTime <= 0 ) 0 else _sleepTime val t = new Thread { override def run() { while (userThread.isAlive) { + if (yarnAllocator.getNumWorkersFailed >= maxNumWorkerFailures) { + finishApplicationMaster(FinalApplicationStatus.FAILED, + "max number of worker failures reached") + } val missingWorkerCount = args.numWorkers - yarnAllocator.getNumWorkersRunning if (missingWorkerCount > 0) { - logInfo("Allocating " + missingWorkerCount + " containers to make up for (potentially ?) lost containers") + logInfo("Allocating %d containers to make up for (potentially) lost containers". + format(missingWorkerCount)) yarnAllocator.allocateContainers(missingWorkerCount) } else sendProgress() @@ -293,16 +324,16 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e } } } - // setting to daemon status, though this is usually not a good idea. + // Setting to daemon status, though this is usually not a good idea. t.setDaemon(true) t.start() logInfo("Started progress reporter thread - sleep time : " + sleepTime) - return t + t } private def sendProgress() { logDebug("Sending progress") - // simulated with an allocate request with no nodes requested ... + // Simulated with an allocate request with no nodes requested ... yarnAllocator.allocateContainers(0) } @@ -321,8 +352,7 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e } */ - def finishApplicationMaster(status: FinalApplicationStatus) { - + def finishApplicationMaster(status: FinalApplicationStatus, diagnostics: String = "") { synchronized { if (isFinished) { return @@ -335,14 +365,14 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e .asInstanceOf[FinishApplicationMasterRequest] finishReq.setAppAttemptId(appAttemptId) finishReq.setFinishApplicationStatus(status) - // set tracking url to empty since we don't have a history server + finishReq.setDiagnostics(diagnostics) + // Set tracking url to empty since we don't have a history server. finishReq.setTrackingUrl("") resourceManager.finishApplicationMaster(finishReq) - } /** - * clean up the staging directory. + * Clean up the staging directory. */ private def cleanupStagingDir() { var stagingDirPath: Path = null @@ -358,13 +388,12 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e fs.delete(stagingDirPath, true) } } catch { - case e: IOException => - logError("Failed to cleanup staging dir " + stagingDirPath, e) + case ioe: IOException => + logError("Failed to cleanup staging dir " + stagingDirPath, ioe) } } - // The shutdown hook that runs when a signal is received AND during normal - // close of the JVM. + // The shutdown hook that runs when a signal is received AND during normal close of the JVM. class AppMasterShutdownHook(appMaster: ApplicationMaster) extends Runnable { def run() { @@ -374,15 +403,14 @@ class ApplicationMaster(args: ApplicationMasterArguments, conf: Configuration) e if (appMaster.isLastAMRetry) appMaster.cleanupStagingDir() } } - } object ApplicationMaster { - // number of times to wait for the allocator loop to complete. - // each loop iteration waits for 100ms, so maximum of 3 seconds. + // Number of times to wait for the allocator loop to complete. + // Each loop iteration waits for 100ms, so maximum of 3 seconds. // This is to ensure that we have reasonable number of containers before we start - // TODO: Currently, task to container is computed once (TaskSetManager) - which need not be optimal as more - // containers are available. Might need to handle this better. + // TODO: Currently, task to container is computed once (TaskSetManager) - which need not be + // optimal as more containers are available. Might need to handle this better. private val ALLOCATOR_LOOP_WAIT_COUNT = 30 def incrementAllocatorLoop(by: Int) { val count = yarnAllocatorLoop.getAndAdd(by) @@ -400,7 +428,8 @@ object ApplicationMaster { applicationMasters.add(master) } - val sparkContextRef: AtomicReference[SparkContext] = new AtomicReference[SparkContext](null) + val sparkContextRef: AtomicReference[SparkContext] = + new AtomicReference[SparkContext](null /* initialValue */) val yarnAllocatorLoop: AtomicInteger = new AtomicInteger(0) def sparkContextInitialized(sc: SparkContext): Boolean = { @@ -410,19 +439,21 @@ object ApplicationMaster { sparkContextRef.notifyAll() } - // Add a shutdown hook - as a best case effort in case users do not call sc.stop or do System.exit - // Should not really have to do this, but it helps yarn to evict resources earlier. - // not to mention, prevent Client declaring failure even though we exit'ed properly. - // Note that this will unfortunately not properly clean up the staging files because it gets called to - // late and the filesystem is already shutdown. + // Add a shutdown hook - as a best case effort in case users do not call sc.stop or do + // System.exit. + // Should not really have to do this, but it helps YARN to evict resources earlier. + // Not to mention, prevent the Client from declaring failure even though we exited properly. + // Note that this will unfortunately not properly clean up the staging files because it gets + // called too late, after the filesystem is already shutdown. if (modified) { Runtime.getRuntime().addShutdownHook(new Thread with Logging { - // This is not just to log, but also to ensure that log system is initialized for this instance when we actually are 'run' + // This is not only logs, but also ensures that log system is initialized for this instance + // when we are actually 'run'-ing. logInfo("Adding shutdown hook for context " + sc) override def run() { logInfo("Invoking sc stop from shutdown hook") sc.stop() - // best case ... + // Best case ... for (master <- applicationMasters) { master.finishApplicationMaster(FinalApplicationStatus.SUCCEEDED) } @@ -430,7 +461,7 @@ object ApplicationMaster { } ) } - // Wait for initialization to complete and atleast 'some' nodes can get allocated + // Wait for initialization to complete and atleast 'some' nodes can get allocated. yarnAllocatorLoop.synchronized { while (yarnAllocatorLoop.get() <= ALLOCATOR_LOOP_WAIT_COUNT) { yarnAllocatorLoop.wait(1000L) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala index 4e0e060ddc29b..79dd03806523b 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala @@ -17,49 +17,54 @@ package org.apache.spark.deploy.yarn -import java.net.{InetAddress, InetSocketAddress, UnknownHostException, URI} +import java.net.{InetAddress, UnknownHostException, URI} import java.nio.ByteBuffer +import scala.collection.JavaConversions._ +import scala.collection.mutable.HashMap +import scala.collection.mutable.Map + import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.{FileContext, FileStatus, FileSystem, Path, FileUtil} import org.apache.hadoop.fs.permission.FsPermission; +import org.apache.hadoop.io.DataOutputBuffer import org.apache.hadoop.mapred.Master import org.apache.hadoop.net.NetUtils -import org.apache.hadoop.io.DataOutputBuffer import org.apache.hadoop.security.UserGroupInformation import org.apache.hadoop.yarn.api._ import org.apache.hadoop.yarn.api.ApplicationConstants.Environment -import org.apache.hadoop.yarn.api.records._ import org.apache.hadoop.yarn.api.protocolrecords._ +import org.apache.hadoop.yarn.api.records._ import org.apache.hadoop.yarn.client.YarnClientImpl import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.hadoop.yarn.ipc.YarnRPC import org.apache.hadoop.yarn.util.{Apps, Records} -import scala.collection.mutable.HashMap -import scala.collection.mutable.Map -import scala.collection.JavaConversions._ - import org.apache.spark.Logging import org.apache.spark.util.Utils import org.apache.spark.deploy.SparkHadoopUtil + class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl with Logging { - + def this(args: ClientArguments) = this(new Configuration(), args) - + var rpc: YarnRPC = YarnRPC.create(conf) val yarnConf: YarnConfiguration = new YarnConfiguration(conf) val credentials = UserGroupInformation.getCurrentUser().getCredentials() private val SPARK_STAGING: String = ".sparkStaging" private val distCacheMgr = new ClientDistributedCacheManager() - // staging directory is private! -> rwx-------- + // Staging directory is private! -> rwx-------- val STAGING_DIR_PERMISSION: FsPermission = FsPermission.createImmutable(0700:Short) - // app files are world-wide readable and owner writable -> rw-r--r-- + + // App files are world-wide readable and owner writable -> rw-r--r-- val APP_FILE_PERMISSION: FsPermission = FsPermission.createImmutable(0644:Short) - def run() { + // for client user who want to monitor app status by itself. + def runApp() = { + validateArgs() + init(yarnConf) start() logClusterResourceDetails() @@ -79,33 +84,59 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl appContext.setUser(UserGroupInformation.getCurrentUser().getShortUserName()) submitApp(appContext) - + appId + } + + def run() { + val appId = runApp() monitorApplication(appId) System.exit(0) } + def validateArgs() = { + Map( + (System.getenv("SPARK_JAR") == null) -> "Error: You must set SPARK_JAR environment variable!", + (args.userJar == null) -> "Error: You must specify a user jar!", + (args.userClass == null) -> "Error: You must specify a user class!", + (args.numWorkers <= 0) -> "Error: You must specify atleast 1 worker!", + (args.amMemory <= YarnAllocationHandler.MEMORY_OVERHEAD) -> ("Error: AM memory size must be " + + "greater than: " + YarnAllocationHandler.MEMORY_OVERHEAD), + (args.workerMemory <= YarnAllocationHandler.MEMORY_OVERHEAD) -> ("Error: Worker memory size " + + "must be greater than: " + YarnAllocationHandler.MEMORY_OVERHEAD) + ).foreach { case(cond, errStr) => + if (cond) { + logError(errStr) + args.printUsageAndExit(1) + } + } + } + def getAppStagingDir(appId: ApplicationId): String = { SPARK_STAGING + Path.SEPARATOR + appId.toString() + Path.SEPARATOR } def logClusterResourceDetails() { val clusterMetrics: YarnClusterMetrics = super.getYarnClusterMetrics - logInfo("Got Cluster metric info from ASM, numNodeManagers=" + clusterMetrics.getNumNodeManagers) + logInfo("Got Cluster metric info from ASM, numNodeManagers = " + + clusterMetrics.getNumNodeManagers) val queueInfo: QueueInfo = super.getQueueInfo(args.amQueue) - logInfo("Queue info .. queueName=" + queueInfo.getQueueName + ", queueCurrentCapacity=" + queueInfo.getCurrentCapacity + - ", queueMaxCapacity=" + queueInfo.getMaximumCapacity + ", queueApplicationCount=" + queueInfo.getApplications.size + - ", queueChildQueueCount=" + queueInfo.getChildQueues.size) + logInfo("""Queue info ... queueName = %s, queueCurrentCapacity = %s, queueMaxCapacity = %s, + queueApplicationCount = %s, queueChildQueueCount = %s""".format( + queueInfo.getQueueName, + queueInfo.getCurrentCapacity, + queueInfo.getMaximumCapacity, + queueInfo.getApplications.size, + queueInfo.getChildQueues.size)) } - def verifyClusterResources(app: GetNewApplicationResponse) = { val maxMem = app.getMaximumResourceCapability().getMemory() logInfo("Max mem capabililty of a single resource in this cluster " + maxMem) - - // if we have requested more then the clusters max for a single resource then exit. + + // If we have requested more then the clusters max for a single resource then exit. if (args.workerMemory > maxMem) { - logError("the worker size is to large to run on this cluster " + args.workerMemory); + logError("the worker size is to large to run on this cluster " + args.workerMemory) System.exit(1) } val amMem = args.amMemory + YarnAllocationHandler.MEMORY_OVERHEAD @@ -114,10 +145,10 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl System.exit(1) } - // We could add checks to make sure the entire cluster has enough resources but that involves getting - // all the node reports and computing ourselves + // We could add checks to make sure the entire cluster has enough resources but that involves + // getting all the node reports and computing ourselves } - + def createApplicationSubmissionContext(appId: ApplicationId): ApplicationSubmissionContext = { logInfo("Setting up application submission context for ASM") val appContext = Records.newRecord(classOf[ApplicationSubmissionContext]) @@ -126,9 +157,7 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl return appContext } - /* - * see if two file systems are the same or not. - */ + /** See if two file systems are the same or not. */ private def compareFs(srcFs: FileSystem, destFs: FileSystem): Boolean = { val srcUri = srcFs.getUri() val dstUri = destFs.getUri() @@ -142,8 +171,8 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl var dstHost = dstUri.getHost() if ((srcHost != null) && (dstHost != null)) { try { - srcHost = InetAddress.getByName(srcHost).getCanonicalHostName(); - dstHost = InetAddress.getByName(dstHost).getCanonicalHostName(); + srcHost = InetAddress.getByName(srcHost).getCanonicalHostName() + dstHost = InetAddress.getByName(dstHost).getCanonicalHostName() } catch { case e: UnknownHostException => return false @@ -160,30 +189,27 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl if (srcUri.getPort() != dstUri.getPort()) { return false } - return true; + return true } - /** - * Copy the file into HDFS if needed. - */ + /** Copy the file into HDFS if needed. */ private def copyRemoteFile( dstDir: Path, originalPath: Path, replication: Short, setPerms: Boolean = false): Path = { val fs = FileSystem.get(conf) - val remoteFs = originalPath.getFileSystem(conf); + val remoteFs = originalPath.getFileSystem(conf) var newPath = originalPath if (! compareFs(remoteFs, fs)) { newPath = new Path(dstDir, originalPath.getName()) logInfo("Uploading " + originalPath + " to " + newPath) - FileUtil.copy(remoteFs, originalPath, fs, newPath, false, conf); - fs.setReplication(newPath, replication); + FileUtil.copy(remoteFs, originalPath, fs, newPath, false, conf) + fs.setReplication(newPath, replication) if (setPerms) fs.setPermission(newPath, new FsPermission(APP_FILE_PERMISSION)) } - // resolve any symlinks in the URI path so using a "current" symlink - // to point to a specific version shows the specific version - // in the distributed cache configuration + // Resolve any symlinks in the URI path so using a "current" symlink to point to a specific + // version shows the specific version in the distributed cache configuration val qualPath = fs.makeQualified(newPath) val fc = FileContext.getFileContext(qualPath.toUri(), conf) val destPath = fc.resolvePath(qualPath) @@ -192,11 +218,11 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl def prepareLocalResources(appStagingDir: String): HashMap[String, LocalResource] = { logInfo("Preparing Local resources") - // Upload Spark and the application JAR to the remote file system if necessary - // Add them as local resources to the AM + // Upload Spark and the application JAR to the remote file system if necessary. Add them as + // local resources to the AM. val fs = FileSystem.get(conf) - val delegTokenRenewer = Master.getMasterPrincipal(conf); + val delegTokenRenewer = Master.getMasterPrincipal(conf) if (UserGroupInformation.isSecurityEnabled()) { if (delegTokenRenewer == null || delegTokenRenewer.length() == 0) { logError("Can't get Master Kerberos principal for use as renewer") @@ -208,18 +234,13 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl if (UserGroupInformation.isSecurityEnabled()) { val dstFs = dst.getFileSystem(conf) - dstFs.addDelegationTokens(delegTokenRenewer, credentials); + dstFs.addDelegationTokens(delegTokenRenewer, credentials) } val localResources = HashMap[String, LocalResource]() FileSystem.mkdirs(fs, dst, new FsPermission(STAGING_DIR_PERMISSION)) val statCache: Map[URI, FileStatus] = HashMap[URI, FileStatus]() - if (System.getenv("SPARK_JAR") == null || args.userJar == null) { - logError("Error: You must set SPARK_JAR environment variable and specify a user jar!") - System.exit(1) - } - Map(Client.SPARK_JAR -> System.getenv("SPARK_JAR"), Client.APP_JAR -> args.userJar, Client.LOG4J_PROP -> System.getenv("SPARK_LOG4J_CONF")) .foreach { case(destName, _localPath) => @@ -228,7 +249,7 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl var localURI = new URI(localPath) // if not specified assume these are in the local filesystem to keep behavior like Hadoop if (localURI.getScheme() == null) { - localURI = new URI(FileSystem.getLocal(conf).makeQualified(new Path(localPath)).toString()) + localURI = new URI(FileSystem.getLocal(conf).makeQualified(new Path(localPath)).toString) } val setPermissions = if (destName.equals(Client.APP_JAR)) true else false val destPath = copyRemoteFile(dst, new Path(localURI), replication, setPermissions) @@ -273,10 +294,10 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl } } - UserGroupInformation.getCurrentUser().addCredentials(credentials); + UserGroupInformation.getCurrentUser().addCredentials(credentials) return localResources } - + def setupLaunchEnv( localResources: HashMap[String, LocalResource], stagingDir: String): HashMap[String, String] = { @@ -289,16 +310,16 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl env("SPARK_YARN_MODE") = "true" env("SPARK_YARN_STAGING_DIR") = stagingDir - // set the environment variables to be passed on to the Workers + // Set the environment variables to be passed on to the Workers. distCacheMgr.setDistFilesEnv(env) distCacheMgr.setDistArchivesEnv(env) - // allow users to specify some environment variables + // Allow users to specify some environment variables. Apps.setEnvFromInputString(env, System.getenv("SPARK_YARN_USER_ENV")) - // Add each SPARK-* key to the environment + // Add each SPARK-* key to the environment. System.getenv().filterKeys(_.startsWith("SPARK")).foreach { case (k,v) => env(k) = v } - return env + env } def userArgsToString(clientArgs: ClientArguments): String = { @@ -308,13 +329,13 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl for (arg <- args){ retval.append(prefix).append(" '").append(arg).append("' ") } - retval.toString } - def createContainerLaunchContext(newApp: GetNewApplicationResponse, - localResources: HashMap[String, LocalResource], - env: HashMap[String, String]): ContainerLaunchContext = { + def createContainerLaunchContext( + newApp: GetNewApplicationResponse, + localResources: HashMap[String, LocalResource], + env: HashMap[String, String]): ContainerLaunchContext = { logInfo("Setting up container launch context") val amContainer = Records.newRecord(classOf[ContainerLaunchContext]) amContainer.setLocalResources(localResources) @@ -322,8 +343,10 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl val minResMemory: Int = newApp.getMinimumResourceCapability().getMemory() + // TODO(harvey): This can probably be a val. var amMemory = ((args.amMemory / minResMemory) * minResMemory) + - (if (0 != (args.amMemory % minResMemory)) minResMemory else 0) - YarnAllocationHandler.MEMORY_OVERHEAD + ((if ((args.amMemory % minResMemory) == 0) 0 else minResMemory) - + YarnAllocationHandler.MEMORY_OVERHEAD) // Extra options for the JVM var JAVA_OPTS = "" @@ -334,14 +357,18 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl JAVA_OPTS += " -Djava.io.tmpdir=" + new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + " " - - // Commenting it out for now - so that people can refer to the properties if required. Remove it once cpuset version is pushed out. - // The context is, default gc for server class machines end up using all cores to do gc - hence if there are multiple containers in same - // node, spark gc effects all other containers performance (which can also be other spark containers) - // Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in