forked from usgo/AGA-Ratings-Program
-
Notifications
You must be signed in to change notification settings - Fork 0
/
collection.cpp
685 lines (537 loc) · 25 KB
/
collection.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
/*************************************************************************************
Copyright 2010 Philip Waldron
This file is part of BayRate.
BayRate is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
BayRate is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with BayRate. If not, see <http://www.gnu.org/licenses/>.
***************************************************************************************/
#include <iostream>
#include <vector>
#include <map>
#include <cmath>
#include <algorithm>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_interp.h>
#include <gsl/gsl_multimin.h>
#include <gsl/gsl_sf_erf.h>
#include <gsl/gsl_blas.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_rng.h>
#include <gsl/gsl_randist.h>
#include "collection.h"
#include "player.h"
#include "game.h"
#include "tdListEntry.h"
#include <assert.h>
using namespace std;
double my_new_f (const gsl_vector *v, void *c) {
double pt;
collection *collect_ptr = (collection *)c;
pt = collect_ptr->calc_pt(v);
return (-pt);
}
void my_new_df (const gsl_vector *v, void *c, gsl_vector *df) {
collection *collect_ptr = (collection *)c;
collect_ptr->calc_pt_df(v, df);
gsl_vector_scale(df, -1.0);
}
void my_new_fdf (const gsl_vector *v, void *c, double *f, gsl_vector *df) {
*f = my_new_f (v, c);
my_new_df(v, c, df);
}
collection::collection(void)
{
// Set necessary constants
PI = 4.0 * atan(1.0);
// Initialize a random number generator
T = gsl_rng_default;
r = gsl_rng_alloc(T);
// Emit messages?
quiet = false;
fdfiterations = 0;
simplexiterations = 0;
}
collection::~collection(void)
{
gsl_rng_free(r);
}
void collection::reset() {
playerHash.clear();
gameList.clear();
}
void collection::setQuiet (bool q) {
quiet = q;
}
int collection::getFdfIterations() {
return fdfiterations;
}
int collection::getSimplexIterations() {
return simplexiterations;
}
/****************************************************************
calc_sigma2 ()
Calculate the new sigmas for players. This function uses numerical
integration technique to calculate the variances directly.
*****************************************************************/
void collection::calc_sigma2() {
map<int, double> newSigma;
double sumX2W, sumW;
double x, r, z, w;
for (map<int, player>::iterator It=playerHash.begin(); It!=playerHash.end(); It++) {
sumX2W = 0;
sumW = 0;
for (int i=0; i<100; i++) {
x = -5.0*It->second.sigma - It->second.sigma/20.0 + i*It->second.sigma/10;
r = It->second.rating + x;
z = (r - It->second.seed)/It->second.sigma;
w = exp(-z*z/2)/sqrt(2*PI);
// Inefficient, but fast enough for typical AGA cases. A more advanced game indexing
// data structure would be appropriate for larger tournaments
for (vector<game>::iterator gameIt=gameList.begin(); gameIt!=gameList.end(); gameIt++) {
if (gameIt->white == It->second.id) {
double rd = r - playerHash[gameIt->black].rating - gameIt->handicapeqv;
if (gameIt->whiteWins)
w *= gsl_sf_erfc(-rd/gameIt->sigma_px/sqrt(2.0));
else
w *= gsl_sf_erfc(rd/gameIt->sigma_px/sqrt(2.0));
}
else if (gameIt->black == It->second.id) {
double rd = playerHash[gameIt->white].rating - r - gameIt->handicapeqv;
if (gameIt->whiteWins)
w *= gsl_sf_erfc(-rd/gameIt->sigma_px/sqrt(2.0));
else
w *= gsl_sf_erfc(rd/gameIt->sigma_px/sqrt(2.0));
}
}
sumX2W += x*x*w;
sumW += w;
}
// Stuff the new sigma into a holding array until all the other sigmas are calculated.
newSigma[It->second.id] = sqrt(sumX2W/sumW);
}
// Copy over the new sigmas now that all the calculations are done
for (map<int, player>::iterator It=playerHash.begin(); It!=playerHash.end(); It++)
It->second.sigma = newSigma[It->second.id];
}
/****************************************************************
calc_sigma ()
Calculate the new sigmas for players. This function uses the Laplace
approximation to calculate the sigmas.
