diff --git a/datasets/kws20.py b/datasets/kws20.py
index e63cc1c24..245450ede 100644
--- a/datasets/kws20.py
+++ b/datasets/kws20.py
@@ -1,6 +1,7 @@
#
# Copyright (c) 2018 Intel Corporation
# Portions Copyright (C) 2019-2023 Maxim Integrated Products, Inc.
+# Portions Copyright (C) 2023-2024 Analog Devices, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -44,14 +45,14 @@ class KWS:
Dataset, 1D folded.
Args:
- root (string): Root directory of dataset where ``KWS/processed/dataset.pt``
- exist.
+ root (string): Root directory of dataset where ``KWS/processed/dataset.pt`` exist.
classes(array): List of keywords to be used.
d_type(string): Option for the created dataset. ``train`` or ``test``.
- n_augment(int, optional): Number of augmented samples added to the dataset from
- each sample by random modifications, i.e. stretching, shifting and random noise.
- transform (callable, optional): A function/transform that takes in an PIL image
- and returns a transformed version.
+ transform (callable, optional): A function/transform that takes in a signal between [0, 1]
+ and returns a transformed version, suitable for ai8x training / evaluation.
+ quantization_scheme (dict, optional): Dictionary containing quantization scheme parameters.
+ If not provided, default values are used.
+ augmentation (dict, optional): Dictionary containing augmentation parameters.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
@@ -86,15 +87,15 @@ def __init__(self, root, classes, d_type, t_type, transform=None, quantization_s
self.__parse_augmentation(augmentation)
if not self.save_unquantized:
- self.data_file = 'dataset2.pt'
+ self.data_file = 'dataset.pt'
else:
self.data_file = 'unquantized.pt'
if download:
self.__download()
- self.data, self.targets, self.data_type = torch.load(os.path.join(
- self.processed_folder, self.data_file))
+ self.data, self.targets, self.data_type, self.shift_limits = \
+ torch.load(os.path.join(self.processed_folder, self.data_file))
print(f'\nProcessing {self.d_type}...')
self.__filter_dtype()
@@ -156,10 +157,6 @@ def __parse_augmentation(self, augmentation):
print('No key `shift` in input augmentation dictionary! '
'Using defaults: [Min:-0.1, Max: 0.1]')
self.augmentation['shift'] = {'min': -0.1, 'max': 0.1}
- if 'stretch' not in augmentation:
- print('No key `stretch` in input augmentation dictionary! '
- 'Using defaults: [Min: 0.8, Max: 1.3]')
- self.augmentation['stretch'] = {'min': 0.8, 'max': 1.3}
def __download(self):
@@ -363,23 +360,27 @@ def __filter_dtype(self):
# take a copy of the original data and targets temporarily for validation set
self.data_original = self.data.clone()
self.targets_original = self.targets.clone()
+ self.data_type_original = self.data_type.clone()
self.data = self.data[idx_to_select, :]
self.targets = self.targets[idx_to_select, :]
+ self.data_type = self.data_type[idx_to_select, :]
# append validation set to the training set if validation examples are explicitly included
if self.d_type == 'train':
- idx_to_select = (self.data_type == 2)[:, -1]
+ idx_to_select = (self.data_type_original == 2)[:, -1]
if idx_to_select.sum() > 0: # if validation examples exist
self.data = torch.cat((self.data, self.data_original[idx_to_select, :]), dim=0)
self.targets = \
torch.cat((self.targets, self.targets_original[idx_to_select, :]), dim=0)
+ self.data_type = \
+ torch.cat((self.data_type, self.data_type_original[idx_to_select, :]), dim=0)
# indicate the list of validation indices to be used by distiller's dataloader
self.valid_indices = range(set_size, set_size + idx_to_select.sum())
print(f'validation set: {idx_to_select.sum()} elements')
del self.data_original
del self.targets_original
- del self.data_type
+ del self.data_type_original
def __filter_classes(self):
initial_new_class_label = len(self.class_dict)
@@ -401,28 +402,63 @@ def __filter_classes(self):
def __len__(self):
return len(self.data)
+ def __reshape_audio(self, audio, row_len=128):
+ # add overlap if necessary later on
+ return torch.transpose(audio.reshape((-1, row_len)), 1, 0)
+
+ def shift_and_noise_augment(self, audio, shift_limits):
+ """Augments audio by adding random shift and noise.
