forked from SenticNet/personality-detection
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconv_net_train_keras.py
316 lines (252 loc) · 11.7 KB
/
conv_net_train_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np
import csv
import joblib
import pickle
import sys
import keras
from keras.layers import Input, concatenate, Dropout, Masking, Bidirectional, TimeDistributed
from keras.layers import Conv3D, MaxPooling3D, Dense, Activation, Reshape, GRU, SimpleRNN, LSTM
from keras.models import Model, Sequential
from keras.activations import softmax
from keras.utils import to_categorical, Sequence
from keras.callbacks import CSVLogger
from keras.callbacks import History, BaseLogger, ModelCheckpoint
import pickle
from pathlib import Path
from keras.callbacks import ModelCheckpoint
import os
import logging
model_name = "main_model"
logging.basicConfig(filename='logger_' + model_name + '.log', level=logging.DEBUG, format='%(asctime)s %(message)s')
class TestCallback(keras.callbacks.Callback):
def __init__(self, test_data):
self.test_data = test_data
def on_epoch_end(self, epoch, logs={}):
if epoch % 5 == 0:
test_data, step_size = self.test_data
loss, acc = self.model.evaluate_generator(test_data, steps=step_size)
logging.info('\nTesting loss: {}, acc: {}\n'.format(loss, acc))
class MyLogger(keras.callbacks.Callback):
def __init__(self, n):
self.n = n # logging.info loss & acc every n epochs
def on_epoch_end(self, epoch, logs={}):
if epoch % self.n == 0:
curr_loss = logs.get('loss')
curr_acc = logs.get('acc') * 100
val_loss = logs.get('val_loss')
val_acc = logs.get('val_acc')
logging.info("epoch = %4d loss = %0.6f acc = %0.2f%%" % (epoch, curr_loss, curr_acc))
logging.info("epoch = %4d val_loss = %0.6f val_acc = %0.2f%%" % (epoch, val_loss, val_acc))
class Generator(Sequence):
def __init__(self, x_set, x_set_mairesse, y_set, batch_size, W, sent_max_count, word_max_count, embbeding_size):
self.x, self.mairesse, self.y = x_set, x_set_mairesse, y_set
self.batch_size = batch_size
self.W = W
self.sent_max_count = sent_max_count
self.word_max_count = word_max_count
self.embbeding_size = embbeding_size
def __len__(self):
return int(np.ceil(len(self.x) / float(self.batch_size)))
def __getitem__(self, idx):
batch_x = self.x[idx * self.batch_size:(idx + 1) * self.batch_size]
batch_m = self.mairesse[idx * self.batch_size:(idx + 1) * self.batch_size]
batch_y = self.y[idx * self.batch_size:(idx + 1) * self.batch_size]
return [make_input_batch(batch_x, W, self.sent_max_count, self.word_max_count, self.embbeding_size), batch_m], \
to_categorical(batch_y, num_classes=2)
# def get_checkpoints(model_dir):
# saved_checkpoints = [f for f in os.listdir(model_dir) if f.startswith('model-' + model_name)]
# saved_checkpoints.sort(reverse=True)
# return saved_checkpoints
def train_conv_net(datasets, W, historyfile, iteration,
embbeding_size = 300,
n_epochs = 50,
batch_size = 50):
word_max_count = len(datasets[0][0][0])
sent_max_count = len(datasets[0][0])
# define model architecture
model_input = Input(shape=(sent_max_count, word_max_count, embbeding_size, 1), name='main_input')
# unigrams
model_1 = Sequential()
model_1.add(Conv3D(200, (1, 1, embbeding_size), activation='relu',
input_shape=(sent_max_count, word_max_count, embbeding_size, 1)))
model_1.add(MaxPooling3D((1, word_max_count, 1)))