multi-tenant environments. Not sure how default java gc behaves if it is - // limited to subset of cores on a node. - if (env.isDefinedAt("SPARK_USE_CONC_INCR_GC") && java.lang.Boolean.parseBoolean(env("SPARK_USE_CONC_INCR_GC"))) { - // In our expts, using (default) throughput collector has severe perf ramnifications in multi-tenant machines + // Commenting it out for now - so that people can refer to the properties if required. Remove + // it once cpuset version is pushed out. The context is, default gc for server class machines + // end up using all cores to do gc - hence if there are multiple containers in same node, + // spark gc effects all other containers performance (which can also be other spark containers) + // Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in + // multi-tenant environments. Not sure how default java gc behaves if it is limited to subset + // of cores on a node. + val useConcurrentAndIncrementalGC = env.isDefinedAt("SPARK_USE_CONC_INCR_GC") && + java.lang.Boolean.parseBoolean(env("SPARK_USE_CONC_INCR_GC")) + if (useConcurrentAndIncrementalGC) { + // In our expts, using (default) throughput collector has severe perf ramnifications in + // multi-tenant machines JAVA_OPTS += " -XX:+UseConcMarkSweepGC " JAVA_OPTS += " -XX:+CMSIncrementalMode " JAVA_OPTS += " -XX:+CMSIncrementalPacing " @@ -354,21 +381,16 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl } // Command for the ApplicationMaster - var javaCommand = "java"; + var javaCommand = "java" val javaHome = System.getenv("JAVA_HOME") if ((javaHome != null && !javaHome.isEmpty()) || env.isDefinedAt("JAVA_HOME")) { javaCommand = Environment.JAVA_HOME.$() + "/bin/java" } - if (args.userClass == null) { - logError("Error: You must specify a user class!") - System.exit(1) - } - val commands = List[String](javaCommand + " -server " + JAVA_OPTS + - " org.apache.spark.deploy.yarn.ApplicationMaster" + + " " + args.amClass + " --class " + args.userClass + " --jar " + args.userJar + userArgsToString(args) + @@ -379,28 +401,28 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl " 2> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr") logInfo("Command for the ApplicationMaster: " + commands(0)) amContainer.setCommands(commands) - + val capability = Records.newRecord(classOf[Resource]).asInstanceOf[Resource] - // Memory for the ApplicationMaster + // Memory for the ApplicationMaster. capability.setMemory(args.amMemory + YarnAllocationHandler.MEMORY_OVERHEAD) amContainer.setResource(capability) - // Setup security tokens + // Setup security tokens. val dob = new DataOutputBuffer() credentials.writeTokenStorageToStream(dob) amContainer.setContainerTokens(ByteBuffer.wrap(dob.getData())) - return amContainer + amContainer } - + def submitApp(appContext: ApplicationSubmissionContext) = { - // Submit the application to the applications manager + // Submit the application to the applications manager. logInfo("Submitting application to ASM") super.submitApplication(appContext) } - + def monitorApplication(appId: ApplicationId): Boolean = { - while(true) { + while (true) { Thread.sleep(1000) val report = super.getApplicationReport(appId) @@ -418,16 +440,16 @@ class Client(conf: Configuration, args: ClientArguments) extends YarnClientImpl "\t appTrackingUrl: " + report.getTrackingUrl() + "\n" + "\t appUser: " + report.getUser() ) - + val state = report.getYarnApplicationState() val dsStatus = report.getFinalApplicationStatus() if (state == YarnApplicationState.FINISHED || state == YarnApplicationState.FAILED || state == YarnApplicationState.KILLED) { - return true + return true } } - return true + true } } @@ -442,6 +464,7 @@ object Client { System.setProperty("SPARK_YARN_MODE", "true") val args = new ClientArguments(argStrings) + new Client(args).run } @@ -459,7 +482,7 @@ object Client { Apps.addToEnvironment(env, Environment.CLASSPATH.name, Environment.PWD.$() + Path.SEPARATOR + LOG4J_PROP) } - // normally the users app.jar is last in case conflicts with spark jars + // Normally the users app.jar is last in case conflicts with spark jars val userClasspathFirst = System.getProperty("spark.yarn.user.classpath.first", "false") .toBoolean if (userClasspathFirst) { diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala index 852dbd7dabf66..b9dbc3fb87a1f 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala @@ -35,6 +35,7 @@ class ClientArguments(val args: Array[String]) { var numWorkers = 2 var amQueue = System.getProperty("QUEUE", "default") var amMemory: Int = 512 + var amClass: String = "org.apache.spark.deploy.yarn.ApplicationMaster" var appName: String = "Spark" // TODO var inputFormatInfo: List[InputFormatInfo] = null @@ -62,18 +63,22 @@ class ClientArguments(val args: Array[String]) { userArgsBuffer += value args = tail - case ("--master-memory") :: MemoryParam(value) :: tail => - amMemory = value + case ("--master-class") :: value :: tail => + amClass = value args = tail - case ("--num-workers") :: IntParam(value) :: tail => - numWorkers = value + case ("--master-memory") :: MemoryParam(value) :: tail => + amMemory = value args = tail case ("--worker-memory") :: MemoryParam(value) :: tail => workerMemory = value args = tail + case ("--num-workers") :: IntParam(value) :: tail => + numWorkers = value + args = tail + case ("--worker-cores") :: IntParam(value) :: tail => workerCores = value args = tail @@ -119,19 +124,20 @@ class ClientArguments(val args: Array[String]) { System.err.println( "Usage: org.apache.spark.deploy.yarn.Client [options] \n" + "Options:\n" + - " --jar JAR_PATH Path to your application's JAR file (required)\n" + - " --class CLASS_NAME Name of your application's main class (required)\n" + - " --args ARGS Arguments to be passed to your application's main class.\n" + - " Mutliple invocations are possible, each will be passed in order.\n" + - " --num-workers NUM Number of workers to start (Default: 2)\n" + - " --worker-cores NUM Number of cores for the workers (Default: 1). This is unsused right now.\n" + - " --master-memory MEM Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)\n" + - " --worker-memory MEM Memory per Worker (e.g. 1000M, 2G) (Default: 1G)\n" + - " --name NAME The name of your application (Default: Spark)\n" + - " --queue QUEUE The hadoop queue to use for allocation requests (Default: 'default')\n" + - " --addJars jars Comma separated list of local jars that want SparkContext.addJar to work with.\n" + - " --files files Comma separated list of files to be distributed with the job.\n" + - " --archives archives Comma separated list of archives to be distributed with the job." + " --jar JAR_PATH Path to your application's JAR file (required)\n" + + " --class CLASS_NAME Name of your application's main class (required)\n" + + " --args ARGS Arguments to be passed to your application's main class.\n" + + " Mutliple invocations are possible, each will be passed in order.\n" + + " --num-workers NUM Number of workers to start (Default: 2)\n" + + " --worker-cores NUM Number of cores for the workers (Default: 1). This is unsused right now.\n" + + " --master-class CLASS_NAME Class Name for Master (Default: spark.deploy.yarn.ApplicationMaster)\n" + + " --master-memory MEM Memory for Master (e.g. 1000M, 2G) (Default: 512 Mb)\n" + + " --worker-memory MEM Memory per Worker (e.g. 1000M, 2G) (Default: 1G)\n" + + " --name NAME The name of your application (Default: Spark)\n" + + " --queue QUEUE The hadoop queue to use for allocation requests (Default: 'default')\n" + + " --addJars jars Comma separated list of local jars that want SparkContext.addJar to work with.\n" + + " --files files Comma separated list of files to be distributed with the job.\n" + + " --archives archives Comma separated list of archives to be distributed with the job." ) System.exit(exitCode) } diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManager.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManager.scala index 07686fefd7c06..5f159b073f537 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManager.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManager.scala @@ -17,7 +17,7 @@ package org.apache.spark.deploy.yarn -import java.net.URI; +import java.net.URI import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.FileStatus @@ -197,11 +197,11 @@ class ClientDistributedCacheManager() extends Logging { */ def checkPermissionOfOther(fs: FileSystem, path: Path, action: FsAction, statCache: Map[URI, FileStatus]): Boolean = { - val status = getFileStatus(fs, path.toUri(), statCache); + val status = getFileStatus(fs, path.toUri(), statCache) val perms = status.getPermission() val otherAction = perms.getOtherAction() if (otherAction.implies(action)) { - return true; + return true } return false } diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerLauncher.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerLauncher.scala new file mode 100644 index 0000000000000..421a83c87afdf --- /dev/null +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerLauncher.scala @@ -0,0 +1,246 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.deploy.yarn + +import java.net.Socket +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.net.NetUtils +import org.apache.hadoop.yarn.api._ +import org.apache.hadoop.yarn.api.records._ +import org.apache.hadoop.yarn.api.protocolrecords._ +import org.apache.hadoop.yarn.conf.YarnConfiguration +import org.apache.hadoop.yarn.ipc.YarnRPC +import org.apache.hadoop.yarn.util.{ConverterUtils, Records} +import akka.actor._ +import akka.remote.{RemoteClientShutdown, RemoteClientDisconnected, RemoteClientLifeCycleEvent} +import akka.remote.RemoteClientShutdown +import akka.actor.Terminated +import akka.remote.RemoteClientDisconnected +import org.apache.spark.