-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain_dist.py
542 lines (518 loc) · 27.5 KB
/
train_dist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
import argparse
import os
parser=argparse.ArgumentParser()
parser.add_argument('--data', type=str, help='dataset name')
parser.add_argument('--config', type=str, help='path to config file')
parser.add_argument('--seed', type=int, default=0, help='random seed to use')
parser.add_argument('--num_gpus', type=int, default=4, help='number of gpus to use')
parser.add_argument('--omp_num_threads', type=int, default=8)
parser.add_argument("--local_rank", type=int, default=-1)
args=parser.parse_args()
# set which GPU to use
if args.local_rank < args.num_gpus:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.local_rank)
else:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
os.environ['OMP_NUM_THREADS'] = str(args.omp_num_threads)
os.environ['MKL_NUM_THREADS'] = str(args.omp_num_threads)
import torch
import dgl
import datetime
import random
import math
import threading
import numpy as np
from tqdm import tqdm
from dgl.utils.shared_mem import create_shared_mem_array, get_shared_mem_array
from sklearn.metrics import average_precision_score, roc_auc_score
from modules import *
from sampler import *
from utils import *
def set_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
set_seed(args.seed)
torch.distributed.init_process_group(backend='gloo', timeout=datetime.timedelta(0, 3600))
nccl_group = torch.distributed.new_group(ranks=list(range(args.num_gpus)), backend='nccl')
if args.local_rank == 0:
_node_feats, _edge_feats = load_feat(args.data)
dim_feats = [0, 0, 0, 0, 0, 0]
if args.local_rank == 0:
if _node_feats is not None:
dim_feats[0] = _node_feats.shape[0]
dim_feats[1] = _node_feats.shape[1]
dim_feats[2] = _node_feats.dtype
node_feats = create_shared_mem_array('node_feats', _node_feats.shape, dtype=_node_feats.dtype)
node_feats.copy_(_node_feats)
del _node_feats
else:
node_feats = None
if _edge_feats is not None:
dim_feats[3] = _edge_feats.shape[0]
dim_feats[4] = _edge_feats.shape[1]
dim_feats[5] = _edge_feats.dtype
edge_feats = create_shared_mem_array('edge_feats', _edge_feats.shape, dtype=_edge_feats.dtype)
edge_feats.copy_(_edge_feats)
del _edge_feats
else:
edge_feats = None
torch.distributed.barrier()
torch.distributed.broadcast_object_list(dim_feats, src=0)
if args.local_rank > 0 and args.local_rank < args.num_gpus:
node_feats = None
edge_feats = None
if os.path.exists('DATA/{}/node_features.pt'.format(args.data)):
node_feats = get_shared_mem_array('node_feats', (dim_feats[0], dim_feats[1]), dtype=dim_feats[2])
if os.path.exists('DATA/{}/edge_features.pt'.format(args.data)):
edge_feats = get_shared_mem_array('edge_feats', (dim_feats[3], dim_feats[4]), dtype=dim_feats[5])
sample_param, memory_param, gnn_param, train_param = parse_config(args.config)
orig_batch_size = train_param['batch_size']
if args.local_rank == 0:
if not os.path.isdir('models'):
os.mkdir('models')
path_saver = ['models/{}_{}.pkl'.format(args.data, time.time())]
else:
path_saver = [None]
torch.distributed.broadcast_object_list(path_saver, src=0)
path_saver = path_saver[0]
if args.local_rank == args.num_gpus:
g, df = load_graph(args.data)
num_nodes = [g['indptr'].shape[0] - 1]
else:
num_nodes = [None]
torch.distributed.barrier()
torch.distributed.broadcast_object_list(num_nodes, src=args.num_gpus)
num_nodes = num_nodes[0]
mailbox = None
if memory_param['type'] != 'none':
if args.local_rank == 0:
node_memory = create_shared_mem_array('node_memory', torch.Size([num_nodes, memory_param['dim_out']]), dtype=torch.float32)
