-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
235 lines (182 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os.path
from argparse import ArgumentParser
from utils.constants import SUBMISSION_FOLDER, MAX_THREADS
from utils.evaluation import Evaluator
from utils.tools import create_folder
import time
from utils.sparse import Sparse
from models import BaselineModel, NeighborModel, PureSVDModel, Track2VecModel
def evaluator(args):
evaluator = Evaluator(args.submit_path)
start = time.time()
evaluator.read_submission()
print(f'RPrecision: {evaluator.RPrecision()}')
print(f'NDCG: {evaluator.NDCG()}')
print(f'Clicks: {evaluator.clicks()}')
end = time.time()
if args.time:
print('Evaluation time:', (end - start))
def base(args):
# preprocess some arguments
args.submit_path = args.submit_path if args.submit_path else f'submissions/base.csv.gz'
args.num_threads = max(args.num_threads)
model = BaselineModel()
start = time.time()
model.preprocess(args.num_threads, args.verbose)
end = time.time()
if args.time:
print('Counting tracks time:', end - start)
print('-' * 80)
start = time.time()
model.recommend(args.submit_path, args.num_threads, args.verbose)
end = time.time()
if args.time:
print('Recommending time:', end - start)
print('-' * 80)
def neighbor(args):
# preprocess some arguments
args.submit_path = args.submit_path if args.submit_path else f'submissions/{args.hood}.csv.gz'
args.num_threads = (args.num_threads, args.num_threads) if len(args.num_threads) == 1 else args.num_threads[:2]
[create_folder(path) for path in [args.matrix_path, args.train_path, args.test_path, args.trackmap_path]]
if 'sparsify' in args.action:
start = time.time()
sparse = Sparse(train_path=args.train_path, test_path=args.test_path, trackmap_path=args.trackmap_path)
sparse.preprocess(max(args.num_threads), args.verbose)
end = time.time()
if args.time:
print('Preprocessing time:', end - start)
print('-' * 80)
if 'recommend' in args.action:
start = time.time()
model = NeighborModel(args.hood, args.k,
train_path=args.train_path, test_path=args.test_path, trackmap_path=args.trackmap_path)
model.recommend(submit_path=args.submit_path, num_threads=args.num_threads, batch_size=args.batch_size,
matrix_path=args.matrix_path, load=args.load, verbose=args.verbose)
end = time.time()
if args.time:
print('Recommending time:', end - start)
print('-' * 80)
def puresvd(args):
# preprocess some arguments
if not args.submit_path:
args.submit_path = f'submissions/puresvd{int(args.ftest)}-{args.h}.csv.gz'
args.num_threads = max(args.num_threads)
for path in [args.train_path, args.test_path, args.trackmap_path, args.U_path, args.S_path, args.V_path]:
create_folder(path)
if 'sparsify' in args.action:
start = time.time()
sparse = Sparse(train_path=args.train_path, test_path=args.test_path, trackmap_path=args.trackmap_path)
sparse.preprocess(max(args.num_threads), args.verbose)
end = time.time()
if args.time:
print('Preprocessing time:', end - start)
print('-' * 80)
if 'recommend' in args.action:
start = time.time()
model = PureSVDModel(h=args.h, use_test=args.ftest,
train_path=args.train_path, test_path=args.test_path, trackmap_path=args.trackmap_path)
model.factorize(U_path=args.U_path, S_path=args.S_path, V_path=args.V_path, verbose=args.verbose)
model.recommend(submit_path=args.submit_path, num_threads=args.num_threads, batch_size=args.batch_size,
verbose=args.verbose)
end = time.time()
if args.time:
print('Recommending time:', end - start)
print('-' * 80)
def track2vec(args):
# preprocess some arguments
if not args.submit_path:
args.submit_path = f'submissions/track2vec.csv.gz'
for path in [args.train_path, args.test_path, args.trackmap_path, args.model_path]:
create_folder(path)
model = Track2VecModel(embed_dim=args.embed_dim, context_size=args.context_size, k=args.k,
model_path=args.model_path, train_path=args.train_path, test_path=args.test_path,
trackmap_path=args.trackmap_path, S_path=args.S_path)
if 'train' in args.action:
start = time.time()
model.train(num_epochs=args.num_epochs, num_threads=max(args.num_threads), verbose=args.verbose)
end = time.time()
if args.time:
print('Training time:', end-start)
print('-' * 80)
else:
model.load()
if 'recommend' in args.action:
start = time.time()
model.recommend(submit_path=args.submit_path, num_threads=args.num_threads,
batch_size=args.batch_size, num_trees=args.num_trees, annoy=args.annoy, verbose=args.verbose)
end = time.time()
if args.time:
print('Recommending time:', end-start)
print('-' * 80)
def add_global(subparser):
subparser.add_argument('-eval', action='store_true', default=False, help='whether to output the evaluation')
subparser.add_argument('-t', '--time', action='store_true', default=False, help='whether to display execution times')
subparser.add_argument('-v', '--verbose', action='store_true', default=False, help='whether to display the trace of recommendation process')