TODO: deal with the possibility of the matrix inversion routine failing.
This can happen if the matrix is not positive definite.
In that case calc_sigma2() should be used as a backup.
*****************************************************************/
void collection::calc_sigma() {
int signum;
gsl_matrix *A = gsl_matrix_calloc(playerHash.size(), playerHash.size());
gsl_matrix *B = gsl_matrix_calloc(playerHash.size(), playerHash.size());
// Contribution from each player is 1/sigma^2
for (map<int, player>::iterator playerIt = playerHash.begin(); playerIt != playerHash.end(); playerIt++) {
gsl_matrix_set(A, playerIt->second.index, playerIt->second.index, 1.0/playerIt->second.sigma/playerIt->second.sigma);
}
for (vector<game>::iterator gameIt = gameList.begin(); gameIt != gameList.end(); gameIt++) {
if (gameIt->whiteWins) {
double rd = playerHash[gameIt->white].rating - playerHash[gameIt->black].rating - gameIt->handicapeqv;
double temp1 = exp(-rd*rd/2.0/gameIt->sigma_px/gameIt->sigma_px);
double temp2 = gsl_sf_erfc(-rd/sqrt(2.0)/gameIt->sigma_px);
gsl_matrix_set(A, playerHash[gameIt->white].index, playerHash[gameIt->black].index, -sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 - 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->white].index, playerHash[gameIt->black].index));
gsl_matrix_set(A, playerHash[gameIt->black].index, playerHash[gameIt->white].index, -sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 - 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->black].index, playerHash[gameIt->white].index));
gsl_matrix_set(A, playerHash[gameIt->white].index, playerHash[gameIt->white].index, sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 + 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->white].index, playerHash[gameIt->white].index));
gsl_matrix_set(A, playerHash[gameIt->black].index, playerHash[gameIt->black].index, sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 + 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->black].index, playerHash[gameIt->black].index));
}
// else black wins
else {
double rd = playerHash[gameIt->white].rating - playerHash[gameIt->black].rating - gameIt->handicapeqv;
double temp1 = exp(-rd*rd/2.0/gameIt->sigma_px/gameIt->sigma_px);
double temp2 = gsl_sf_erfc(rd/sqrt(2.0)/gameIt->sigma_px);
gsl_matrix_set(A, playerHash[gameIt->white].index, playerHash[gameIt->black].index, sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 - 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->white].index, playerHash[gameIt->black].index));
gsl_matrix_set(A, playerHash[gameIt->black].index, playerHash[gameIt->white].index, sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 - 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->black].index, playerHash[gameIt->white].index));
gsl_matrix_set(A, playerHash[gameIt->white].index, playerHash[gameIt->white].index, -sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 + 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->white].index, playerHash[gameIt->white].index));
gsl_matrix_set(A, playerHash[gameIt->black].index, playerHash[gameIt->black].index, -sqrt(2.0/PI)/gameIt->sigma_px/gameIt->sigma_px/gameIt->sigma_px * rd * temp1 / temp2 + 2.0/PI/gameIt->sigma_px/gameIt->sigma_px * temp1 * temp1 / temp2 / temp2 + gsl_matrix_get(A, playerHash[gameIt->black].index, playerHash[gameIt->black].index));
}
}
gsl_permutation *p = gsl_permutation_alloc(playerHash.size());
gsl_linalg_LU_decomp(A, p, &signum);
gsl_linalg_LU_invert(A, p, B);
for (map<int, player>::iterator playerIt = playerHash.begin(); playerIt != playerHash.end(); playerIt++) {
playerIt->second.sigma = sqrt(gsl_matrix_get(B, playerIt->second.index, playerIt->second.index));
}
gsl_permutation_free(p);
gsl_matrix_free(A);
gsl_matrix_free(B);
}
/****************************************************************
calc_pt ()
