-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathgen_graph.py
96 lines (83 loc) · 3.92 KB
/
gen_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import argparse
import itertools
import pandas as pd
import numpy as np
from tqdm import tqdm
parser=argparse.ArgumentParser()
parser.add_argument('--data', type=str, help='dataset name')
parser.add_argument('--add_reverse', default=False, action='store_true')
args=parser.parse_args()
df = pd.read_csv('DATA/{}/edges.csv'.format(args.data))
num_nodes = max(int(df['src'].max()), int(df['dst'].max())) + 1
print('num_nodes: ', num_nodes)
int_train_indptr = np.zeros(num_nodes + 1, dtype=np.int)
int_train_indices = [[] for _ in range(num_nodes)]
int_train_ts = [[] for _ in range(num_nodes)]
int_train_eid = [[] for _ in range(num_nodes)]
int_full_indptr = np.zeros(num_nodes + 1, dtype=np.int)
int_full_indices = [[] for _ in range(num_nodes)]
int_full_ts = [[] for _ in range(num_nodes)]
int_full_eid = [[] for _ in range(num_nodes)]
ext_full_indptr = np.zeros(num_nodes + 1, dtype=np.int)
ext_full_indices = [[] for _ in range(num_nodes)]
ext_full_ts = [[] for _ in range(num_nodes)]
ext_full_eid = [[] for _ in range(num_nodes)]
for idx, row in tqdm(df.iterrows(), total=len(df)):
src = int(row['src'])
dst = int(row['dst'])
if row['int_roll'] == 0:
int_train_indices[src].append(dst)
int_train_ts[src].append(row['time'])
int_train_eid[src].append(idx)
if args.add_reverse:
int_train_indices[dst].append(src)
int_train_ts[dst].append(row['time'])
int_train_eid[dst].append(idx)
# int_train_indptr[src + 1:] += 1
if row['int_roll'] != 3:
int_full_indices[src].append(dst)
int_full_ts[src].append(row['time'])
int_full_eid[src].append(idx)
if args.add_reverse:
int_full_indices[dst].append(src)
int_full_ts[dst].append(row['time'])
int_full_eid[dst].append(idx)
# int_full_indptr[src + 1:] += 1
ext_full_indices[src].append(dst)
ext_full_ts[src].append(row['time'])
ext_full_eid[src].append(idx)
if args.add_reverse:
ext_full_indices[dst].append(src)
ext_full_ts[dst].append(row['time'])
ext_full_eid[dst].append(idx)
# ext_full_indptr[src + 1:] += 1
for i in tqdm(range(num_nodes)):
int_train_indptr[i + 1] = int_train_indptr[i] + len(int_train_indices[i])
int_full_indptr[i + 1] = int_full_indptr[i] + len(int_full_indices[i])
ext_full_indptr[i + 1] = ext_full_indptr[i] + len(ext_full_indices[i])
int_train_indices = np.array(list(itertools.chain(*int_train_indices)))
int_train_ts = np.array(list(itertools.chain(*int_train_ts)))
int_train_eid = np.array(list(itertools.chain(*int_train_eid)))
int_full_indices = np.array(list(itertools.chain(*int_full_indices)))
int_full_ts = np.array(list(itertools.chain(*int_full_ts)))
int_full_eid = np.array(list(itertools.chain(*int_full_eid)))
ext_full_indices = np.array(list(itertools.chain(*ext_full_indices)))
ext_full_ts = np.array(list(itertools.chain(*ext_full_ts)))
ext_full_eid = np.array(list(itertools.chain(*ext_full_eid)))
print('Sorting...')
def tsort(i, indptr, indices, t, eid):
beg = indptr[i]
end = indptr[i + 1]
sidx = np.argsort(t[beg:end])
indices[beg:end] = indices[beg:end][sidx]
t[beg:end] = t[beg:end][sidx]
eid[beg:end] = eid[beg:end][sidx]
for i in tqdm(range(int_train_indptr.shape[0] - 1)):
tsort(i, int_train_indptr, int_train_indices, int_train_ts, int_train_eid)
tsort(i, int_full_indptr, int_full_indices, int_full_ts, int_full_eid)
tsort(i, ext_full_indptr, ext_full_indices, ext_full_ts, ext_full_eid)
# import pdb; pdb.set_trace()
print('saving...')
np.savez('DATA/{}/int_train.npz'.format(args.data), indptr=int_train_indptr, indices=int_train_indices, ts=int_train_ts, eid=int_train_eid)
np.savez('DATA/{}/int_full.npz'.format(args.data), indptr=int_full_indptr, indices=int_full_indices, ts=int_full_ts, eid=int_full_eid)
np.savez('DATA/{}/ext_full.npz'.format(args.data), indptr=ext_full_indptr, indices=ext_full_indices, ts=ext_full_ts, eid=ext_full_eid)