node_memory_ts = create_shared_mem_array('node_memory_ts', torch.Size([num_nodes]), dtype=torch.float32)
mails = create_shared_mem_array('mails', torch.Size([num_nodes, memory_param['mailbox_size'], 2 * memory_param['dim_out'] + dim_feats[4]]), dtype=torch.float32)
mail_ts = create_shared_mem_array('mail_ts', torch.Size([num_nodes, memory_param['mailbox_size']]), dtype=torch.float32)
next_mail_pos = create_shared_mem_array('next_mail_pos', torch.Size([num_nodes]), dtype=torch.long)
update_mail_pos = create_shared_mem_array('update_mail_pos', torch.Size([num_nodes]), dtype=torch.int32)
torch.distributed.barrier()
node_memory.zero_()
node_memory_ts.zero_()
mails.zero_()
mail_ts.zero_()
next_mail_pos.zero_()
update_mail_pos.zero_()
else:
torch.distributed.barrier()
node_memory = get_shared_mem_array('node_memory', torch.Size([num_nodes, memory_param['dim_out']]), dtype=torch.float32)
node_memory_ts = get_shared_mem_array('node_memory_ts', torch.Size([num_nodes]), dtype=torch.float32)
mails = get_shared_mem_array('mails', torch.Size([num_nodes, memory_param['mailbox_size'], 2 * memory_param['dim_out'] + dim_feats[4]]), dtype=torch.float32)
mail_ts = get_shared_mem_array('mail_ts', torch.Size([num_nodes, memory_param['mailbox_size']]), dtype=torch.float32)
next_mail_pos = get_shared_mem_array('next_mail_pos', torch.Size([num_nodes]), dtype=torch.long)
update_mail_pos = get_shared_mem_array('update_mail_pos', torch.Size([num_nodes]), dtype=torch.int32)
mailbox = MailBox(memory_param, num_nodes, dim_feats[4], node_memory, node_memory_ts, mails, mail_ts, next_mail_pos, update_mail_pos)
class DataPipelineThread(threading.Thread):
def __init__(self, my_mfgs, my_root, my_ts, my_eid, my_block, stream):
super(DataPipelineThread, self).__init__()
self.my_mfgs = my_mfgs
self.my_root = my_root
self.my_ts = my_ts
self.my_eid = my_eid
self.my_block = my_block
self.stream = stream
self.mfgs = None
self.root = None
self.ts = None
self.eid = None
self.block = None
def run(self):
with torch.cuda.stream(self.stream):
# print(args.local_rank, 'start thread')
nids, eids = get_ids(self.my_mfgs[0], node_feats, edge_feats)
mfgs = mfgs_to_cuda(self.my_mfgs[0])
prepare_input(mfgs, node_feats, edge_feats, pinned=True, nfeat_buffs=pinned_nfeat_buffs, efeat_buffs=pinned_efeat_buffs, nids=nids, eids=eids)
if mailbox is not None:
mailbox.prep_input_mails(mfgs[0], use_pinned_buffers=True)
if memory_param['deliver_to'] == 'neighbors':
self.block = self.my_block[0]
self.mfgs = mfgs
self.root = self.my_root[0]
self.ts = self.my_ts[0]
self.eid = self.my_eid[0]
# print(args.local_rank, 'finished')
def get_stream(self):
return self.stream
def get_mfgs(self):
return self.mfgs
def get_root(self):
return self.root
def get_ts(self):
return self.ts
def get_eid(self):
return self.eid
def get_block(self):
return self.block
if args.local_rank < args.num_gpus:
# GPU worker process
model = GeneralModel(dim_feats[1], dim_feats[4], sample_param, memory_param, gnn_param, train_param).cuda()
find_unused_parameters = True if sample_param['history'] > 1 else False
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], process_group=nccl_group, output_device=args.local_rank, find_unused_parameters=find_unused_parameters)
creterion = torch.nn.BCEWithLogitsLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=train_param['lr'])
pinned_nfeat_buffs, pinned_efeat_buffs = get_pinned_buffers(sample_param, train_param['batch_size'], node_feats, edge_feats)
if mailbox is not None:
mailbox.allocate_pinned_memory_buffers(sample_param, train_param['batch_size'])
tot_loss = 0
prev_thread = None
while True:
my_model_state = [None]
model_state = [None] * (args.num_gpus + 1)