Calculate the logarithm of the total likelihood of a particular
set of ratings
*****************************************************************/
double collection::calc_pt(const gsl_vector *v) {
map<int, player>::iterator playerIt;
vector<game>::iterator gameIt;
double z, rd;
double pt = 0.0;
double p;
for (playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
playerIt->second.rating = gsl_vector_get(v, playerIt->second.index);
z = (playerIt->second.rating - playerIt->second.seed)/playerIt->second.sigma;
pt += -z*z/2 - 0.5 * log(2*PI);
}
for (gameIt=gameList.begin(); gameIt!=gameList.end(); gameIt++) {
if ( (playerHash.find(gameIt->white) == playerHash.end()) || (playerHash.find(gameIt->black) == playerHash.end()) ) {
cout << "Error: game record involves player with no corresponding entry in player list. id = " << gameIt->white << ' ' << gameIt->black << endl;
exit(1);
}
rd = playerHash[gameIt->white].rating - playerHash[gameIt->black].rating - gameIt->handicapeqv;
if (gameIt->whiteWins) {
p = gsl_sf_log_erfc(-rd/gameIt->sigma_px/sqrt(2.0)) - log(2.0);
}
else {
p = gsl_sf_log_erfc(rd/gameIt->sigma_px/sqrt(2.0)) - log(2.0);
}
pt += p;
}
return pt;
}
/****************************************************************
calc_pt_df ()
Calculate the gradient of the logarithm of the total likelihood of a particular set of ratings
The likelihood function has a player contribution, which is nominally Gaussian
(linear when a logarithm is taken) and depends only on sigma and the deviation from a player's
seed ratings. There is also a game contribution, which depends on the result and game conditions
of a particular contest
*****************************************************************/
double collection::calc_pt_df(const gsl_vector *v, gsl_vector *df) {
map<int, player>::iterator playerIt;
vector<game>::iterator gameIt;
double z, rd;
double dp;
double temp;
// Zero out the initial gradient vector
gsl_vector_set_zero (df);
// Calculate the player contribution to the likelihood
for (playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
playerIt->second.rating = gsl_vector_get(v, playerIt->second.index);
z = (playerIt->second.rating - playerIt->second.seed)/playerIt->second.sigma;
gsl_vector_set(df, playerIt->second.index, -z/playerIt->second.sigma);
}
// Calculate the game contribution.
for (gameIt=gameList.begin(); gameIt!=gameList.end(); gameIt++) {
// Check if somehow a game got inserted without a corresponding player entry
if ( (playerHash.find(gameIt->white) == playerHash.end()) || (playerHash.find(gameIt->black) == playerHash.end()) ) {
cout << "Error: game record involves player with no corresponding entry in player list" << endl;
exit(1);
}
rd = playerHash[gameIt->white].rating - playerHash[gameIt->black].rating - gameIt->handicapeqv;
// Add in the appropriate contribution
if (gameIt->whiteWins) {
dp = 1/gameIt->sigma_px * sqrt(2.0/PI) * exp(-rd*rd/(2.0*gameIt->sigma_px*gameIt->sigma_px)) / gsl_sf_erfc(-rd/(sqrt(2.0)*gameIt->sigma_px));
temp = gsl_vector_get(df, playerHash[gameIt->white].index);
gsl_vector_set(df, playerHash[gameIt->white].index, dp + temp);
temp = gsl_vector_get(df, playerHash[gameIt->black].index);
gsl_vector_set(df, playerHash[gameIt->black].index, -dp + temp);
}
else {
dp = 1/gameIt->sigma_px * sqrt(2.0/PI) * exp(-rd*rd/(2.0*gameIt->sigma_px*gameIt->sigma_px)) / gsl_sf_erfc(rd/(sqrt(2.0)*gameIt->sigma_px));
temp = gsl_vector_get(df, playerHash[gameIt->white].index);
gsl_vector_set(df, playerHash[gameIt->white].index, -dp + temp);
temp = gsl_vector_get(df, playerHash[gameIt->black].index);
gsl_vector_set(df, playerHash[gameIt->black].index, dp + temp);
}
}
return 0;
}
/****************************************************************
calc_ratings ()
Calculate ratings using a multidimensional simplex method. This
technique is slower than the conjuagate gradient method, but it
is more reliable.