model_output_1 = model_1(model_input)
# bigrams
model_2 = Sequential()
model_2.add(Conv3D(200, (1, 2, embbeding_size), activation='relu',
input_shape=(sent_max_count, word_max_count, embbeding_size, 1)))
model_2.add(MaxPooling3D((1, word_max_count - 1, 1)))
model_output_2 = model_2(model_input)
# trigrams
model_3 = Sequential()
model_3.add(Conv3D(200, (1, 3, embbeding_size), activation='relu',
input_shape=(sent_max_count, word_max_count, embbeding_size, 1)))
model_3.add(MaxPooling3D((1, word_max_count - 2, 1)))
model_output_3 = model_3(model_input)
model = concatenate([model_output_1, model_output_2, model_output_3], axis=-1)
after_MaxPooling = MaxPooling3D((sent_max_count, 1, 1))(model)
mairesse_input = Input(shape=(84,), name='mairesse')
model = Reshape((600,))(after_MaxPooling)
concatenated_with_mairsse = concatenate([model, mairesse_input], axis=-1)
model = Dense(200, activation='sigmoid')(concatenated_with_mairsse)
model = Dropout(0.5)(model)
output = Dense(2, activation='softmax')(model)
final_model = Model(inputs=[model_input, mairesse_input], outputs=output)
final_model.compile(optimizer='adadelta', loss='categorical_crossentropy', metrics=['accuracy'])
validation_size = int(np.round(0.1 * len(datasets[0])))
X_train = datasets[0][validation_size:]
y_train = datasets[1][validation_size:]
X_validation = datasets[0][:validation_size]
y_validation = datasets[1][:validation_size]
X_test = datasets[2]
y_test = datasets[3]
mairesse_train = datasets[4][validation_size:]
mairesse_test = datasets[5]
mairesse_validation = datasets[4][:validation_size]
train_data_G = Generator(X_train, mairesse_train, y_train, batch_size, W, sent_max_count, word_max_count,
embbeding_size)
val_data_G = Generator(X_validation, mairesse_validation, y_validation, batch_size, W, sent_max_count,
word_max_count,
embbeding_size)
test_data_G = Generator(X_test, mairesse_test, y_test, batch_size, W, sent_max_count, word_max_count,
embbeding_size)
# model_dir = 'models/results/' + model_name + '/' + str(iteration)
# checkpoint_path = model_dir + "/model-" + model_name + '-' + str(iteration) + "-{acc:02f}.hdf5"
# # Keep only a single checkpoint, the best over test accuracy.
# checkpoint = ModelCheckpoint(str(checkpoint_path),
# monitor='acc',
# verbose=1)
# saved_checkpoints = get_checkpoints(model_dir)
# if len(saved_checkpoints) > 0:
# last_checkpoint = saved_checkpoints[0]
# logging.info("Resume training from " + last_checkpoint)
# final_model.load_weights(model_dir + '/' + last_checkpoint)
# else:
# logging.info("Traning from scratch!")
# logging.info(len(X_train) / batch_size)
history = History()
final_model.fit_generator(train_data_G, validation_data=val_data_G, steps_per_epoch=len(X_train) / batch_size,
validation_steps=len(X_validation) / batch_size, epochs=n_epochs,
callbacks=[my_logger, history])
# final_model.fit_generator(train_data_G, validation_data=val_data_G, steps_per_epoch=len(X_train) / batch_size,
# validation_steps=len(X_validation) / batch_size, epochs=n_epochs,
# callbacks=[my_logger, history, checkpoint])
# logging.info("loading best model weights")
# saved_checkpoints = get_checkpoints(model_dir)
# last_checkpoint = saved_checkpoints[0]
# logging.info("Resume weights from " + last_checkpoint)
# final_model.load_weights(model_dir + '/' + last_checkpoint)
logging.info("evaluating model...")