{SparkContext, Logging} +import org.apache.spark.util.{Utils, AkkaUtils} +import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend +import org.apache.spark.scheduler.SplitInfo + +class WorkerLauncher(args: ApplicationMasterArguments, conf: Configuration) extends Logging { + + def this(args: ApplicationMasterArguments) = this(args, new Configuration()) + + private val rpc: YarnRPC = YarnRPC.create(conf) + private var resourceManager: AMRMProtocol = null + private var appAttemptId: ApplicationAttemptId = null + private var reporterThread: Thread = null + private val yarnConf: YarnConfiguration = new YarnConfiguration(conf) + + private var yarnAllocator: YarnAllocationHandler = null + private var driverClosed:Boolean = false + + val actorSystem : ActorSystem = AkkaUtils.createActorSystem("sparkYarnAM", Utils.localHostName, 0)._1 + var actor: ActorRef = null + + // This actor just working as a monitor to watch on Driver Actor. + class MonitorActor(driverUrl: String) extends Actor { + + var driver: ActorRef = null + + override def preStart() { + logInfo("Listen to driver: " + driverUrl) + driver = context.actorFor(driverUrl) + driver ! "hello" + context.system.eventStream.subscribe(self, classOf[RemoteClientLifeCycleEvent]) + context.watch(driver) // Doesn't work with remote actors, but useful for testing + } + + override def receive = { + case Terminated(_) | RemoteClientDisconnected(_, _) | RemoteClientShutdown(_, _) => + logInfo("Driver terminated or disconnected! Shutting down.") + driverClosed = true + } + } + + def run() { + + appAttemptId = getApplicationAttemptId() + resourceManager = registerWithResourceManager() + val appMasterResponse: RegisterApplicationMasterResponse = registerApplicationMaster() + + // Compute number of threads for akka + val minimumMemory = appMasterResponse.getMinimumResourceCapability().getMemory() + + if (minimumMemory > 0) { + val mem = args.workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD + val numCore = (mem / minimumMemory) + (if (0 != (mem % minimumMemory)) 1 else 0) + + if (numCore > 0) { + // do not override - hits https://issues.apache.org/jira/browse/HADOOP-8406 + // TODO: Uncomment when hadoop is on a version which has this fixed. + // args.workerCores = numCore + } + } + + waitForSparkMaster() + + // Allocate all containers + allocateWorkers() + + // Launch a progress reporter thread, else app will get killed after expiration (def: 10mins) timeout + // ensure that progress is sent before YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS elapse. + + val timeoutInterval = yarnConf.getInt(YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS, 120000) + // must be <= timeoutInterval/ 2. + // On other hand, also ensure that we are reasonably responsive without causing too many requests to RM. + // so atleast 1 minute or timeoutInterval / 10 - whichever is higher. + val interval = math.min(timeoutInterval / 2, math.max(timeoutInterval/ 10, 60000L)) + reporterThread = launchReporterThread(interval) + + // Wait for the reporter thread to Finish. + reporterThread.join() + + finishApplicationMaster(FinalApplicationStatus.SUCCEEDED) + actorSystem.shutdown() + + logInfo("Exited") + System.exit(0) + } + + private def getApplicationAttemptId(): ApplicationAttemptId = { + val envs = System.getenv() + val containerIdString = envs.get(ApplicationConstants.AM_CONTAINER_ID_ENV) + val containerId = ConverterUtils.toContainerId(containerIdString) + val appAttemptId = containerId.getApplicationAttemptId() + logInfo("ApplicationAttemptId: " + appAttemptId) + return appAttemptId + } + + private def registerWithResourceManager(): AMRMProtocol = { + val rmAddress = NetUtils.createSocketAddr(yarnConf.get( + YarnConfiguration.RM_SCHEDULER_ADDRESS, + YarnConfiguration.DEFAULT_RM_SCHEDULER_ADDRESS)) + logInfo("Connecting to ResourceManager at " + rmAddress) + return rpc.getProxy(classOf[AMRMProtocol], rmAddress, conf).asInstanceOf[AMRMProtocol] + } + + private def registerApplicationMaster(): RegisterApplicationMasterResponse = { + logInfo("Registering the ApplicationMaster") + val appMasterRequest = Records.newRecord(classOf[RegisterApplicationMasterRequest]) + .asInstanceOf[RegisterApplicationMasterRequest] + appMasterRequest.setApplicationAttemptId(appAttemptId) + // Setting this to master host,port - so that the ApplicationReport at client has some sensible info. + // Users can then monitor stderr/stdout on that node if required. + appMasterRequest.setHost(Utils.localHostName()) + appMasterRequest.setRpcPort(0) + // What do we provide here ? Might make sense to expose something sensible later ? + appMasterRequest.setTrackingUrl("") + return resourceManager.registerApplicationMaster(appMasterRequest) + } + + private def waitForSparkMaster() { + logInfo("Waiting for spark driver to be reachable.") + var driverUp = false + val hostport = args.userArgs(0) + val (driverHost, driverPort) = Utils.parseHostPort(hostport) + while(!driverUp) { + try { + val socket = new Socket(driverHost, driverPort) + socket.close() + logInfo("Master now available: " + driverHost + ":" + driverPort) + driverUp = true + } catch { + case e: Exception => + logError("Failed to connect to driver at " + driverHost + ":" + driverPort) + Thread.sleep(100) + } + } + System.setProperty("spark.driver.host", driverHost) + System.setProperty("spark.driver.port", driverPort.toString) + + val driverUrl = "akka://spark@%s:%s/user/%s".format( + driverHost, driverPort.toString, CoarseGrainedSchedulerBackend.ACTOR_NAME) + + actor = actorSystem.actorOf(Props(new MonitorActor(driverUrl)), name = "YarnAM") + } + + + private def allocateWorkers() { + + // Fixme: should get preferredNodeLocationData from SparkContext, just fake a empty one for now. + val preferredNodeLocationData: scala.collection.Map[String, scala.collection.Set[SplitInfo]] = scala.collection.immutable.Map() + + yarnAllocator = YarnAllocationHandler.newAllocator(yarnConf, resourceManager, appAttemptId, args, preferredNodeLocationData) + + logInfo("Allocating " + args.numWorkers + " workers.") + // Wait until all containers have finished + // TODO: This is a bit ugly. Can we make it nicer? + // TODO: Handle container failure + while(yarnAllocator.getNumWorkersRunning < args.numWorkers) { + yarnAllocator.allocateContainers(math.max(args.numWorkers - yarnAllocator.getNumWorkersRunning, 0)) + Thread.sleep(100) + } + + logInfo("All workers have launched.") + + } + + // TODO: We might want to extend this to allocate more containers in case they die ! + private def launchReporterThread(_sleepTime: Long): Thread = { + val sleepTime = if (_sleepTime <= 0 ) 0 else _sleepTime + + val t = new Thread { + override def run() { + while (!driverClosed) { + val missingWorkerCount = args.numWorkers - yarnAllocator.getNumWorkersRunning + if (missingWorkerCount > 0) { + logInfo("Allocating " + missingWorkerCount + " containers to make up for (potentially ?) lost containers") + yarnAllocator.allocateContainers(missingWorkerCount) + } + else sendProgress() + Thread.sleep(sleepTime) + } + } + } + // setting to daemon status, though this is usually not a good idea. + t.setDaemon(true) + t.start() + logInfo("Started progress reporter thread - sleep time : " + sleepTime) + return t + } + + private def sendProgress() { + logDebug("Sending progress") + // simulated with an allocate request with no nodes requested ... + yarnAllocator.allocateContainers(0) + } + + def finishApplicationMaster(status: FinalApplicationStatus) { + + logInfo("finish ApplicationMaster with " + status) + val finishReq = Records.newRecord(classOf[FinishApplicationMasterRequest]) + .asInstanceOf[FinishApplicationMasterRequest] + finishReq.setAppAttemptId(appAttemptId) + finishReq.setFinishApplicationStatus(status) + resourceManager.finishApplicationMaster(finishReq) + } + +} + + +object WorkerLauncher { + def main(argStrings: Array[String]) { + val args = new ApplicationMasterArguments(argStrings) + new WorkerLauncher(args).run() + } +} diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerRunnable.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerRunnable.scala index 7a66532254c74..6a90cc51cfbaf 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerRunnable.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/WorkerRunnable.scala @@ -21,53 +21,59 @@ import java.net.URI import java.nio.ByteBuffer import java.security.PrivilegedExceptionAction +import scala.collection.JavaConversions._ +import scala.collection.mutable.HashMap + import org.apache.hadoop.conf.Configuration -import org.apache.hadoop.fs.{FileStatus, FileSystem, Path} +import org.apache.hadoop.fs.Path import org.apache.hadoop.io.DataOutputBuffer import org.apache.hadoop.net.NetUtils import org.apache.hadoop.security.UserGroupInformation import org.apache.hadoop.yarn.api._ +import org.apache.hadoop.yarn.api.ApplicationConstants.Environment import org.apache.hadoop.yarn.api.records._ import org.apache.hadoop.yarn.api.protocolrecords._ import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.hadoop.yarn.ipc.YarnRPC import org.apache.hadoop.yarn.util.