This function should be slow, but foolproof. If an error occurs here
the program prints an error message and fails.
*****************************************************************/
int collection::calc_ratings() {
const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
gsl_multimin_fminimizer *s = NULL;
gsl_vector *ss, *x;
gsl_multimin_function minex_func;
size_t iter = 0;
int status;
double size;
for (vector<game>::iterator gameIt=gameList.begin(); gameIt!=gameList.end(); gameIt++) {
gameIt->calc_handicapeqv();
}
// Close the kyu/dan boundary
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
if (playerIt->second.seed > 0)
playerIt->second.seed -= 1.0;
else
playerIt->second.seed += 1.0;
}
/* Starting point */
x = gsl_vector_alloc (playerHash.size());
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
playerIt->second.index = distance(playerHash.begin(), playerIt);
gsl_vector_set (x, playerIt->second.index, playerIt->second.seed);
}
/* Set initial step sizes to 2 */
ss = gsl_vector_alloc (playerHash.size());
gsl_vector_set_all (ss, 2);
/* Initialize method and iterate */
minex_func.n = playerHash.size();
minex_func.f = &my_new_f;
minex_func.params = (void *)this;
s = gsl_multimin_fminimizer_alloc (T, playerHash.size());
gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
do {
iter++;
simplexiterations = iter;
status = gsl_multimin_fminimizer_iterate(s);
if (status)
break;
size = gsl_multimin_fminimizer_size (s);
status = gsl_multimin_test_size (size, 0.00001);
if (!quiet) {
cout << "Iteration " << iter << "\tf() = " << s->fval << "\tsimplex size = " << size << endl;
}
} while ( (status == GSL_CONTINUE) && ( iter <= 1000000) );
if (status == GSL_SUCCESS) {
if (!quiet) {
cout << endl << "Converged to minimum. f() = " << s->fval << endl;
}
}
else {
cout << "Error in minimization function f()" << endl;
// Open the kyu/dan boundary back up
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
if (playerIt->second.rating > 0)
playerIt->second.rating += 1.0;
else
playerIt->second.rating -= 1.0;
}
exit(1);
}
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
playerIt->second.rating = gsl_vector_get (gsl_multimin_fminimizer_x(s), playerIt->second.index);
}
calc_sigma2();
// Open the kyu/dan boundary back up
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
if (playerIt->second.rating > 0)
playerIt->second.rating += 1.0;
else
playerIt->second.rating -= 1.0;
}
cout << endl;
gsl_vector_free(x);
gsl_vector_free(ss);
gsl_multimin_fminimizer_free(s);
return status;
}
/****************************************************************
calc_ratings_fdf ()
Calculate ratings using a conjugate gradient method. Technique fails if the initial guess
happens to be exactly correct, which makes 'easy' test cases a little more difficult.
*****************************************************************/
int collection::calc_ratings_fdf() {
int status, iter=0;
const gsl_multimin_fdfminimizer_type *T = gsl_multimin_fdfminimizer_vector_bfgs2;
gsl_multimin_fdfminimizer *s;
gsl_vector *x;
gsl_multimin_function_fdf minex_func;
// Calculate equivalent handicaps for all the games in the current ratings.
// This alters the effective rating difference based on the game handicap and komi.
for (vector<game>::iterator gameIt=gameList.begin(); gameIt!=gameList.end(); gameIt++) {
gameIt->calc_handicapeqv();
}
// Close the kyu/dan boundary
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
if (playerIt->second.seed > 0)
playerIt->second.seed -= 1.0;
else
playerIt->second.seed += 1.0;
}
// Storage vector for player ratings
x = gsl_vector_alloc (playerHash.size());
// Populate the storage vector
// This function crashes if we happen to seed players at a point where the gradient is
// identically zero. This sounds improbable, but two new players entering the rating system
// at the same rank and who break even in a match against each other will trigger this case.
// Accordingly, we add a small random offset to each initial guess to take it away from the
// potential minimum point.
