-
Notifications
You must be signed in to change notification settings - Fork 6
/
trattack_imagenet.py
345 lines (277 loc) · 11.9 KB
/
trattack_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
'''
This code is mainly copied from: https://github.com/pytorch/examples/blob/master/imagenet/main.py
'''
import argparse
import os
import random
import shutil
import time
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
import numpy as np
import trattack
from trattack.attack_utils import *
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
# Turn interactive plotting off
plt.ioff()
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default = 1, type = int,
metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--eps', default=0.005, type=float,
help='perturbation magnitude')
parser.add_argument('--classes', default = 9, type = int,
help='attack the best/hardest classes of out 9 classes')
parser.add_argument('--norm', default = 2, type = int,
help='2 or 8 (Infity) norm')
parser.add_argument('--iter', default = 5000, type = int,
help='Largest number of iterations')
parser.add_argument('--worst-case', default = 0, type = int,
help='use best/hardest (worst) case attack')
parser.add_argument('--adap', action = 'store_true', default = False,
help='Using adaptive method or not')
# for plotting
parser.add_argument('--plotting', action = 'store_true',
help='plot one of the example')
parser.add_argument('--plotting_path', type = str, default = './',
help='location for storing perturbed images')
def main():
global args, best_acc1
args = parser.parse_args()
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
args.distributed = args.world_size > 1
if args.distributed:
dist.init_process_group(backend = args.dist_backend, init_method = args.dist_url,
world_size = args.world_size)
if args.norm == 2:
print('\nPerforming TR L2 Attack')
elif args.norm == 8:
print('\nPerforming TR Linf Attack')
else:
print('\nError! Incorrect option passed for norm')
return
# create model
if args.pretrained:
print("=> using pre-trained model '{}'".format(args.arch))
model = models.__dict__[args.arch](pretrained = True)
else:
print("=> creating model '{}'".format(args.arch))
model = models.__dict__[args.arch]()
if args.gpu is not None:
model = model.cuda(args.gpu)
elif args.distributed:
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
else:
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum = args.momentum,
weight_decay = args.weight_decay)
cudnn.benchmark = True
# Data loading code
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean = [0.485, 0.456, 0.406],
std = [0.229, 0.224, 0.225])
test_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size = args.batch_size, shuffle = False,
num_workers = args.workers)
bz = args.batch_size
stat_time = time.time()
X_ori = torch.Tensor(bz, 3, 224, 224)
X_tr_first = torch.Tensor(bz, 3, 224, 224)
Y_test = torch.LongTensor(bz)
result_acc = 0.
result_dis = 0.
result_large = 0.
num_data = 0
start_time = time.time()
for i, (data, target) in enumerate(test_loader):
X_ori = data
Y_test = target
num_data += len(target)
# Apply TR Attack
if not args.adap:
X_tr_first, _ = trattack.tr_attack_iter(model, data, target, args.eps, c = args.classes, p = args.norm, iter = args.iter, worst_case = args.worst_case)
else:
X_tr_first, _ = trattack.tr_attack_adaptive_iter(model, data, target, args.eps, c = args.classes, p = args.norm, iter = args.iter, worst_case = args.worst_case)
acc = validate_all(X_ori, Y_test, model, criterion)
acc = validate_all(X_tr_first, Y_test, model, criterion)
result_acc += acc
dis, ldis = distance(X_tr_first.cpu(), X_ori)
result_dis += dis
result_large = max(ldis, result_large)
if args.plotting:
# plot the first image of the final batch
print('\nSaving purturbed images to ', args.plotting_path)
plotting(X_ori[0:1, :], X_tr_first[0:1, :], model)
print('time: %.4f' % (time.time() - start_time))
print('\nAccuracy after TR perturbation: %.4f' % (result_acc / float(num_data)))
if num_data >= 2:
print('\nAverage TR relative perturbation (among input images): %.4f' % (result_dis / float(num_data)))
print('\nMaximum TR relative perturbation (among input images): %.4f' % result_large)
else:
print('\nThe TR relative perturbation of this image is: %.4f' % result_large)
def plotting(X1, X2, model):
model.eval()
output1 = model(X1.cuda())
output2 = model(X2.cuda())
_, pred1 = torch.max(output1, dim=1)
_, pred2 = torch.max(output2, dim=1)
# transfer processing image back to [0,1]
invTrans = transforms.Compose([ transforms.Normalize(mean = [ 0., 0., 0. ], std = [ 1.0 / 0.229, 1.0 / 0.224, 1.0 / 0.225 ]),
transforms.Normalize(mean = [ -0.485, -0.456, -0.406 ], std = [ 1., 1., 1. ]),])
X1_np = invTrans(X1[0, :]).cpu().numpy()
X2_np = invTrans(X2[0, :]).cpu().numpy()
X1_np = np.swapaxes(X1_np, 0, 2)
X2_np = np.swapaxes(X2_np, 0, 2)
X1_np = np.rot90(X1_np, k = -1, axes = (0, 1))
X2_np = np.rot90(X2_np, k = -1, axes = (0, 1))
X1_np[X1_np > 1] = 1
X1_np[X1_np < 0] = 0
X2_np[X2_np > 1] = 1
X2_np[X2_np < 0] = 0
fig=plt.figure(figsize=(10, 3))
plt.subplot(131)
plt.imshow(X1_np)
plt.axis('off')
plt.title('Origianl with Pred %d' % pred1)
plt.subplot(132)
plt.imshow(X2_np)
plt.axis('off')
plt.title('TR Perturbed with Pred %d' % pred2)
plt.subplot(133)
plt.imshow(np.sum(np.abs(X1_np-X2_np), axis=2), cmap='hot', interpolation='nearest')
plt.axis('off')
plt.title('TR Perturbation')
plt.colorbar()
plt.savefig(args.plotting_path + 'image.png')
def validate_all(X, Y, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
num_data = X.size()[0]
num_iter = num_data//1
with torch.no_grad():
end = time.time()
for i in range(num_iter):
#if args.gpu is not None:
input = X[i : (i + 1),:].cuda(args.gpu, non_blocking = True)
target = Y[i : (i + 1)].cuda(args.gpu, non_blocking = True)
# compute output
output = model(input)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), input.size(0))
top1.update(acc1[0], input.size(0))
top5.update(acc5[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'
# .format(top1=top1, top5=top5))
return top1.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0.
self.avg = 0.
self.sum = 0.
self.count = 0.
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()