-
Notifications
You must be signed in to change notification settings - Fork 960
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: kafka schema registry integration (#1959)
Signed-off-by: Farbod Ahmadian <farbodahmadian2014@gmail.com>
- Loading branch information
Showing
5 changed files
with
435 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
181 changes: 181 additions & 0 deletions
181
databuilder/databuilder/extractor/kafka_schema_registry_extractor.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
# Copyright Contributors to the Amundsen project. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
import logging | ||
from asyncio.log import logger | ||
from typing import ( | ||
Any, Dict, Iterator, List, Optional, Union, | ||
) | ||
|
||
from pyhocon import ConfigTree | ||
from schema_registry.client import Auth, SchemaRegistryClient | ||
from schema_registry.client.utils import SchemaVersion | ||
|
||
from databuilder.extractor.base_extractor import Extractor | ||
from databuilder.models.table_metadata import ColumnMetadata, TableMetadata | ||
|
||
LOGGER = logging.getLogger(__name__) | ||
|
||
|
||
class KafkaSchemaRegistryExtractor(Extractor): | ||
""" | ||
Extracts the latest version of all schemas from a given | ||
Kafka Schema Registry URL | ||
""" | ||
|
||
REGISTRY_URL_KEY = "registry_url" | ||
REGISTRY_USERNAME_KEY = "registry_username" | ||
REGISTRY_PASSWORD_KEY = "registry_password" | ||
|
||
def init(self, conf: ConfigTree) -> None: | ||
self._registry_base_url = conf.get( | ||
KafkaSchemaRegistryExtractor.REGISTRY_URL_KEY | ||
) | ||
|
||
self._registry_username = conf.get( | ||
KafkaSchemaRegistryExtractor.REGISTRY_USERNAME_KEY, None | ||
) | ||
|
||
self._registry_password = conf.get( | ||
KafkaSchemaRegistryExtractor.REGISTRY_PASSWORD_KEY, None | ||
) | ||
|
||
# Add authentication if user and password are provided | ||
if all((self._registry_username, self._registry_password)): | ||
self._client = SchemaRegistryClient( | ||
url=self._registry_base_url, | ||
auth=Auth( | ||
username=self._registry_username, | ||
password=self._registry_password | ||
) | ||
) | ||
else: | ||
self._client = SchemaRegistryClient( | ||
url=self._registry_base_url, | ||
) | ||
|
||
self._extract_iter: Union[None, Iterator] = None | ||
|
||
def extract(self) -> Union[TableMetadata, None]: | ||
if not self._extract_iter: | ||
self._extract_iter = self._get_extract_iter() | ||
try: | ||
return next(self._extract_iter) | ||
except StopIteration: | ||
return None | ||
except Exception as e: | ||
logger.error(f'Failed to generate next table: {e}') | ||
return None | ||
|
||
def get_scope(self) -> str: | ||
return 'extractor.kafka_schema_registry' | ||
|
||
def _get_extract_iter(self) -> Optional[Iterator[TableMetadata]]: | ||
""" | ||
Return an iterator generating TableMetadata for all of the schemas. | ||
""" | ||
for schema_version in self._get_raw_extract_iter(): | ||
subject = schema_version.subject | ||
schema = schema_version.schema.raw_schema | ||
LOGGER.info((f'Subject: {subject}, ' | ||
f'Schema: {schema}')) | ||
|
||
try: | ||
yield KafkaSchemaRegistryExtractor._create_table( | ||
schema=schema, | ||
subject_name=subject, | ||
cluster_name=schema.get( | ||
'namespace', 'kafka-schema-registry' | ||
), | ||
schema_name=schema.get('name', ''), | ||
schema_description=schema.get('doc', None), | ||
) | ||
except Exception as e: | ||
logger.warning(f'Failed to generate table for {subject}: {e}') | ||
continue | ||
|
||
def _get_raw_extract_iter(self) -> Iterator[SchemaVersion]: | ||
""" | ||
Return iterator of results row from schema registry | ||
""" | ||
subjects = self._client.get_subjects() | ||
|
||
LOGGER.info(f'Number of extracted subjects: {len(subjects)}') | ||
LOGGER.info(f'Extracted subjects: {subjects}') | ||
|
||
for subj in subjects: | ||
subj_schema = self._client.get_schema(subj) | ||
LOGGER.info(f'Subject <{subj}> max version: {subj_schema.version}') | ||
|
||
yield subj_schema | ||
|
||
@staticmethod | ||
def _create_table( | ||
schema: Dict[str, Any], | ||
subject_name: str, | ||
cluster_name: str, | ||
schema_name: str, | ||
schema_description: str, | ||
) -> Optional[TableMetadata]: | ||
""" | ||
Create TableMetadata based on given schema and names | ||
""" | ||
columns: List[ColumnMetadata] = [] | ||
|
||
for i, field in enumerate(schema['fields']): | ||
columns.append( | ||
ColumnMetadata( | ||
name=field['name'], | ||
description=field.get('doc', None), | ||
col_type=KafkaSchemaRegistryExtractor._get_property_type( | ||
field | ||
), | ||
sort_order=i, | ||
) | ||
) | ||
|
||
return TableMetadata( | ||
database='kafka_schema_registry', | ||
cluster=cluster_name, | ||
schema=subject_name, | ||
name=schema_name, | ||
description=schema_description, | ||
columns=columns, | ||
) | ||
|
||
@staticmethod | ||
def _get_property_type(schema: Dict) -> str: | ||
""" | ||
Return type of the given schema. | ||
It will also works for nested schema types. | ||
""" | ||
if 'type' not in schema: | ||
return 'object' | ||
|
||
if type(schema['type']) is dict: | ||
return KafkaSchemaRegistryExtractor._get_property_type( | ||
schema['type'] | ||
) | ||
|
||
# If schema can have multiple types | ||
if type(schema['type']) is list: | ||
return '|'.join(schema['type']) | ||
|
||
if schema['type'] == 'record': | ||
properties = [ | ||
f"{field['name']}:" | ||
f"{KafkaSchemaRegistryExtractor._get_property_type(field)}" | ||
for field in schema.get('fields', {}) | ||
] | ||
if len(properties) > 0: | ||
if 'name' in schema: | ||
return schema['name'] + \ | ||
':struct<' + ','.join(properties) + '>' | ||
return 'struct<' + ','.join(properties) + '>' | ||
return 'struct<object>' | ||
elif schema['type'] == 'array': | ||
items = KafkaSchemaRegistryExtractor._get_property_type( | ||
schema.get("items", {}) | ||
) | ||
return 'array<' + items + '>' | ||
else: | ||
return schema['type'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.