-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathcustom_llm.py
275 lines (239 loc) · 10.8 KB
/
custom_llm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#
# Copyright © 2023 Advanced Micro Devices, Inc. All rights reserved.
#
from transformers import AutoTokenizer, OPTForCausalLM
import torch
import os
import gc
from typing import Any, Sequence
from llama_index.core.llms import CustomLLM, CompletionResponse, LLMMetadata, CompletionResponseGen
from llama_index.core.llms.callbacks import llm_completion_callback
import logging
from transformers import AutoTokenizer, LlamaTokenizer, PreTrainedTokenizerFast, set_seed, TextStreamer
from ryzenai_llm_engine import RyzenAILLMEngine, TransformConfig
from llm_eval import OPTModelEval, LlamaModelEval, AutoModelEval
import time
set_seed(12)
class OurLLM(CustomLLM):
model_name: str = None
tokenizer: Any = None
model: Any = None
quantized: bool = None
w_bit: int = None
target: str = None
algorithm: str = None
group_size: str = None
flash_attention_plus: str = None
fast_attention: str = None
fast_mlp: str = None
precision: Any = None
profilegemm: str = None
assisted_generation: str = None
assistant_model: Any = None
def __init__(self, target=None, model_name=None, quantized=None, algorithm=None, group_size=None, w_bit=None, flash_attention_plus=None, fast_mlp=None, fast_attention=None, precision=None, profilegemm=None, assisted_generation=None, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_name = model_name
self.quantized = quantized
self.w_bit = w_bit
self.target = target
self.algorithm = algorithm
self.group_size = group_size
self.flash_attention_plus = flash_attention_plus
self.fast_mlp = fast_mlp
self.fast_attention = fast_attention
self.precision = precision
self.profilegemm = profilegemm
self.assisted_generation = assisted_generation
trust_remote_code= False
if "opt" in self.model_name:
CausalLMModel = OPTModelEval
elif ("llama" in self.model_name) or ("Llama" in self.model_name):
CausalLMModel = LlamaModelEval
else:
CausalLMModel = AutoModelEval
if "llama-2" in self.model_name:
LMTokenizer = LlamaTokenizer
elif "Llama-3" in self.model_name:
LMTokenizer = PreTrainedTokenizerFast
else:
LMTokenizer = AutoTokenizer
self.tokenizer = LMTokenizer.from_pretrained(self.model_name, trust_remote_code=trust_remote_code)
log_dir = "./logs"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
log_file = log_dir + "/log_%s.log" % (self.model_name.replace("/", "_"))
logging.basicConfig(filename=log_file, filemode="w", level=logging.CRITICAL)
if self.quantized:
model_short_name = (
self.model_name.replace("facebook/", "")
.replace("meta-llama/", "")
)
qmodels_dir = "./quantized_models"
if not os.path.exists(qmodels_dir):
os.makedirs(qmodels_dir)
ckpt = qmodels_dir + "/quantized_%s_w%d_g%d_%s.pth" % (
model_short_name,
self.w_bit,
self.group_size,
self.algorithm,
)
if not os.path.exists(ckpt):
print(f"\n\nQuantized Model not available ... {ckpt} !!! \n")
print(f"\n\n[load_awq_model] quantize using ..\\llm\\run_awq.py --task quantize and generate quantized model first, and then run rag ... exiting ...\n")
raise SystemExit
self.model = torch.load(ckpt)
else:
if (self.model_name == "llama-2-7b-chat") or (self.model_name == "llama-2-13b-chat") or (self.model_name == "llama-2-7b") or (self.model_name == "llama-2-13b"):
self.model = LlamaModelEval.from_pretrained(self.model_name)
self.tokenizer = LlamaTokenizer.from_pretrained(self.model_name)
else:
self.model = CausalLMModel.from_pretrained("facebook/" + self.model_name)
##############################################################
### Assistant Model
if self.assisted_generation:
from transformers import AutoModelForCausalLM
if "opt" in self.model_name:
assistant_model = AutoModelForCausalLM.from_pretrained(
"facebook/opt-125m", torch_dtype=torch.bfloat16
)
else:
assistant_model = AutoModelForCausalLM.from_pretrained(
"JackFram/llama-160m",
torch_dtype=torch.bfloat16,
) # llama
assistant_model = assistant_model.to(torch.bfloat16)
print(f"[load_models] assistant model loaded ...")