{Apps, ConverterUtils, Records, ProtoUtils} -import org.apache.hadoop.yarn.api.ApplicationConstants.Environment - -import scala.collection.JavaConversions._ -import scala.collection.mutable.HashMap import org.apache.spark.Logging -import org.apache.spark.util.Utils -class WorkerRunnable(container: Container, conf: Configuration, masterAddress: String, - slaveId: String, hostname: String, workerMemory: Int, workerCores: Int) - extends Runnable with Logging { - + +class WorkerRunnable( + container: Container, + conf: Configuration, + masterAddress: String, + slaveId: String, + hostname: String, + workerMemory: Int, + workerCores: Int) + extends Runnable with Logging { + var rpc: YarnRPC = YarnRPC.create(conf) var cm: ContainerManager = null val yarnConf: YarnConfiguration = new YarnConfiguration(conf) - + def run = { logInfo("Starting Worker Container") cm = connectToCM startContainer } - + def startContainer = { logInfo("Setting up ContainerLaunchContext") - + val ctx = Records.newRecord(classOf[ContainerLaunchContext]) .asInstanceOf[ContainerLaunchContext] - + ctx.setContainerId(container.getId()) ctx.setResource(container.getResource()) val localResources = prepareLocalResources ctx.setLocalResources(localResources) - + val env = prepareEnvironment ctx.setEnvironment(env) - + // Extra options for the JVM var JAVA_OPTS = "" // Set the JVM memory @@ -80,17 +86,21 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S JAVA_OPTS += " -Djava.io.tmpdir=" + new Path(Environment.PWD.$(), YarnConfiguration.DEFAULT_CONTAINER_TEMP_DIR) + " " - - // Commenting it out for now - so that people can refer to the properties if required. Remove it once cpuset version is pushed out. - // The context is, default gc for server class machines end up using all cores to do gc - hence if there are multiple containers in same - // node, spark gc effects all other containers performance (which can also be other spark containers) - // Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in multi-tenant environments. Not sure how default java gc behaves if it is - // limited to subset of cores on a node. + // Commenting it out for now - so that people can refer to the properties if required. Remove + // it once cpuset version is pushed out. + // The context is, default gc for server class machines end up using all cores to do gc - hence + // if there are multiple containers in same node, spark gc effects all other containers + // performance (which can also be other spark containers) + // Instead of using this, rely on cpusets by YARN to enforce spark behaves 'properly' in + // multi-tenant environments. Not sure how default java gc behaves if it is limited to subset + // of cores on a node. /* else { // If no java_opts specified, default to using -XX:+CMSIncrementalMode - // It might be possible that other modes/config is being done in SPARK_JAVA_OPTS, so we dont want to mess with it. - // In our expts, using (default) throughput collector has severe perf ramnifications in multi-tennent machines + // It might be possible that other modes/config is being done in SPARK_JAVA_OPTS, so we dont + // want to mess with it. + // In our expts, using (default) throughput collector has severe perf ramnifications in + // multi-tennent machines // The options are based on // http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html#0.0.0.%20When%20to%20Use%20the%20Concurrent%20Low%20Pause%20Collector|outline JAVA_OPTS += " -XX:+UseConcMarkSweepGC " @@ -108,7 +118,7 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S credentials.writeTokenStorageToStream(dob) ctx.setContainerTokens(ByteBuffer.wrap(dob.getData())) - var javaCommand = "java"; + var javaCommand = "java" val javaHome = System.getenv("JAVA_HOME") if ((javaHome != null && !javaHome.isEmpty()) || env.isDefinedAt("JAVA_HOME")) { javaCommand = Environment.JAVA_HOME.$() + "/bin/java" @@ -117,8 +127,10 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S val commands = List[String](javaCommand + " -server " + // Kill if OOM is raised - leverage yarn's failure handling to cause rescheduling. - // Not killing the task leaves various aspects of the worker and (to some extent) the jvm in an inconsistent state. - // TODO: If the OOM is not recoverable by rescheduling it on different node, then do 'something' to fail job ... akin to blacklisting trackers in mapred ? + // Not killing the task leaves various aspects of the worker and (to some extent) the jvm in + // an inconsistent state. + // TODO: If the OOM is not recoverable by rescheduling it on different node, then do + // 'something' to fail job ... akin to blacklisting trackers in mapred ? " -XX:OnOutOfMemoryError='kill %p' " + JAVA_OPTS + " org.apache.spark.executor.CoarseGrainedExecutorBackend " + @@ -130,7 +142,7 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S " 2> " + ApplicationConstants.LOG_DIR_EXPANSION_VAR + "/stderr") logInfo("Setting up worker with commands: " + commands) ctx.setCommands(commands) - + // Send the start request to the ContainerManager val startReq = Records.newRecord(classOf[StartContainerRequest]) .asInstanceOf[StartContainerRequest] @@ -138,7 +150,8 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S cm.startContainer(startReq) } - private def setupDistributedCache(file: String, + private def setupDistributedCache( + file: String, rtype: LocalResourceType, localResources: HashMap[String, LocalResource], timestamp: String, @@ -153,12 +166,11 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S amJarRsrc.setSize(size.toLong) localResources(uri.getFragment()) = amJarRsrc } - - + def prepareLocalResources: HashMap[String, LocalResource] = { logInfo("Preparing Local resources") val localResources = HashMap[String, LocalResource]() - + if (System.getenv("SPARK_YARN_CACHE_FILES") != null) { val timeStamps = System.getenv("SPARK_YARN_CACHE_FILES_TIME_STAMPS").split(',') val fileSizes = System.getenv("SPARK_YARN_CACHE_FILES_FILE_SIZES").split(',') @@ -180,32 +192,32 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S timeStamps(i), fileSizes(i), visibilities(i)) } } - + logInfo("Prepared Local resources " + localResources) return localResources } - + def prepareEnvironment: HashMap[String, String] = { val env = new HashMap[String, String]() Client.populateClasspath(yarnConf, System.getenv("SPARK_YARN_LOG4J_PATH") != null, env) - // allow users to specify some environment variables + // Allow users to specify some environment variables Apps.setEnvFromInputString(env, System.getenv("SPARK_YARN_USER_ENV")) System.getenv().filterKeys(_.startsWith("SPARK")).foreach { case (k,v) => env(k) = v } return env } - + def connectToCM: ContainerManager = { val cmHostPortStr = container.getNodeId().getHost() + ":" + container.getNodeId().getPort() val cmAddress = NetUtils.createSocketAddr(cmHostPortStr) logInfo("Connecting to ContainerManager at " + cmHostPortStr) - // use doAs and remoteUser here so we can add the container token and not - // pollute the current users credentials with all of the individual container tokens - val user = UserGroupInformation.createRemoteUser(container.getId().toString()); - val containerToken = container.getContainerToken(); + // Use doAs and remoteUser here so we can add the container token and not pollute the current + // users credentials with all of the individual container tokens + val user = UserGroupInformation.createRemoteUser(container.getId().toString()) + val containerToken = container.getContainerToken() if (containerToken != null) { user.addToken(ProtoUtils.convertFromProtoFormat(containerToken, cmAddress)) } @@ -216,8 +228,8 @@ class WorkerRunnable(container: Container, conf: Configuration, masterAddress: S return rpc.getProxy(classOf[ContainerManager], cmAddress, conf).asInstanceOf[ContainerManager] } - }); - return proxy; + }) + proxy } - + } diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala index 25da9aa917d95..f15f3c7c1195c 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocationHandler.scala @@ -17,87 +17,112 @@ package org.apache.spark.deploy.yarn +import java.lang.{Boolean => JBoolean} +import java.util.{Collections, Set => JSet} +import java.util.concurrent.{CopyOnWriteArrayList, ConcurrentHashMap} +import java.util.concurrent.atomic.AtomicInteger + +import scala.collection +import scala.collection.JavaConversions._ +import scala.collection.mutable.{ArrayBuffer, HashMap, HashSet} + import org.apache.spark.Logging -import org.apache.spark.util.Utils import org.apache.spark.scheduler.SplitInfo -import scala.collection -import org.apache.hadoop.yarn.api.records.{AMResponse, ApplicationAttemptId, ContainerId, Priority, Resource, ResourceRequest, ContainerStatus, Container} import org.apache.spark.scheduler.cluster.{ClusterScheduler, CoarseGrainedSchedulerBackend} +import org.apache.spark.util.Utils + +import org.apache.hadoop.conf.Configuration +import org.apache.hadoop.yarn.api.AMRMProtocol +import org.apache.hadoop.yarn.api.records.{AMResponse, ApplicationAttemptId} +import org.apache.hadoop.yarn.api.records.{Container, ContainerId, ContainerStatus} +import org.apache.hadoop.yarn.api.records.{Priority, Resource, ResourceRequest} import org.apache.hadoop.yarn.api.protocolrecords.{AllocateRequest, AllocateResponse} import org.apache.hadoop.yarn.util.{RackResolver, Records} -import java.util.concurrent.{CopyOnWriteArrayList, ConcurrentHashMap} -import java.util.concurrent.atomic.AtomicInteger -import org.apache.hadoop.yarn.api.AMRMProtocol -import collection.JavaConversions._ -import collection.mutable.{ArrayBuffer, HashMap, HashSet} -import org.apache.hadoop.conf.Configuration -import java.util.{Collections, Set => JSet} -import java.lang.