+ """
+ random_noise_var_coeff = np.random.uniform(self.augmentation['noise_var']['min'],
+ self.augmentation['noise_var']['max'])
+ random_shift_sample = np.random.randint(shift_limits[0], shift_limits[1])
+
+ aug_audio = self.shift(audio, random_shift_sample)
+ aug_audio = self.add_quantized_white_noise(aug_audio, random_noise_var_coeff)
+
+ return aug_audio
+
def __getitem__(self, index):
- inp, target = self.data[index].type(torch.FloatTensor), int(self.targets[index])
+ inp, target = self.data[index], int(self.targets[index])
+ data_type, shift_limits = self.data_type[index], self.shift_limits[index]
+
+ # apply dynamic shift and noise augmentation to training examples
+ if data_type == 0:
+ inp = self.shift_and_noise_augment(inp, shift_limits)
+
+ # reshape to 2D
+ inp = self.__reshape_audio(inp)
+
+ inp = inp.type(torch.FloatTensor)
+
if not self.save_unquantized:
inp /= 256
if self.transform is not None:
inp = self.transform(inp)
+
return inp, target
@staticmethod
def add_white_noise(audio, noise_var_coeff):
- """Adds zero mean Gaussian noise to image with specified variance.
+ """Adds zero mean Gaussian noise to the audio with specified variance.
"""
coeff = noise_var_coeff * np.mean(np.abs(audio))
noisy_audio = audio + coeff * np.random.randn(len(audio))
return noisy_audio
@staticmethod
- def shift(audio, shift_sec, fs):
+ def add_quantized_white_noise(audio, noise_var_coeff):
+ """Adds zero mean Gaussian noise to the audio with specified variance.
+ """
+ coeff = noise_var_coeff * torch.mean(torch.abs(audio.type(torch.float)-128))
+ noise = (coeff * torch.randn(len(audio))).type(torch.int16)
+ return (audio + noise).clip(0, 255).type(torch.uint8)
+
+ @staticmethod
+ def shift(audio, shift_sample):
"""Shifts audio.
"""
- shift_count = int(shift_sec * fs)
- return np.roll(audio, shift_count)
+ return torch.roll(audio, shift_sample)
@staticmethod
def stretch(audio, rate=1):
@@ -437,36 +473,6 @@ def stretch(audio, rate=1):
return audio2
- def augment(self, audio, fs, verbose=False):
- """Augments audio by adding random noise, shift and stretch ratio.
- """
- random_noise_var_coeff = np.random.uniform(self.augmentation['noise_var']['min'],
- self.augmentation['noise_var']['max'])
- random_shift_time = np.random.uniform(self.augmentation['shift']['min'],
- self.augmentation['shift']['max'])
- random_stretch_coeff = np.random.uniform(self.augmentation['stretch']['min'],
- self.augmentation['stretch']['max'])
-
- sox_effects = [["speed", str(random_stretch_coeff)], ["rate", str(fs)]]
- aug_audio, _ = torchaudio.sox_effects.apply_effects_tensor(
- torch.unsqueeze(torch.from_numpy(audio).float(), dim=0), fs, sox_effects)
- aug_audio = aug_audio.numpy().squeeze()
- aug_audio = self.shift(aug_audio, random_shift_time, fs)
- aug_audio = self.add_white_noise(aug_audio, random_noise_var_coeff)
-
- if verbose:
- print(f'random_noise_var_coeff: {random_noise_var_coeff:.2f}\nrandom_shift_time: \
- {random_shift_time:.2f}\nrandom_stretch_coeff: {random_stretch_coeff:.2f}')
- return aug_audio
-
- def augment_multiple(self, audio, fs, n_augment, verbose=False):
- """Calls `augment` function for n_augment times for given audio data.
- Finally the original audio is added to have (n_augment+1) audio data.