print(assistant_model)
else:
assistant_model=None
##############################################################
### Step 2 - Model Transformation & Optimization
transform_config = TransformConfig(
flash_attention_plus=self.flash_attention_plus,
fast_mlp=False,
fast_attention=self.fast_attention,
precision=self.precision,
model_name=self.model_name,
target=self.target,
w_bit=self.w_bit,
group_size=self.group_size,
profilegemm = False,
profile_layer = False,
mhaops = "all",
)
self.model = RyzenAILLMEngine.transform(self.model, transform_config)
self.model = self.model.to(torch.bfloat16)
self.model.eval()
print(self.model)
print(f"model_name: {self.model_name}")
print(f"[load_smoothquant_model] model loaded ...")
def decode_prompt1(self, prompt, input_ids=None, max_new_tokens=None, do_sample=False, temperature=None, assistant_model=assistant_model) ->str:
if input_ids is None:
inputs = self.tokenizer(prompt, return_tensors="pt")
input_ids_ = inputs.input_ids
else:
input_ids_ = input_ids
logging.critical(f"[PROFILE] tokenizer:")
attention_mask = torch.ones(input_ids_.shape)
streamer = TextStreamer(self.tokenizer)
if (self.model_name == "llama-2-7b-chat") or (self.model_name == "llama-2-13b-chat") or (self.model_name == "llama-2-7b") or (self.model_name == "llama-2-13b"):
do_sample = True
temperature = 0.1
gen_begin = time.time()
start = time.perf_counter()
generate_ids = self.model.generate(
input_ids=input_ids_,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
streamer=streamer,
assistant_model=assistant_model,
do_sample=True,
temperature=0.1,
top_p=0.95,
pad_token_id=self.model.tokenizer.eos_token_id,
)
end = time.perf_counter()
gen_end = time.time()
gen_time = gen_end - gen_begin
print(f"runtime of generate is {gen_time}")
elif self.model_name == "Meta-Llama-3-8B-Instruct":
do_sample = True
temperature = 0.1
start = time.perf_counter()
generate_ids = self.model.generate(
input_ids=input_ids_,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
streamer=streamer,
assistant_model=assistant_model,
do_sample=True,
temperature=0.6,
top_p=0.9,
pad_token_id=self.model.tokenizer.eos_token_id,
)
end = time.perf_counter()
else:
start = time.perf_counter()
generate_ids = self.model.generate(
input_ids=input_ids_,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
streamer=streamer,
assistant_model=assistant_model,
do_sample=True,
temperature=temperature,
pad_token_id=self.tokenizer.eos_token_id
)
end = time.perf_counter()
generate_time = end - start
prompt_tokens = input_ids_.shape[1]
num_tokens_out = generate_ids.shape[1]
new_tokens_generated = num_tokens_out - prompt_tokens
time_per_token = (generate_time / new_tokens_generated) * 1e3
response = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# logging.critical(f"[PROFILE] generate: {generate_time} for {num_tokens_out} tokens; prompt-tokens: {prompt_tokens}; time per generated token: {time_per_token}")
# logging.critical(f"response: {response}")
len_of_prompt = len(prompt)
# print(f"length of prompt: {len_of_prompt}")
# print(f"num of input tokens: {len(input_ids_[0])}")
len_of_resp = len(response)
# print(f"length of response: {len_of_resp}")
# print(f"num of tokens generated: {len(generate_ids[0])}")
return response
def generate_response(self, prompt, max_new_tokens=120):
if self.quantized:
do_sample=False
temperature=None
m = max_new_tokens
logging.critical("*"*40)
print("*"*40)
resp = self.decode_prompt1(prompt, max_new_tokens=m, do_sample=do_sample, temperature=temperature)
logging.shutdown()
else:
inputs = self.tokenizer(prompt, return_tensors="pt")
m = max_new_tokens
# Generate
gen_begin = time.time()
generate_ids = self.model.generate(inputs.input_ids, max_new_tokens=m)#max_length=30
gen_end = time.time()
print(f"runtime of generate1 is {gen_end - gen_begin}")
dec_begin = time.time()
resp = self.tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
dec_end = time.time()
print(f"runtime of decode1 is {dec_end - dec_begin}")
return resp
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
return LLMMetadata(
model_name=self.model_name,
)
@llm_completion_callback()
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
response = self.generate_response(prompt)
return CompletionResponse(text=response)
@llm_completion_callback()
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
pass
# cleanup
gc.collect()