loss, acc = final_model.evaluate_generator(test_data_G, steps=len(datasets[0]) / batch_size)
hist = str(history.history)
pickle.dump(hist, historyfile)
logging.info('score = ' + str(loss) + "," + str(acc))
return loss, acc
def make_input_batch(X_train, W, sent_max_count, word_max_count, embbeding_size):
size = (len(X_train), sent_max_count, word_max_count, embbeding_size)
input_train = np.zeros(size)
for rev_dx, review in enumerate(X_train):
for sent_idx, sentence in enumerate(review):
sentence = np.array(sentence)
indexes = np.where(sentence != 0)[0]
for idx in indexes:
input_train[rev_dx][sent_idx][idx] = W[sentence[idx]]
input_train = input_train.reshape([len(X_train), sent_max_count, word_max_count, embbeding_size, 1])
return input_train
def make_idx_data_cv(revs, word_idx_map, mairesse, charged_words, cv, per_attr=0, max_l=51, max_s=200, k=300,
filter_h=5):
"""
Transforms sentences into a 2-d matrix.
"""
trainX, testX, trainY, testY, mTrain, mTest = [], [], [], [], [], []
for idx, rev in enumerate(revs):
sent = get_idx_from_sent(rev["text"], word_idx_map,
charged_words,
max_l, max_s, k, filter_h)
if rev["split"] == cv:
testX.append(sent)
testY.append(rev['y' + str(per_attr)])
mTest.append(mairesse[rev["user"]])
else:
trainX.append(sent)
trainY.append(rev['y' + str(per_attr)])
mTrain.append(mairesse[rev["user"]])
trainX = np.array(trainX)
testX = np.array(testX)
trainY = np.array(trainY)
testY = np.array(testY)
mTrain = np.array(mTrain)
mTest = np.array(mTest)
return [trainX, trainY, testX, testY, mTrain, mTest]
def get_idx_from_sent(status, word_idx_map, charged_words, max_l=51, max_s=200, k=300, filter_h=5):
"""
Transforms sentence into a list of indices. Pad with zeroes.
"""
x = []
pad = filter_h - 1
length = len(status)
pass_one = True
while len(x) == 0:
charged_counter = 0
not_charged_counter = 0
for i in range(length):
words = status[i].split()
if pass_one:
words_set = set(words)
if len(charged_words.intersection(words_set)) == 0:
not_charged_counter += 1
continue
else:
if np.random.randint(0, 2) == 0:
continue
charged_counter += 1
y = []
for i in range(pad):
y.append(0)
for word in words:
if word in word_idx_map:
y.append(word_idx_map[word])
while len(y) < max_l + 2 * pad:
y.append(0)
x.append(y)
pass_one = False
if len(x) < max_s:
x.extend([[0] * (max_l + 2 * pad)] * (max_s - len(x)))
return x
if __name__ == "__main__":
logging.info("loading data...: floatx:")
my_logger = MyLogger(n=1)
x = joblib.load("essays_mairesse.p")
revs, W, W2, word_idx_map, vocab, mairesse = x[0], x[1], x[2], x[3], x[4], x[5]
logging.info("data loaded!")
try:
attr = int(sys.argv[1])
except IndexError:
attr = 4
r = range(0, 10)
ofile = open('perf_output_' + model_name + "_" + str(attr) + '_w2v.txt', 'w')
charged_words = []
emof = open("Emotion_Lexicon.csv", "rt")
history_file_name = 'history_' + model_name + '_attr_' + str(attr) + '_w2v.txt'
historyfile = open(history_file_name, 'wb')
csvf = csv.reader(emof, delimiter=',', quotechar='"')
first_line = True
for line in csvf:
if first_line:
first_line = False
continue
if line[11] == "1":
charged_words.append(line[0])
emof.close()
charged_words = set(charged_words)
results = []
for i in r:
logging.info("iteration = %4d from %4d " % (i, len(r)))
datasets = make_idx_data_cv(revs, word_idx_map, mairesse, charged_words, i, attr, max_l=149,
max_s=312, k=300,
filter_h=3)
results = train_conv_net(datasets, W, historyfile, i)
ofile.write(str(results) + "\n")
ofile.flush()
ofile.write(str(results))
historyfile.close()