Skip to content

Latest commit

 

History

History
68 lines (52 loc) · 3.59 KB

README.md

File metadata and controls

68 lines (52 loc) · 3.59 KB

Semi-Supervised Learning Methods

This repository is unofficial implementation of following papers with Tensorflow 2.0. The corresponding folder name is written in parenthesis.

Package Dependencies

python==3.7
numpy==1.19.5
tensorflow==2.4.0

Additional package requirements for this repository are described in requirements.txt.

How to Training & Evaluation

labeled_examples is the number of labeled datsets for running and we provide configuration .yaml files for 100 labeled datsets of MNIST and 4000 labeled datasets of CIFAR-10. And we add required tests and evaluations at the end of code.

  1. MNIST dataset running
python mnist/main.py --config_path "configs/mnist_{labeled_examples}.yaml"
  1. CIFAR-10 dataset running
python main.py --config_path "configs/cifar10_{labeled_examples}.yaml"

Results (CIFAR-10)

The number in parenthesis next to the name of model is the number of parameters in classifier. Inception score of classification model is not computed.

Model Classification error Inception Score
Pi-model(4.5M) 17.58% -
VAT(4.5M) 13.70 -
MixMatch(5.8M) 5.55% -
PLCB(4.5M) 7.69% -
M2(4.5M) 27.69% 1.85 (0.05)
Parted-VAE(5.8M) 31.85% 1.58(0.04)
SHOT-VAE(5.8M) 5.91% 3.46 (0.18)

Reference codes