torch.distributed.scatter_object_list(my_model_state, model_state, src=args.num_gpus)
if my_model_state[0] == -1:
break
elif my_model_state[0] == 4:
continue
elif my_model_state[0] == 2:
torch.save(model.state_dict(), path_saver)
continue
elif my_model_state[0] == 3:
model.load_state_dict(torch.load(path_saver, map_location=torch.device('cuda:0')))
continue
elif my_model_state[0] == 5:
torch.distributed.gather_object(float(tot_loss), None, dst=args.num_gpus)
tot_loss = 0
continue
elif my_model_state[0] == 0:
if prev_thread is not None:
my_mfgs = [None]
multi_mfgs = [None] * (args.num_gpus + 1)
my_root = [None]
multi_root = [None] * (args.num_gpus + 1)
my_ts = [None]
multi_ts = [None] * (args.num_gpus + 1)
my_eid = [None]
multi_eid = [None] * (args.num_gpus + 1)
my_block = [None]
multi_block = [None] * (args.num_gpus + 1)
torch.distributed.scatter_object_list(my_mfgs, multi_mfgs, src=args.num_gpus)
if mailbox is not None:
torch.distributed.scatter_object_list(my_root, multi_root, src=args.num_gpus)
torch.distributed.scatter_object_list(my_ts, multi_ts, src=args.num_gpus)
torch.distributed.scatter_object_list(my_eid, multi_eid, src=args.num_gpus)
if memory_param['deliver_to'] == 'neighbors':
torch.distributed.scatter_object_list(my_block, multi_block, src=args.num_gpus)
stream = torch.cuda.Stream()
curr_thread = DataPipelineThread(my_mfgs, my_root, my_ts, my_eid, my_block, stream)
curr_thread.start()
prev_thread.join()
# with torch.cuda.stream(prev_thread.get_stream()):
mfgs = prev_thread.get_mfgs()
model.train()
optimizer.zero_grad()
pred_pos, pred_neg = model(mfgs)
loss = creterion(pred_pos, torch.ones_like(pred_pos))
loss += creterion(pred_neg, torch.zeros_like(pred_neg))
loss.backward()
optimizer.step()
with torch.no_grad():
tot_loss += float(loss)
if mailbox is not None:
with torch.no_grad():
eid = prev_thread.get_eid()
mem_edge_feats = edge_feats[eid] if edge_feats is not None else None
root_nodes = prev_thread.get_root()
ts = prev_thread.get_ts()
block = prev_thread.get_block()
mailbox.update_mailbox(model.module.memory_updater.last_updated_nid, model.module.memory_updater.last_updated_memory, root_nodes, ts, mem_edge_feats, block)
mailbox.update_memory(model.module.memory_updater.last_updated_nid, model.module.memory_updater.last_updated_memory, root_nodes, model.module.memory_updater.last_updated_ts)
if memory_param['deliver_to'] == 'neighbors':
torch.distributed.barrier(group=nccl_group)
if args.local_rank == 0:
mailbox.update_next_mail_pos()
prev_thread = curr_thread
else:
my_mfgs = [None]
multi_mfgs = [None] * (args.num_gpus + 1)
my_root = [None]
multi_root = [None] * (args.num_gpus + 1)
my_ts = [None]
multi_ts = [None] * (args.num_gpus + 1)
my_eid = [None]
multi_eid = [None] * (args.num_gpus + 1)
my_block = [None]
multi_block = [None] * (args.num_gpus + 1)
torch.distributed.scatter_object_list(my_mfgs, multi_mfgs, src=args.num_gpus)
if mailbox is not None:
torch.distributed.scatter_object_list(my_root, multi_root, src=args.num_gpus)
torch.distributed.scatter_object_list(my_ts, multi_ts, src=args.num_gpus)
torch.distributed.scatter_object_list(my_eid, multi_eid, src=args.num_gpus)
if memory_param['deliver_to'] == 'neighbors':
torch.distributed.scatter_object_list(my_block, multi_block, src=args.num_gpus)
stream = torch.cuda.Stream()
prev_thread = DataPipelineThread(my_mfgs, my_root, my_ts, my_eid, my_block, stream)
prev_thread.start()
elif my_model_state[0] == 1:
if prev_thread is not None:
# finish last training mini-batch
prev_thread.join()
mfgs = prev_thread.get_mfgs()
model.train()
optimizer.zero_grad()
pred_pos, pred_neg = model(mfgs)