- """
- aug_audio = [self.augment(audio, fs, verbose=verbose) for i in range(n_augment)]
- aug_audio.insert(0, audio)
- return aug_audio
-
@staticmethod
def compand(data, mu=255):
"""Compand the signal level to warp from Laplacian distribution to uniform distribution"""
@@ -498,9 +504,59 @@ def quantize_audio(data, num_bits=8, compand=False, mu=255):
q_data = np.clip(q_data, 0, max_val)
return np.uint8(q_data)
- def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0):
- print('Generating dataset from raw data samples for the first time. ')
- print('This process will take significant time (~60 minutes)...')
+ def get_audio_endpoints(self, audio, fs):
+ """Future: May implement a method to detect the beginning & end of voice activity in audio.
+ Currently, it returns end points compatible with augmentation['shift'] values
+ """
+ return int(-self.augmentation['shift']['min'] * fs), \
+ int(len(audio) - self.augmentation['shift']['max'] * fs)
+
+ def speed_augment(self, audio, fs, sample_no=0):
+ """Augments audio by randomly changing the speed of the audio.
+ The generated coefficient follows 0.9, 1.1, 0.95, 1.05... pattern
+ """
+ speed_multiplier = 1.0 + 0.2 * (sample_no % 2 - 0.5) / (1 + sample_no // 2)
+
+ sox_effects = [["speed", str(speed_multiplier)], ["rate", str(fs)]]
+ aug_audio, _ = torchaudio.sox_effects.apply_effects_tensor(
+ torch.unsqueeze(torch.from_numpy(audio).float(), dim=0), fs, sox_effects)
+ aug_audio = aug_audio.numpy().squeeze()
+
+ return aug_audio, speed_multiplier
+
+ def speed_augment_multiple(self, audio, fs, exp_len, n_augment):
+ """Calls `speed_augment` function for n_augment times for given audio data.
+ Finally the original audio is added to have (n_augment+1) audio data.
+ """
+ aug_audio = [None] * (n_augment + 1)
+ aug_speed = np.ones((n_augment + 1,))
+ shift_limits = np.zeros((n_augment + 1, 2))
+ voice_begin_idx, voice_end_idx = self.get_audio_endpoints(audio, fs)
+ aug_audio[0] = audio
+ for i in range(n_augment):
+ aug_audio[i+1], aug_speed[i+1] = self.speed_augment(audio, fs, sample_no=i)
+ for i in range(n_augment + 1):
+ if len(aug_audio[i]) < exp_len:
+ aug_audio[i] = np.pad(aug_audio[i], (0, exp_len - len(aug_audio[i])), 'constant')
+ aug_begin_idx = voice_begin_idx * aug_speed[i]
+ aug_end_idx = voice_end_idx * aug_speed[i]
+ if aug_end_idx - aug_begin_idx <= exp_len:
+ # voice activity duration is shorter than the expected length
+ segment_begin = max(aug_end_idx, exp_len) - exp_len
+ segment_end = max(aug_end_idx, exp_len)
+ aug_audio[i] = aug_audio[i][segment_begin:segment_end]
+ shift_limits[i, 0] = -aug_begin_idx + (max(aug_end_idx, exp_len) - exp_len)
+ shift_limits[i, 1] = max(aug_end_idx, exp_len) - aug_end_idx
+ else:
+ # voice activity duraction is longer than the expected length
+ midpoint = (aug_begin_idx + aug_end_idx) // 2
+ aug_audio[i] = aug_audio[i][midpoint - exp_len // 2: midpoint + exp_len // 2]
+ shift_limits[i, :] = [0, 0]
+ return aug_audio, shift_limits
+
+ def __gen_datasets(self, exp_len=16384):
+ print('Generating dataset from raw data samples for the first time.')
+ print('This process may take a few minutes.')
