-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
97 lines (72 loc) · 3.58 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# MIT License
# Copyright (c) 2021 alxyok
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import activation as act
import config
import pytorch_lightning as pl
from pytorch_lightning.utilities.cli import MODEL_REGISTRY
import torch
import torch.nn as nn
import torch.optim as optim
import torchmetrics.functional as F
from typing import List
@MODEL_REGISTRY
class LitTBNN(pl.LightningModule):
def __init__(self,
in_feats: int = 47,
out_feats: int = 10,
num_layers: int = 3,
hidden_feats: int = 20,
activation: str = 'selu',
lr: float = 1e-4):
super().__init__()
self.activation = act.fn(activation)
self.lr = lr
self.out_feats = out_feats
self.layers = nn.ModuleList()
self.layers.append(nn.Linear(in_feats, hidden_feats))
self.layers.extend([nn.Linear(hidden_feats,
hidden_feats) for _ in range(num_layers)])
self.layers.append(nn.Linear(hidden_feats, out_feats))
def forward(self, x: List[torch.Tensor]) -> torch.Tensor:
tensors, invariants = x
out = invariants
for layer in self.layers:
out = layer(out)
out = self.activation(out)
out = out.reshape((-1, self.out_feats, 1, 1))
out = torch.einsum('ijkl,ijmn->iklmn', out, tensors)
out = out.reshape((-1, 9))
out = torch.hstack((out[:, 0:1], out[:, 1:2], out[:, 2:3], out[:, 4:5], out[:, 5:6], out[:, 8:9],))
return out
def configure_optimizers(self):
return optim.NAdam(self.parameters(), lr=self.lr, eps=1e-7)
def _common(self, batch: List[torch.Tensor], batch_idx: int, stage: str) -> float:
tensors = torch.stack([x[0] for x in batch])
invariants = torch.stack([x[1] for x in batch])
labels = torch.stack([x[2] for x in batch])
pred = self((tensors, invariants))
loss = F.mean_squared_error(pred, labels)
self.log(f"{stage}_loss", loss, prog_bar=True, on_step=True)
return loss
def training_step(self, batch: List[torch.Tensor], batch_idx: int) -> float:
loss = self._common(batch, batch_idx, 'train')
return loss
def validation_step(self, batch: List[torch.Tensor], batch_idx: int):
loss = self._common(batch, batch_idx, 'val')
def test_step(self, batch: List[torch.Tensor], batch_idx: int):
loss = self._common(batch, batch_idx, 'test')