{Boolean => JBoolean} + object AllocationType extends Enumeration ("HOST", "RACK", "ANY") { type AllocationType = Value val HOST, RACK, ANY = Value } -// too many params ? refactor it 'somehow' ? -// needs to be mt-safe -// Need to refactor this to make it 'cleaner' ... right now, all computation is reactive : should make it -// more proactive and decoupled. +// TODO: +// Too many params. +// Needs to be mt-safe +// Need to refactor this to make it 'cleaner' ... right now, all computation is reactive - should +// make it more proactive and decoupled. + // Note that right now, we assume all node asks as uniform in terms of capabilities and priority -// Refer to http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/ for more info -// on how we are requesting for containers. -private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceManager: AMRMProtocol, - val appAttemptId: ApplicationAttemptId, - val maxWorkers: Int, val workerMemory: Int, val workerCores: Int, - val preferredHostToCount: Map[String, Int], - val preferredRackToCount: Map[String, Int]) +// Refer to http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler/ for +// more info on how we are requesting for containers. +private[yarn] class YarnAllocationHandler( + val conf: Configuration, + val resourceManager: AMRMProtocol, + val appAttemptId: ApplicationAttemptId, + val maxWorkers: Int, + val workerMemory: Int, + val workerCores: Int, + val preferredHostToCount: Map[String, Int], + val preferredRackToCount: Map[String, Int]) extends Logging { - - // These three are locked on allocatedHostToContainersMap. Complementary data structures // allocatedHostToContainersMap : containers which are running : host, Set - // allocatedContainerToHostMap: container to host mapping - private val allocatedHostToContainersMap = new HashMap[String, collection.mutable.Set[ContainerId]]() + // allocatedContainerToHostMap: container to host mapping. + private val allocatedHostToContainersMap = + new HashMap[String, collection.mutable.Set[ContainerId]]() + private val allocatedContainerToHostMap = new HashMap[ContainerId, String]() - // allocatedRackCount is populated ONLY if allocation happens (or decremented if this is an allocated node) - // As with the two data structures above, tightly coupled with them, and to be locked on allocatedHostToContainersMap + + // allocatedRackCount is populated ONLY if allocation happens (or decremented if this is an + // allocated node) + // As with the two data structures above, tightly coupled with them, and to be locked on + // allocatedHostToContainersMap private val allocatedRackCount = new HashMap[String, Int]() - // containers which have been released. + // Containers which have been released. private val releasedContainerList = new CopyOnWriteArrayList[ContainerId]() - // containers to be released in next request to RM + // Containers to be released in next request to RM private val pendingReleaseContainers = new ConcurrentHashMap[ContainerId, Boolean] private val numWorkersRunning = new AtomicInteger() // Used to generate a unique id per worker private val workerIdCounter = new AtomicInteger() private val lastResponseId = new AtomicInteger() + private val numWorkersFailed = new AtomicInteger() def getNumWorkersRunning: Int = numWorkersRunning.intValue + def getNumWorkersFailed: Int = numWorkersFailed.intValue def isResourceConstraintSatisfied(container: Container): Boolean = { container.getResource.getMemory >= (workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD) } def allocateContainers(workersToRequest: Int) { - // We need to send the request only once from what I understand ... but for now, not modifying this much. + // We need to send the request only once from what I understand ... but for now, not modifying + // this much. // Keep polling the Resource Manager for containers val amResp = allocateWorkerResources(workersToRequest).getAMResponse val _allocatedContainers = amResp.getAllocatedContainers() - if (_allocatedContainers.size > 0) { - - logDebug("Allocated " + _allocatedContainers.size + " containers, current count " + - numWorkersRunning.get() + ", to-be-released " + releasedContainerList + - ", pendingReleaseContainers : " + pendingReleaseContainers) - logDebug("Cluster Resources: " + amResp.getAvailableResources) + if (_allocatedContainers.size > 0) { + logDebug(""" + Allocated containers: %d + Current worker count: %d + Containers released: %s + Containers to be released: %s + Cluster resources: %s + """.format( + _allocatedContainers.size, + numWorkersRunning.get(), + releasedContainerList, + pendingReleaseContainers, + amResp.getAvailableResources)) val hostToContainers = new HashMap[String, ArrayBuffer[Container]]() - // ignore if not satisfying constraints { + // Ignore if not satisfying constraints { for (container <- _allocatedContainers) { if (isResourceConstraintSatisfied(container)) { // allocatedContainers += container @@ -111,8 +136,7 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM else releasedContainerList.add(container.getId()) } - // Find the appropriate containers to use - // Slightly non trivial groupBy I guess ... + // Find the appropriate containers to use. Slightly non trivial groupBy ... val dataLocalContainers = new HashMap[String, ArrayBuffer[Container]]() val rackLocalContainers = new HashMap[String, ArrayBuffer[Container]]() val offRackContainers = new HashMap[String, ArrayBuffer[Container]]() @@ -132,21 +156,22 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM remainingContainers = null } else if (requiredHostCount > 0) { - // container list has more containers than we need for data locality. - // Split into two : data local container count of (remainingContainers.size - requiredHostCount) - // and rest as remainingContainer - val (dataLocal, remaining) = remainingContainers.splitAt(remainingContainers.size - requiredHostCount) + // Container list has more containers than we need for data locality. + // Split into two : data local container count of (remainingContainers.size - + // requiredHostCount) and rest as remainingContainer + val (dataLocal, remaining) = remainingContainers.splitAt( + remainingContainers.size - requiredHostCount) dataLocalContainers.put(candidateHost, dataLocal) // remainingContainers = remaining // yarn has nasty habit of allocating a tonne of containers on a host - discourage this : - // add remaining to release list. If we have insufficient containers, next allocation cycle - // will reallocate (but wont treat it as data local) + // add remaining to release list. If we have insufficient containers, next allocation + // cycle will reallocate (but wont treat it as data local) for (container <- remaining) releasedContainerList.add(container.getId()) remainingContainers = null } - // now rack local + // Now rack local if (remainingContainers != null){ val rack = YarnAllocationHandler.lookupRack(conf, candidateHost) @@ -159,15 +184,17 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM if (requiredRackCount >= remainingContainers.size){ // Add all to dataLocalContainers dataLocalContainers.put(rack, remainingContainers) - // all consumed + // All consumed remainingContainers = null } else if (requiredRackCount > 0) { // container list has more containers than we need for data locality. - // Split into two : data local container count of (remainingContainers.size - requiredRackCount) - // and rest as remainingContainer - val (rackLocal, remaining) = remainingContainers.splitAt(remainingContainers.size - requiredRackCount) - val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, new ArrayBuffer[Container]()) + // Split into two : data local container count of (remainingContainers.size - + // requiredRackCount) and rest as remainingContainer + val (rackLocal, remaining) = remainingContainers.splitAt( + remainingContainers.size - requiredRackCount) + val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, + new ArrayBuffer[Container]()) existingRackLocal ++= rackLocal remainingContainers = remaining @@ -183,8 +210,8 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM // Now that we have split the containers into various groups, go through them in order : // first host local, then rack local and then off rack (everything else). - // Note that the list we create below tries to ensure that not all containers end up within a host - // if there are sufficiently large number of hosts/containers. + // Note that the list we create below tries to ensure that not all containers end up within a + // host if there are sufficiently large number of hosts/containers. val allocatedContainers = new ArrayBuffer[Container](_allocatedContainers.size) allocatedContainers ++= ClusterScheduler.prioritizeContainers(dataLocalContainers) @@ -197,33 +224,39 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM val workerHostname = container.getNodeId.getHost val containerId = container.getId - assert (container.getResource.getMemory >= (workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD)) + assert( + container.getResource.getMemory >= (workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD)) if (numWorkersRunningNow > maxWorkers) { - logInfo("Ignoring container " + containerId + " at host " + workerHostname + - " .. we already have required number of containers") + logInfo("""Ignoring container %s at host %s, since we already have the required number of + containers for it.""".format(containerId, workerHostname)) releasedContainerList.add(containerId) // reset counter back to old value. numWorkersRunning.decrementAndGet() } else { - // deallocate + allocate can result in reusing id's wrongly - so use a different counter (workerIdCounter) + // Deallocate + allocate can result in reusing id's wrongly - so use a different counter + // (workerIdCounter) val workerId = workerIdCounter.incrementAndGet().toString val driverUrl = "akka://spark@%s:%s/user/%s".format( System.getProperty("spark.driver.host"), System.getProperty("spark.driver.port"), CoarseGrainedSchedulerBackend.ACTOR_NAME) logInfo("launching container on " + containerId + " host " + workerHostname) - // just to be safe, simply remove it from pendingReleaseContainers. Should not be there, but .. + // Just to be safe, simply remove it from pendingReleaseContainers. + // Should not be there, but .. pendingReleaseContainers.remove(containerId) val rack = YarnAllocationHandler.lookupRack(conf, workerHostname) allocatedHostToContainersMap.synchronized { - val containerSet = allocatedHostToContainersMap.getOrElseUpdate(workerHostname, new HashSet[ContainerId]()) + val containerSet = allocatedHostToContainersMap.getOrElseUpdate(workerHostname, + new HashSet[ContainerId]()) containerSet += containerId allocatedContainerToHostMap.put(containerId, workerHostname) - if (rack != null) allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1) + if (rack != null) { + allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1) + } } new Thread( @@ -232,17 +265,23 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM ).start() } } - logDebug("After allocated " + allocatedContainers.size + " containers (orig : " + - _allocatedContainers.size + "), current count " + numWorkersRunning.get() + - ", to-be-released " + releasedContainerList + ", pendingReleaseContainers : " + pendingReleaseContainers) + logDebug(""" + Finished processing %d containers. + Current number of workers running: %d, + releasedContainerList: %s, + pendingReleaseContainers: %s + """.format( + allocatedContainers.size, + numWorkersRunning.get(), + releasedContainerList, + pendingReleaseContainers)) } val completedContainers = amResp.getCompletedContainersStatuses() if (completedContainers.size > 0){ - logDebug("Completed " + completedContainers.size + " containers, current count " + numWorkersRunning.get() + - ", to-be-released " + releasedContainerList + ", pendingReleaseContainers : " + pendingReleaseContainers) - + logDebug("Completed %d containers, to-be-released: %s".format( + completedContainers.size, releasedContainerList)) for (completedContainer <- completedContainers){ val containerId = completedContainer.getContainerId @@ -251,10 +290,19 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM pendingReleaseContainers.remove(containerId) } else { - // simply decrement count - next iteration of ReporterThread will take care of allocating ! + // Simply decrement count - next iteration of ReporterThread will take care of allocating. numWorkersRunning.decrementAndGet() - logInfo("Container completed ? nodeId: " + containerId + ", state " + completedContainer.getState + - " httpaddress: " + completedContainer.getDiagnostics) + logInfo("Completed container %s (state: %s, exit status: %s)".format( + containerId, + completedContainer.getState, + completedContainer.getExitStatus())) + // Hadoop 2.2.X added a ContainerExitStatus we should switch to use + // there are some exit status' we shouldn't necessarily count against us, but for + // now I think its ok as none of the containers are expected to exit + if (completedContainer.getExitStatus() != 0) { + logInfo("Container marked as failed: " + containerId) + numWorkersFailed.incrementAndGet() + } } allocatedHostToContainersMap.synchronized { @@ -271,7 +319,7 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM allocatedContainerToHostMap -= containerId - // doing this within locked context, sigh ... move to outside ? + // Doing this within locked context, sigh ... move to outside ? val rack = YarnAllocationHandler.lookupRack(conf, host) if (rack != null) { val rackCount = allocatedRackCount.getOrElse(rack, 0) - 1 @@ -281,9 +329,16 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM } } } - logDebug("After completed " + completedContainers.size + " containers, current count " + - numWorkersRunning.get() + ", to-be-released " + releasedContainerList + - ", pendingReleaseContainers : " + pendingReleaseContainers) + logDebug(""" + Finished processing %d completed containers. + Current number of workers running: %d, + releasedContainerList: %s, + pendingReleaseContainers: %s + """.format( + completedContainers.size, + numWorkersRunning.get(), + releasedContainerList, + pendingReleaseContainers)) } } @@ -337,7 +392,7 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM // default. if (numWorkers <= 0 || preferredHostToCount.isEmpty) { - logDebug("numWorkers: " + numWorkers + ", host preferences ? " + preferredHostToCount.isEmpty) + logDebug("numWorkers: " + numWorkers + ", host preferences: " + preferredHostToCount.isEmpty) resourceRequests = List( createResourceRequest(AllocationType.ANY, null, numWorkers, YarnAllocationHandler.PRIORITY)) } @@ -350,17 +405,24 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM val requiredCount = candidateCount - allocatedContainersOnHost(candidateHost) if (requiredCount > 0) { - hostContainerRequests += - createResourceRequest(AllocationType.HOST, candidateHost, requiredCount, YarnAllocationHandler.PRIORITY) + hostContainerRequests += createResourceRequest( + AllocationType.HOST, + candidateHost, + requiredCount, + YarnAllocationHandler.PRIORITY) } } - val rackContainerRequests: List[ResourceRequest] = createRackResourceRequests(hostContainerRequests.toList) + val rackContainerRequests: List[ResourceRequest] = createRackResourceRequests( + hostContainerRequests.toList) - val anyContainerRequests: ResourceRequest = - createResourceRequest(AllocationType.ANY, null, numWorkers, YarnAllocationHandler.PRIORITY) + val anyContainerRequests: ResourceRequest = createResourceRequest( + AllocationType.ANY, + resource = null, + numWorkers, + YarnAllocationHandler.PRIORITY) - val containerRequests: ArrayBuffer[ResourceRequest] = - new ArrayBuffer[ResourceRequest](hostContainerRequests.size() + rackContainerRequests.size() + 1) + val containerRequests: ArrayBuffer[ResourceRequest] = new ArrayBuffer[ResourceRequest]( + hostContainerRequests.size + rackContainerRequests.size + 1) containerRequests ++= hostContainerRequests containerRequests ++= rackContainerRequests @@ -378,55 +440,60 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM val releasedContainerList = createReleasedContainerList() req.addAllReleases(releasedContainerList) - - if (numWorkers > 0) { - logInfo("Allocating " + numWorkers + " worker containers with " + (workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD) + " of memory each.") + logInfo("Allocating %d worker containers with %d of memory each.".format(numWorkers, + workerMemory + YarnAllocationHandler.MEMORY_OVERHEAD)) } else { logDebug("Empty allocation req .. release : " + releasedContainerList) } - for (req <- resourceRequests) { - logInfo("rsrcRequest ... host : " + req.getHostName + ", numContainers : " + req.getNumContainers + - ", p = " + req.getPriority().getPriority + ", capability: " + req.getCapability) + for (request <- resourceRequests) { + logInfo("ResourceRequest (host : %s, num containers: %d, priority = %s , capability : %s)". + format( + request.getHostName, + request.getNumContainers, + request.getPriority, + request.getCapability)) } resourceManager.allocate(req) } - private def createResourceRequest(requestType: AllocationType.AllocationType, - resource:String, numWorkers: Int, priority: Int): ResourceRequest = { + private def createResourceRequest( + requestType: AllocationType.AllocationType, + resource:String, + numWorkers: Int, + priority: Int): ResourceRequest = { // If hostname specified, we need atleast two requests - node local and rack local. // There must be a third request - which is ANY : that will be specially handled. requestType match { case AllocationType.HOST => { - assert (YarnAllocationHandler.ANY_HOST != resource) - + assert(YarnAllocationHandler.ANY_HOST != resource) val hostname = resource val nodeLocal = createResourceRequestImpl(hostname, numWorkers, priority) - // add to host->rack mapping + // Add to host->rack mapping YarnAllocationHandler.populateRackInfo(conf, hostname) nodeLocal } - case AllocationType.RACK => { val rack = resource createResourceRequestImpl(rack, numWorkers, priority) } - - case AllocationType.ANY => { - createResourceRequestImpl(YarnAllocationHandler.ANY_HOST, numWorkers, priority) - } - - case _ => throw new IllegalArgumentException("Unexpected/unsupported request type .. " + requestType) + case AllocationType.ANY => createResourceRequestImpl( + YarnAllocationHandler.ANY_HOST, numWorkers, priority) + case _ => throw new IllegalArgumentException( + "Unexpected/unsupported request type: " + requestType) } } - private def createResourceRequestImpl(hostname:String, numWorkers: Int, priority: Int): ResourceRequest = { + private def createResourceRequestImpl( + hostname:String, + numWorkers: Int, + priority: Int): ResourceRequest = { val rsrcRequest = Records.newRecord(classOf[ResourceRequest]) val memCapability = Records.newRecord(classOf[Resource]) @@ -447,11 +514,11 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM def createReleasedContainerList(): ArrayBuffer[ContainerId] = { val retval = new ArrayBuffer[ContainerId](1) - // iterator on COW list ... + // Iterator on COW list ... for (container <- releasedContainerList.iterator()){ retval += container } - // remove from the original list. + // Remove from the original list. if (! retval.isEmpty) { releasedContainerList.removeAll(retval) for (v <- retval) pendingReleaseContainers.put(v, true) @@ -466,14 +533,14 @@ private[yarn] class YarnAllocationHandler(val conf: Configuration, val resourceM object YarnAllocationHandler { val ANY_HOST = "*" - // all requests are issued with same priority : we do not (yet) have any distinction between + // All requests are issued with same priority : we do not (yet) have any distinction between // request types (like map/reduce in hadoop for example) val PRIORITY = 1 // Additional memory overhead - in mb val MEMORY_OVERHEAD = 384 - // host to rack map - saved from allocation requests + // Host to rack map - saved from allocation requests // We are expecting this not to change. // Note that it is possible for this to change : and RM will indicate that to us via update // response to allocate. But we are punting on handling that for now. @@ -481,38 +548,69 @@ object YarnAllocationHandler { private val rackToHostSet = new ConcurrentHashMap[String, JSet[String]]() - def newAllocator(conf: Configuration, - resourceManager: AMRMProtocol, appAttemptId: ApplicationAttemptId, - args: ApplicationMasterArguments): YarnAllocationHandler = { - - new YarnAllocationHandler(conf, resourceManager, appAttemptId, args.numWorkers, - args.workerMemory, args.workerCores, Map[String, Int](), Map[String, Int]()) + def newAllocator( + conf: Configuration, + resourceManager: AMRMProtocol, + appAttemptId: ApplicationAttemptId, + args: ApplicationMasterArguments): YarnAllocationHandler = { + + new YarnAllocationHandler( + conf, + resourceManager, + appAttemptId, + args.numWorkers, + args.workerMemory, + args.workerCores, + Map[String, Int](), + Map[String, Int]()) } - def newAllocator(conf: Configuration, - resourceManager: AMRMProtocol, appAttemptId: ApplicationAttemptId, - args: ApplicationMasterArguments, - map: collection.Map[String, collection.Set[SplitInfo]]): YarnAllocationHandler = { + def newAllocator( + conf: Configuration, + resourceManager: AMRMProtocol, + appAttemptId: ApplicationAttemptId, + args: ApplicationMasterArguments, + map: collection.Map[String, + collection.Set[SplitInfo]]): YarnAllocationHandler = { val (hostToCount, rackToCount) = generateNodeToWeight(conf, map) - - new YarnAllocationHandler(conf, resourceManager, appAttemptId, args.numWorkers, - args.workerMemory, args.workerCores, hostToCount, rackToCount) + new YarnAllocationHandler( + conf, + resourceManager, + appAttemptId, + args.numWorkers, + args.workerMemory, + args.workerCores, + hostToCount, + rackToCount) } - def newAllocator(conf: Configuration, - resourceManager: AMRMProtocol, appAttemptId: ApplicationAttemptId, - maxWorkers: Int, workerMemory: Int, workerCores: Int, - map: collection.Map[String, collection.Set[SplitInfo]]): YarnAllocationHandler = { + def newAllocator( + conf: Configuration, + resourceManager: AMRMProtocol, + appAttemptId: ApplicationAttemptId, + maxWorkers: Int, + workerMemory: Int, + workerCores: Int, + map: collection.Map[String, collection.Set[SplitInfo]]): YarnAllocationHandler = { val (hostToCount, rackToCount) = generateNodeToWeight(conf, map) - new YarnAllocationHandler(conf, resourceManager, appAttemptId, maxWorkers, - workerMemory, workerCores, hostToCount, rackToCount) + new YarnAllocationHandler( + conf, + resourceManager, + appAttemptId, + maxWorkers, + workerMemory, + workerCores, + hostToCount, + rackToCount) } // A simple method to copy the split info map. - private def generateNodeToWeight(conf: Configuration, input: collection.Map[String, collection.Set[SplitInfo]]) : + private def generateNodeToWeight( + conf: Configuration, + input: collection.Map[String, collection.Set[SplitInfo]]) : // host to count, rack to count (Map[String, Int], Map[String, Int]) = { @@ -536,7 +634,7 @@ object YarnAllocationHandler { } def lookupRack(conf: Configuration, host: String): String = { - if (! hostToRack.contains(host)) populateRackInfo(conf, host) + if (!hostToRack.contains(host)) populateRackInfo(conf, host) hostToRack.get(host) } @@ -559,10 +657,12 @@ object YarnAllocationHandler { val rack = rackInfo.getNetworkLocation hostToRack.put(hostname, rack) if (! rackToHostSet.containsKey(rack)) { - rackToHostSet.putIfAbsent(rack, Collections.newSetFromMap(new ConcurrentHashMap[String, JBoolean]())) + rackToHostSet.putIfAbsent(rack, + Collections.newSetFromMap(new ConcurrentHashMap[String, JBoolean]())) } rackToHostSet.get(rack).add(hostname) + // TODO(harvey): Figure out this comment... // Since RackResolver caches, we are disabling this for now ... } /* else { // right ? Else we will keep calling rack resolver in case we cant resolve rack info ... diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala index ca2f1e2565b9a..2ba2366ead171 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnSparkHadoopUtil.scala @@ -18,13 +18,10 @@ package org.apache.spark.deploy.yarn import org.apache.spark.deploy.SparkHadoopUtil -import collection.mutable.HashMap import org.apache.hadoop.mapred.JobConf import org.apache.hadoop.security.UserGroupInformation import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.hadoop.conf.Configuration -import org.apache.hadoop.yarn.api.ApplicationConstants.Environment -import java.security.PrivilegedExceptionAction /** * Contains util methods to interact with Hadoop from spark. @@ -40,7 +37,7 @@ class YarnSparkHadoopUtil extends SparkHadoopUtil { // add any user credentials to the job conf which are necessary for running on a secure Hadoop cluster override def addCredentials(conf: JobConf) { - val jobCreds = conf.getCredentials(); + val jobCreds = conf.getCredentials() jobCreds.mergeAll(UserGroupInformation.getCurrentUser().getCredentials()) } } diff --git a/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientClusterScheduler.scala b/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientClusterScheduler.scala new file mode 100644 index 0000000000000..63a0449e5a073 --- /dev/null +++ b/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientClusterScheduler.scala @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.scheduler.cluster + +import org.apache.spark._ +import org.apache.hadoop.conf.Configuration +import org.apache.spark.deploy.yarn.YarnAllocationHandler +import org.apache.spark.util.Utils + +/** + * + * This scheduler launch worker through Yarn - by call into Client to launch WorkerLauncher as AM. + */ +private[spark] class YarnClientClusterScheduler(sc: SparkContext, conf: Configuration) extends ClusterScheduler(sc) { + + def this(sc: SparkContext) = this(sc, new Configuration()) + + // By default, rack is unknown + override def getRackForHost(hostPort: String): Option[String] = { + val host = Utils.parseHostPort(hostPort)._1 + val retval = YarnAllocationHandler.lookupRack(conf, host) + if (retval != null) Some(retval) else None + } + + override def postStartHook() { + + // The yarn application is running, but the worker might not yet ready + // Wait for a few seconds for the slaves to bootstrap and register with master - best case attempt + Thread.sleep(2000L) + logInfo("YarnClientClusterScheduler.postStartHook done") + } +} diff --git a/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala b/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala new file mode 100644 index 0000000000000..b206780c7806e --- /dev/null +++ b/yarn/src/main/scala/org/apache/spark/scheduler/cluster/YarnClientSchedulerBackend.scala @@ -0,0 +1,109 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.scheduler.cluster + +import org.apache.hadoop.yarn.api.records.{ApplicationId, YarnApplicationState} +import org.apache.spark.{SparkException, Logging, SparkContext} +import org.apache.spark.deploy.yarn.{Client, ClientArguments} + +private[spark] class YarnClientSchedulerBackend( + scheduler: ClusterScheduler, + sc: SparkContext) + extends CoarseGrainedSchedulerBackend(scheduler, sc.env.actorSystem) + with Logging { + + var client: Client = null + var appId: ApplicationId = null + + override def start() { + super.start() + + val defalutWorkerCores = "2" + val defalutWorkerMemory = "512m" + val defaultWorkerNumber = "1" + + val userJar = System.getenv("SPARK_YARN_APP_JAR") + var workerCores = System.getenv("SPARK_WORKER_CORES") + var workerMemory = System.getenv("SPARK_WORKER_MEMORY") + var workerNumber = System.getenv("SPARK_WORKER_INSTANCES") + + if (userJar == null) + throw new SparkException("env SPARK_YARN_APP_JAR is not set") + + if (workerCores == null) + workerCores = defalutWorkerCores + if (workerMemory == null) + workerMemory = defalutWorkerMemory + if (workerNumber == null) + workerNumber = defaultWorkerNumber + + val driverHost = System.getProperty("spark.driver.host") + val driverPort = System.getProperty("spark.driver.port") + val hostport = driverHost + ":" + driverPort + + val argsArray = Array[String]( + "--class", "notused", + "--jar", userJar, + "--args", hostport, + "--worker-memory", workerMemory, + "--worker-cores", workerCores, + "--num-workers", workerNumber, + "--master-class", "org.apache.spark.deploy.yarn.WorkerLauncher" + ) + + val args = new ClientArguments(argsArray) + client = new Client(args) + appId = client.runApp() + waitForApp() + } + + def waitForApp() { + + // TODO : need a better way to find out whether the workers are ready or not + // maybe by resource usage report? + while(true) { + val report = client.getApplicationReport(appId) + + logInfo("Application report from ASM: \n" + + "\t appMasterRpcPort: " + report.getRpcPort() + "\n" + + "\t appStartTime: " + report.getStartTime() + "\n" + + "\t yarnAppState: " + report.getYarnApplicationState() + "\n" + ) + + // Ready to go, or already gone. + val state = report.getYarnApplicationState() + if (state == YarnApplicationState.RUNNING) { + return + } else if (state == YarnApplicationState.FINISHED || + state == YarnApplicationState.FAILED || + state == YarnApplicationState.KILLED) { + throw new SparkException("Yarn application already ended," + + "might be killed or not able to launch application master.") + } + + Thread.sleep(1000) + } + } + + override def stop() { + super.stop() + client.stop() + logInfo("Stoped") + } + +} diff --git a/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManagerSuite.scala b/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManagerSuite.scala index c0a2af0c6faf3..2941356bc55f9 100644 --- a/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManagerSuite.scala +++ b/yarn/src/test/scala/org/apache/spark/deploy/yarn/ClientDistributedCacheManagerSuite.scala @@ -17,7 +17,7 @@ package org.apache.spark.deploy.yarn -import java.net.URI; +import java.net.URI import org.scalatest.FunSuite import org.scalatest.mock.MockitoSugar