with warnings.catch_warnings():
warnings.simplefilter('error')
@@ -508,12 +564,6 @@ def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0):
labels = [d for d in lst if os.path.isdir(os.path.join(self.raw_folder, d))
and d[0].isalpha()]
- # PARAMETERS
- overlap = int(np.ceil(row_len * overlap_ratio))
- num_rows = int(np.ceil(exp_len / (row_len - overlap)))
- data_len = int((num_rows * row_len - (num_rows - 1) * overlap))
- print(f'data_len: {data_len}')
-
# show the size of dataset for each keyword
print('------------- Label Size ---------------')
for i, label in enumerate(labels):
@@ -534,27 +584,36 @@ def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0):
for i, label in enumerate(labels):
print(f'Processing the label: {label}. {i + 1} of {len(labels)}')
record_list = sorted(os.listdir(os.path.join(self.raw_folder, label)))
+ record_len = len(record_list)
+
+ # get the number testing samples for the class
+ test_count_class = 0
+ for r, record_name in enumerate(record_list):
+ local_filename = os.path.join(label, record_name)
+ if local_filename in testing_set:
+ test_count_class += 1
+
+ # no augmentation for testing set, subtract them accordingly
+ number_of_total_samples = record_len * (self.augmentation['aug_num'] + 1) - \
+ test_count_class * self.augmentation['aug_num']
- # dimension: row_length x number_of_rows
if not self.save_unquantized:
- data_in = np.empty(((self.augmentation['aug_num'] + 1) * len(record_list),
- row_len, num_rows), dtype=np.uint8)
+ data_in = np.empty((number_of_total_samples, exp_len), dtype=np.uint8)
else:
- data_in = np.empty(((self.augmentation['aug_num'] + 1) * len(record_list),
- row_len, num_rows), dtype=np.float32)
- data_type = np.empty(((self.augmentation['aug_num'] + 1) * len(record_list), 1),
- dtype=np.uint8)
- # create data classes
- data_class = np.full(((self.augmentation['aug_num'] + 1) * len(record_list), 1), i,
- dtype=np.uint8)
+ data_in = np.empty((number_of_total_samples, exp_len), dtype=np.float32)
+
+ data_type = np.empty((number_of_total_samples, 1), dtype=np.uint8)
+ data_shift_limits = np.empty((number_of_total_samples, 2), dtype=np.int16)
+ data_class = np.full((number_of_total_samples, 1), i, dtype=np.uint8)
time_s = time.time()
+ sample_index = 0
for r, record_name in enumerate(record_list):
local_filename = os.path.join(label, record_name)
if r % 1000 == 0:
- print(f'\t{r + 1} of {len(record_list)}')
+ print(f'\t{r + 1} of {record_len}')
if local_filename in testing_set:
d_typ = np.uint8(1) # test
@@ -568,29 +627,28 @@ def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0):
record_pth = os.path.join(self.raw_folder, label, record_name)
record, fs = librosa.load(record_pth, offset=0, sr=None)
- audio_seq_list = self.augment_multiple(record, fs,
- self.augmentation['aug_num'])
- for n_a, audio_seq in enumerate(audio_seq_list):
- # store set type: train, test or validate
- data_type[(self.augmentation['aug_num'] + 1) * r + n_a, 0] = d_typ
-
- # Write audio 128x128=16384 samples without overlap
- for n_r in range(num_rows):
- start_idx = n_r * (row_len - overlap)
- end_idx = start_idx + row_len
- audio_chunk = audio_seq[start_idx:end_idx]
- # pad zero if the length of the chunk is smaller than row_len
- audio_chunk = np.pad(audio_chunk, [0, row_len - audio_chunk.size])
- # store input data after quantization
- data_idx = (self.augmentation['aug_num'] + 1) * r + n_a
- if not self.save_unquantized:
- data_in[data_idx, :, n_r] = \
- KWS.quantize_audio(audio_chunk,
- num_bits=self.quantization['bits'],
- compand=self.quantization['compand'],
- mu=self.quantization['mu'])
- else:
- data_in[data_idx, :, n_r] = audio_chunk
+
+ # normalize dynamic range to [-1, +1]
+ record = record / np.max(np.abs(record))
+
+ if d_typ != 1: # training and validation examples get speed augmentation
+ no_augmentations = self.augmentation['aug_num']
+ else: # test examples don't get speed augmentation
+ no_augmentations = 0
+
+ # apply speed augmentations and calculate shift limits
+ audio_seq_list, shift_limits = \
+ self.speed_augment_multiple(record, fs, exp_len, no_augmentations)
+
+ for local_id, audio_seq in enumerate(audio_seq_list):
+ data_in[sample_index] = \
+ KWS.quantize_audio(audio_seq,
+ num_bits=self.quantization['bits'],
+ compand=self.quantization['compand'],
+ mu=self.quantization['mu'])
+ data_shift_limits[sample_index] = shift_limits[local_id]
+ data_type[sample_index] = d_typ
+ sample_index += 1
dur = time.time() - time_s
print(f'Finished in {dur:.3f} seconds.')