loss = creterion(pred_pos, torch.ones_like(pred_pos))
loss += creterion(pred_neg, torch.zeros_like(pred_neg))
loss.backward()
optimizer.step()
with torch.no_grad():
tot_loss += float(loss)
if mailbox is not None:
with torch.no_grad():
eid = prev_thread.get_eid()
mem_edge_feats = edge_feats[eid] if edge_feats is not None else None
root_nodes = prev_thread.get_root()
ts = prev_thread.get_ts()
block = prev_thread.get_block()
mailbox.update_mailbox(model.module.memory_updater.last_updated_nid, model.module.memory_updater.last_updated_memory, root_nodes, ts, mem_edge_feats, block)
mailbox.update_memory(model.module.memory_updater.last_updated_nid, model.module.memory_updater.last_updated_memory, root_nodes, model.module.memory_updater.last_updated_ts)
if memory_param['deliver_to'] == 'neighbors':
torch.distributed.barrier(group=nccl_group)
if args.local_rank == 0:
mailbox.update_next_mail_pos()
prev_thread = None
my_mfgs = [None]
multi_mfgs = [None] * (args.num_gpus + 1)
torch.distributed.scatter_object_list(my_mfgs, multi_mfgs, src=args.num_gpus)
mfgs = mfgs_to_cuda(my_mfgs[0])
prepare_input(mfgs, node_feats, edge_feats, pinned=True, nfeat_buffs=pinned_nfeat_buffs, efeat_buffs=pinned_efeat_buffs)
model.eval()
with torch.no_grad():
if mailbox is not None:
mailbox.prep_input_mails(mfgs[0])
pred_pos, pred_neg = model(mfgs)
if mailbox is not None:
my_root = [None]
multi_root = [None] * (args.num_gpus + 1)
my_ts = [None]
multi_ts = [None] * (args.num_gpus + 1)
my_eid = [None]
multi_eid = [None] * (args.num_gpus + 1)
torch.distributed.scatter_object_list(my_root, multi_root, src=args.num_gpus)
torch.distributed.scatter_object_list(my_ts, multi_ts, src=args.num_gpus)
torch.distributed.scatter_object_list(my_eid, multi_eid, src=args.num_gpus)
eid = my_eid[0]
mem_edge_feats = edge_feats[eid] if edge_feats is not None else None
root_nodes = my_root[0]
ts = my_ts[0]
block = None
if memory_param['deliver_to'] == 'neighbors':
my_block = [None]
multi_block = [None] * (args.num_gpus + 1)
torch.distributed.scatter_object_list(my_block, multi_block, src=args.num_gpus)
block = my_block[0]
mailbox.update_mailbox(model.module.memory_updater.last_updated_nid, model.module.memory_updater.last_updated_memory, root_nodes, ts, mem_edge_feats, block)
mailbox.update_memory(model.module.memory_updater.last_updated_nid, model.module.memory_updater.last_updated_memory, root_nodes, model.module.memory_updater.last_updated_ts)
if memory_param['deliver_to'] == 'neighbors':
torch.distributed.barrier(group=nccl_group)
if args.local_rank == 0:
mailbox.update_next_mail_pos()
y_pred = torch.cat([pred_pos, pred_neg], dim=0).sigmoid().cpu()
y_true = torch.cat([torch.ones(pred_pos.size(0)), torch.zeros(pred_neg.size(0))], dim=0)
ap = average_precision_score(y_true, y_pred)
auc = roc_auc_score(y_true, y_pred)
torch.distributed.gather_object(float(ap), None, dst=args.num_gpus)
torch.distributed.gather_object(float(auc), None, dst=args.num_gpus)
else:
# hosting process
train_edge_end = df[df['ext_roll'].gt(0)].index[0]
val_edge_end = df[df['ext_roll'].gt(1)].index[0]
sampler = None
if not ('no_sample' in sample_param and sample_param['no_sample']):
sampler = ParallelSampler(g['indptr'], g['indices'], g['eid'], g['ts'].astype(np.float32),
sample_param['num_thread'], 1, sample_param['layer'], sample_param['neighbor'],
sample_param['strategy']=='recent', sample_param['prop_time'],
sample_param['history'], float(sample_param['duration']))
neg_link_sampler = NegLinkSampler(g['indptr'].shape[0] - 1)
def eval(mode='val'):
if mode == 'val':
eval_df = df[train_edge_end:val_edge_end]
elif mode == 'test':
eval_df = df[val_edge_end:]
elif mode == 'train':