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
playerIt->second.index = distance(playerHash.begin(), playerIt);
gsl_vector_set (x, playerIt->second.index, playerIt->second.seed + gsl_ran_flat(r, 0, 0.1));
}
minex_func.n = playerHash.size();
minex_func.f = &my_new_f;
minex_func.df = &my_new_df;
minex_func.fdf = &my_new_fdf;
minex_func.params = (void *)this;
s = gsl_multimin_fdfminimizer_alloc (T, playerHash.size());
gsl_multimin_fdfminimizer_set(s, &minex_func, x, 2, 0.1);
// Main loop. Continue iterating until the likelihood function hits an extreme, or
// until an error occurs.
do {
iter++;
fdfiterations = iter;
status = gsl_multimin_fdfminimizer_iterate(s);
if (status) {
break;
}
status = gsl_multimin_test_gradient (s->gradient, 0.001);
if (!quiet) {
cout << "Finished iteration " << iter << "\tf() = " << gsl_multimin_fdfminimizer_minimum(s) << "\tnorm = " << gsl_blas_dnrm2(gsl_multimin_fdfminimizer_gradient(s)) << "\tStatus = " << status << endl;
}
} while ((status == GSL_CONTINUE) && (iter < 10000));
if (status == GSL_SUCCESS) {
if (!quiet) {
cout << endl << "Converged to minimum. ";
cout << "Norm(gradient) = " << gsl_blas_dnrm2(gsl_multimin_fdfminimizer_gradient(s)) << endl;
}
}
else {
// Can hit an error by accident if the initial guess on player ratings happens to be exactly right.
// In that case, the gradient vector vanishes and the suggested update doesn't pass the tolerance
// threshold.
cout << "Error in minimization function fdf()" << endl;
cout << "status = " << status << endl;
// Open the kyu/dan boundary back up
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
if (playerIt->second.rating > 0)
playerIt->second.rating += 1.0;
else
playerIt->second.rating -= 1.0;
}
return(1);
}
// Update new ratings
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
playerIt->second.rating = gsl_vector_get (gsl_multimin_fdfminimizer_x(s), playerIt->second.index);
}
// Calculate new sigmas
calc_sigma2();
// Open the kyu/dan boundary back up
for (map<int, player>::iterator playerIt=playerHash.begin(); playerIt!=playerHash.end(); playerIt++) {
if (playerIt->second.rating > 0)
playerIt->second.rating += 1.0;
else
playerIt->second.rating -= 1.0;
}
gsl_vector_free(x);
gsl_multimin_fdfminimizer_free (s);
return 0;
}
/****************************************************************
initSeeding ()
// Given players playing in a tournament, games in the tournament and the TDList data
// prior to a tournament, set each player's seed rating and sigma and calculate
// the handicap equivalent and sigma_px for each game.
*****************************************************************/
void collection::initSeeding(map<int, tdListEntry> &tdList) {
map<int, int> winCount;
double deltaR;
for (map<int, player>::iterator It = playerHash.begin(); It != playerHash.end(); It++) {
winCount[It->second.id] = 0;
}
for (vector<game>::iterator gameIt = gameList.begin(); gameIt != gameList.end(); gameIt++) {
if (gameIt->whiteWins)
winCount[gameIt->white]++;
else
winCount[gameIt->black]++;
}
// Loop through each player who played a game in the tournament
for (map<int, player>::iterator It = playerHash.begin(); It != playerHash.end(); It++) {
// Do we have a previous record for them in the TDList?
map<int, tdListEntry>::iterator tdListIt = tdList.find(It->second.id);
if (tdListIt == tdList.end()) {
// No we don't.
// Player is seeded at the rating they entered the tournament at
// Sigma is set according to their seed rating
It->second.sigma = It->second.calc_init_sigma(It->second.seed);
}
// Perhaps we have a legacy entry in the TDList with no actual rating.