subparser.add_argument('-p', '--submit_path', default=None, help='where to store the submission')
subparser.add_argument('-n', '--num_threads', type=int, nargs='*', default=(8, MAX_THREADS), help='number of threads to parallelize the execution')
def add_paths(subparser):
subparser.add_argument('--train_path', type=str, default='data/Rtrain.npz', help='Path to store sparse train matrix')
subparser.add_argument('--test_path', type=str, default='data/Rtest.npz', help='Path to store sparse test matrix')
subparser.add_argument('--trackmap_path', type=str, default='data/trackmap.pickle', help='Path to store map from track URIs to indices')
if __name__ == '__main__':
parser = ArgumentParser(description='Test our recommender systems for the Spotify Million Playlist Dataset')
# global arguments (these arguments are used for all models)
parser.add_argument('-eval', action='store_true', default=False, help='whether to output the evaluation')
parser.add_argument('-t', '--time', action='store_true', default=False, help='whether to display execution times')
parser.add_argument('-v', '--verbose', action='store_true', default=False, help='whether to display the trace of recommendation process')
parser.add_argument('-p', '--submit_path', default=None, help='where to store the submission')
parser.add_argument('-n', '--num_threads', type=int, nargs='*', default=(8, MAX_THREADS), help='number of threads to parallelize the execution')
subparsers = parser.add_subparsers(title='Models', dest='model')
baseline_parser = subparsers.add_parser('base', help='Baseline model based on popularity')
eval_parser = subparsers.add_parser('eval', help='Evaluator model')
# add neighbor model arguments
neighbor_parser = subparsers.add_parser('neighbor', help='neighbor model based on user and item similarity')
neighbor_parser.add_argument('hood', choices=['user', 'item'], default='user', type=str, help='neighborhood to user')
neighbor_parser.add_argument('--action', choices=['sparsify', 'recommend'], type=str, nargs='*', default=['recommend'])
neighbor_parser.add_argument('--k', type=int, default=100)
neighbor_parser.add_argument('--batch_size', type=int, default=500)
neighbor_parser.add_argument('--matrix_path', type=str, default='data/Rest.npz')
neighbor_parser.add_argument('--load', action='store_true', default=False)
add_paths(neighbor_parser)
# add puresvd arguments
puresvd_parser = subparsers.add_parser('puresvd', help='PureSVD model')
puresvd_parser.add_argument('--action', choices=['sparsify', 'recommend'], type=str, nargs='*', default=['recommend'])
puresvd_parser.add_argument('--h', type=int, default=10)
puresvd_parser.add_argument('-ftest', action='store_true', default=False, help='whether to factorize using test sparse matrix')
puresvd_parser.add_argument('--batch_size', type=int, default=100)
puresvd_parser.add_argument('--U_path', type=str, default='data/U.npy')
puresvd_parser.add_argument('--V_path', type=str, default='data/V.npy')
puresvd_parser.add_argument('--S_path', type=str, default='data/S.npy')
add_paths(puresvd_parser)
# add track2vec arguments
track2vec_parser = subparsers.add_parser('track2vec', help='Track2Vec model')
track2vec_parser.add_argument('action', choices=['train', 'recommend'], default='recommend', type=str, nargs='*', help='Action to perform')
track2vec_parser.add_argument('--embed_dim', type=int, default=50, help='Vector size used in the space model')
track2vec_parser.add_argument('--context_size', type=int, default=10, help='Context size used for training vector weights')
track2vec_parser.add_argument('--k', type=int, default=10, help='neighborhood size')
track2vec_parser.add_argument('--model_path', type=str, default='data/track2vec', help='Path to store Gensim model')
track2vec_parser.add_argument('--S_path', type=str, default='data/S-track2vec.npz')
track2vec_parser.add_argument('--num_epochs', type=int, default=50, help='Number of epochs in training')
track2vec_parser.add_argument('--num_trees', type=int, default=50, help='Number of trees for the Annoy Index')
track2vec_parser.add_argument('--annoy', action='store_true', help='Approximate nearest neighbors by cosine similarity')
track2vec_parser.add_argument('--batch_size', type=int, default=100)
add_paths(track2vec_parser)
for subparser in [eval_parser, baseline_parser, neighbor_parser, puresvd_parser, track2vec_parser]:
add_global(subparser)
args, unknown = parser.parse_known_args()
if not os.path.exists(SUBMISSION_FOLDER):
os.makedirs(SUBMISSION_FOLDER)
if not os.path.exists('data/'):
os.makedirs('data/')
if args.model == 'base':
base(args)
elif args.model == 'neighbor':
neighbor(args)
elif args.model == 'puresvd':
puresvd(args)
elif args.model == 'track2vec':
track2vec(args)
elif args.model == 'eval':
evaluator(args)
if args.eval:
evaluator(args)