eval_df = df[:train_edge_end]
ap_tot = list()
auc_tot = list()
train_param['batch_size'] = orig_batch_size
itr_tot = max(len(eval_df) // train_param['batch_size'] // args.num_gpus, 1) * args.num_gpus
train_param['batch_size'] = math.ceil(len(eval_df) / itr_tot)
multi_mfgs = list()
multi_root = list()
multi_ts = list()
multi_eid = list()
multi_block = list()
for _, rows in eval_df.groupby(eval_df.index // train_param['batch_size']):
root_nodes = np.concatenate([rows.src.values, rows.dst.values, neg_link_sampler.sample(len(rows))]).astype(np.int32)
ts = np.concatenate([rows.time.values, rows.time.values, rows.time.values]).astype(np.float32)
if sampler is not None:
if 'no_neg' in sample_param and sample_param['no_neg']:
pos_root_end = root_nodes.shape[0] * 2 // 3
sampler.sample(root_nodes[:pos_root_end], ts[:pos_root_end])
else:
sampler.sample(root_nodes, ts)
ret = sampler.get_ret()
if gnn_param['arch'] != 'identity':
mfgs = to_dgl_blocks(ret, sample_param['history'], cuda=False)
else:
mfgs = node_to_dgl_blocks(root_nodes, ts, cuda=False)
multi_mfgs.append(mfgs)
multi_root.append(root_nodes)
multi_ts.append(ts)
multi_eid.append(rows['Unnamed: 0'].values)
if mailbox is not None and memory_param['deliver_to'] == 'neighbors':
multi_block.append(to_dgl_blocks(ret, sample_param['history'], reverse=True, cuda=False)[0][0])
if len(multi_mfgs) == args.num_gpus:
model_state = [1] * (args.num_gpus + 1)
my_model_state = [None]
torch.distributed.scatter_object_list(my_model_state, model_state, src=args.num_gpus)
multi_mfgs.append(None)
my_mfgs = [None]
torch.distributed.scatter_object_list(my_mfgs, multi_mfgs, src=args.num_gpus)
if mailbox is not None:
multi_root.append(None)
multi_ts.append(None)
multi_eid.append(None)
my_root = [None]
my_ts = [None]
my_eid = [None]
torch.distributed.scatter_object_list(my_root, multi_root, src=args.num_gpus)
torch.distributed.scatter_object_list(my_ts, multi_ts, src=args.num_gpus)
torch.distributed.scatter_object_list(my_eid, multi_eid, src=args.num_gpus)
if memory_param['deliver_to'] == 'neighbors':
multi_block.append(None)
my_block = [None]
torch.distributed.scatter_object_list(my_block, multi_block, src=args.num_gpus)
gathered_ap = [None] * (args.num_gpus + 1)
gathered_auc = [None] * (args.num_gpus + 1)
torch.distributed.gather_object(float(0), gathered_ap, dst=args.num_gpus)
torch.distributed.gather_object(float(0), gathered_auc, dst=args.num_gpus)
ap_tot += gathered_ap[:-1]
auc_tot += gathered_auc[:-1]
multi_mfgs = list()
multi_root = list()
multi_ts = list()
multi_eid = list()
multi_block = list()
pbar.update(1)
ap = float(torch.tensor(ap_tot).mean())
auc = float(torch.tensor(auc_tot).mean())
return ap, auc
best_ap = 0
best_e = 0
tap = 0
tauc = 0
for e in range(train_param['epoch']):
print('Epoch {:d}:'.format(e))
time_sample = 0
time_tot = 0
if sampler is not None:
sampler.reset()
if mailbox is not None:
mailbox.reset()
# training
train_param['batch_size'] = orig_batch_size
itr_tot = train_edge_end // train_param['batch_size'] // args.num_gpus * args.num_gpus
train_param['batch_size'] = math.ceil(train_edge_end / itr_tot)
multi_mfgs = list()
multi_root = list()
multi_ts = list()
multi_eid = list()
multi_block = list()
group_indexes = list()
group_indexes.append(np.array(df[:train_edge_end].index // train_param['batch_size']))
if 'reorder' in train_param:
# random chunk shceduling
reorder = train_param['reorder']
group_idx = list()
for i in range(reorder):
group_idx += list(range(0 - i, reorder - i))
group_idx = np.repeat(np.array(group_idx), train_param['batch_size'] // reorder)
group_idx = np.tile(group_idx, train_edge_end // train_param['batch_size'] + 1)[:train_edge_end]