// If so, treat as a reseeding
else if (tdListIt->second.rating == 0) {
It->second.sigma = It->second.calc_init_sigma(It->second.seed);
}
// Perhaps we have a legacy entry in the TDList with no sigma
// If so, treat as a reseeding
else if (tdListIt->second.sigma == 0) {
It->second.sigma = It->second.calc_init_sigma(It->second.seed);
}
// We must have a record for them in the TDList? If so then compute a new sigma
// a possibly a new seed
else {
if (It->second.seed * tdListIt->second.rating > 0)
deltaR = It->second.seed - tdListIt->second.rating;
else
deltaR = It->second.seed - tdListIt->second.rating - 2;
// We don't let players demote themselves
if (deltaR < 0) {
It->second.seed = tdListIt->second.rating;
int dayCount = boost::gregorian::date_period(tdListIt->second.lastRatingDate, tournamentDate).length().days();
It->second.sigma = sqrt(tdListIt->second.sigma * tdListIt->second.sigma + 0.0005 * 0.0005 * dayCount * dayCount);
}
// Is this a self promotion by more than three stones?
// If so, treat as a reseeding. Players must win at least one game
// to trigger the self-promotion case. Otherwise they are just seeded
// at their old rating.
else if ( (deltaR >= 3.0) && (winCount[It->second.id] > 0) ) {
It->second.seed = It->second.seed;
It->second.sigma = It->second.calc_init_sigma(It->second.seed);
}
// Is it a smaller self promotion?
else if ( (deltaR >= 1.0) && (winCount[It->second.id] > 0) ) {
It->second.seed = tdListIt->second.rating + 0.024746 + 0.32127 * deltaR;
It->second.sigma = sqrt(tdListIt->second.sigma * tdListIt->second.sigma + 0.256 * pow(deltaR, 1.9475));
}
else {
It->second.seed = tdListIt->second.rating;
int dayCount = boost::gregorian::date_period(tdListIt->second.lastRatingDate, tournamentDate).length().days();
It->second.sigma = sqrt(tdListIt->second.sigma * tdListIt->second.sigma + 0.001 * 0.001 * dayCount * dayCount);
}
}
// cout << "Seed: " << It->second.id << '\t' << It->second.seed << '\t' << It->second.sigma << endl;
// cout << "TD List: " << tdListIt->second.id << '\t' << tdListIt->second.rating << '\t' << tdListIt->second.sigma << endl;
// cout << endl;
}
// Assign individual handicap equivalents and sigma_px parameters to each game.
for (vector<game>::iterator gameIt=gameList.begin(); gameIt!=gameList.end(); gameIt++) {
gameIt->calc_handicapeqv();
}
}
/****************************************************************
findImprobables ()
Identify games that are highly improbable (<1% chance of occuring)
Improbables usually indicates a data entry error or a player who h
as improved dramatically since their last rating who needs to be reseeded.
*****************************************************************/
void collection::findImprobables(map<int, tdListEntry> &tdList) {
double p, rd;
for (vector<game>::iterator gameIt=gameList.begin(); gameIt!=gameList.end(); gameIt++) {
gameIt->calc_handicapeqv();
rd = (playerHash[gameIt->white].seed > 0 ? playerHash[gameIt->white].seed-1 : playerHash[gameIt->white].seed+1)
- (playerHash[gameIt->black].seed > 0 ? playerHash[gameIt->black].seed-1 : playerHash[gameIt->black].seed+1)
- gameIt->handicapeqv;
if (gameIt->whiteWins) {
p = gsl_sf_erfc(-rd/gameIt->sigma_px/sqrt(2.0))/2.0;
}
else {
p = gsl_sf_erfc(rd/gameIt->sigma_px/sqrt(2.0))/2.0;
}
if (p<0.01) {
cout << "\tWhite: " << tdList[gameIt->white].name << " (" << gameIt->white << "), Rating = " << playerHash[gameIt->white].seed << endl;
cout << "\tBlack: " << tdList[gameIt->black].name << " (" << gameIt->black << "), Rating = " << playerHash[gameIt->black].seed << endl;
cout << "\tH/K: " << gameIt->handicap << "/" << gameIt->komi << endl;
cout << "\tResult: " << (gameIt->whiteWins ? "White wins" : "Black wins") << endl;
cout << "\tProb: " << p << endl;
cout << endl;
}
}
}