group_indexes.append(group_indexes[0] + group_idx)
base_idx = group_indexes[0]
for i in range(1, train_param['reorder']):
additional_idx = np.zeros(train_param['batch_size'] // train_param['reorder'] * i) - 1
group_indexes.append(np.concatenate([additional_idx, base_idx])[:base_idx.shape[0]])
with tqdm(total=itr_tot + max((val_edge_end - train_edge_end) // train_param['batch_size'] // args.num_gpus, 1) * args.num_gpus) as pbar:
for _, rows in df[:train_edge_end].groupby(group_indexes[random.randint(0, len(group_indexes) - 1)]):
t_tot_s = time.time()
root_nodes = np.concatenate([rows.src.values, rows.dst.values, neg_link_sampler.sample(len(rows))]).astype(np.int32)
ts = np.concatenate([rows.time.values, rows.time.values, rows.time.values]).astype(np.float32)
if sampler is not None:
if 'no_neg' in sample_param and sample_param['no_neg']:
pos_root_end = root_nodes.shape[0] * 2 // 3
sampler.sample(root_nodes[:pos_root_end], ts[:pos_root_end])
else:
sampler.sample(root_nodes, ts)
ret = sampler.get_ret()
time_sample += ret[0].sample_time()
if gnn_param['arch'] != 'identity':
mfgs = to_dgl_blocks(ret, sample_param['history'], cuda=False)
else:
mfgs = node_to_dgl_blocks(root_nodes, ts, cuda=False)
multi_mfgs.append(mfgs)
multi_root.append(root_nodes)
multi_ts.append(ts)
multi_eid.append(rows['Unnamed: 0'].values)
if mailbox is not None and memory_param['deliver_to'] == 'neighbors':
multi_block.append(to_dgl_blocks(ret, sample_param['history'], reverse=True, cuda=False)[0][0])
if len(multi_mfgs) == args.num_gpus:
model_state = [0] * (args.num_gpus + 1)
my_model_state = [None]
torch.distributed.scatter_object_list(my_model_state, model_state, src=args.num_gpus)
multi_mfgs.append(None)
my_mfgs = [None]
torch.distributed.scatter_object_list(my_mfgs, multi_mfgs, src=args.num_gpus)
if mailbox is not None:
multi_root.append(None)
multi_ts.append(None)
multi_eid.append(None)
my_root = [None]
my_ts = [None]
my_eid = [None]
torch.distributed.scatter_object_list(my_root, multi_root, src=args.num_gpus)
torch.distributed.scatter_object_list(my_ts, multi_ts, src=args.num_gpus)
torch.distributed.scatter_object_list(my_eid, multi_eid, src=args.num_gpus)
if memory_param['deliver_to'] == 'neighbors':
multi_block.append(None)
my_block = [None]
torch.distributed.scatter_object_list(my_block, multi_block, src=args.num_gpus)
multi_mfgs = list()
multi_root = list()
multi_ts = list()
multi_eid = list()
multi_block = list()
pbar.update(1)
time_tot += time.time() - t_tot_s
print('Training time:',time_tot)
model_state = [5] * (args.num_gpus + 1)
my_model_state = [None]
torch.distributed.scatter_object_list(my_model_state, model_state, src=args.num_gpus)
gathered_loss = [None] * (args.num_gpus + 1)
torch.distributed.gather_object(float(0), gathered_loss, dst=args.num_gpus)
total_loss = np.sum(np.array(gathered_loss) * train_param['batch_size'])
ap, auc = eval('val')
if ap > best_ap:
best_e = e
best_ap = ap
model_state = [4] * (args.num_gpus + 1)
model_state[0] = 2
my_model_state = [None]
torch.distributed.scatter_object_list(my_model_state, model_state, src=args.num_gpus)
# for memory based models, testing after validation is faster
tap, tauc = eval('test')
print('\ttrain loss:{:.4f} val ap:{:4f} val auc:{:4f}'.format(total_loss, ap, auc))
print('\ttotal time:{:.2f}s sample time:{:.2f}s'.format(time_tot, time_sample))
print('Best model at epoch {}.'.format(best_e))
print('\ttest ap:{:4f} test auc:{:4f}'.format(tap, tauc))
# let all process exit
model_state = [-1] * (args.num_gpus + 1)
my_model_state = [None]
torch.distributed.scatter_object_list(my_model_state, model_state, src=args.num_gpus)