@@ -600,19 +658,30 @@ def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0):
data_in_all = data_in.copy()
data_class_all = data_class.copy()
data_type_all = data_type.copy()
+ data_shift_limits_all = data_shift_limits.copy()
else:
data_in_all = np.concatenate((data_in_all, data_in), axis=0)
data_class_all = np.concatenate((data_class_all, data_class), axis=0)
data_type_all = np.concatenate((data_type_all, data_type), axis=0)
+ data_shift_limits_all = \
+ np.concatenate((data_shift_limits_all, data_shift_limits), axis=0)
dur = time.time() - time_s
print(f'Data concatenation finished in {dur:.3f} seconds.')
data_in_all = torch.from_numpy(data_in_all)
data_class_all = torch.from_numpy(data_class_all)
data_type_all = torch.from_numpy(data_type_all)
+ data_shift_limits_all = torch.from_numpy(data_shift_limits_all)
+
+ # apply static shift & noise augmentation for validation examples
+ for sample_index in range(data_in_all.shape[0]):
+ if data_type_all[sample_index] == 2:
+ data_in_all[sample_index] = \
+ self.shift_and_noise_augment(data_in_all[sample_index],
+ data_shift_limits_all[sample_index])
- mfcc_dataset = (data_in_all, data_class_all, data_type_all)
- torch.save(mfcc_dataset, os.path.join(self.processed_folder, self.data_file))
+ raw_dataset = (data_in_all, data_class_all, data_type_all, data_shift_limits_all)
+ torch.save(raw_dataset, os.path.join(self.processed_folder, self.data_file))
print('Dataset created.')
print(f'Training: {train_count}, Validation: {valid_count}, Test: {test_count}')
@@ -658,7 +727,7 @@ def KWS_get_datasets(data, load_train=True, load_test=True, num_classes=6):
else:
raise ValueError(f'Unsupported num_classes {num_classes}')
- augmentation = {'aug_num': 2, 'shift': {'min': -0.15, 'max': 0.15},
+ augmentation = {'aug_num': 2, 'shift': {'min': -0.1, 'max': 0.1},
'noise_var': {'min': 0, 'max': 1.0}}
quantization_scheme = {'compand': False, 'mu': 10}
diff --git a/datasets/msnoise.py b/datasets/msnoise.py
index 9bfeb38fb..e2eaee42e 100644
--- a/datasets/msnoise.py
+++ b/datasets/msnoise.py
@@ -1,6 +1,7 @@
#
# Copyright (c) 2018 Intel Corporation
# Portions Copyright (C) 2019-2023 Maxim Integrated Products, Inc.
+# Portions Copyright (C) 2023-2024 Analog Devices, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@@ -44,6 +45,7 @@ class MSnoise:
exist.
classes(array): List of keywords to be used.
d_type(string): Option for the created dataset. ``train`` or ``test``.
+ dataset_len(int): Dataset length to be returned.
remove_unknowns (bool, optional): If true, unchosen classes are not gathered as
the unknown class.
transform (callable, optional): A function/transform that takes in an PIL image
@@ -62,17 +64,23 @@ class MSnoise:
'CopyMachine': 6, 'Field': 7, 'Hallway': 8, 'Kitchen': 9,
'LivingRoom': 10, 'Metro': 11, 'Munching': 12, 'NeighborSpeaking': 13,
'Office': 14, 'Park': 15, 'Restaurant': 16, 'ShuttingDoor': 17,
- 'Square': 18, 'SqueakyChair': 19, 'Station': 20, 'Traffic': 21,
- 'Typing': 22, 'VacuumCleaner': 23, 'WasherDryer': 24, 'Washing': 25}
+ 'Square': 18, 'SqueakyChair': 19, 'Station': 20, 'TradeShow': 21, 'Traffic': 22,
+ 'Typing': 23, 'VacuumCleaner': 24, 'WasherDryer': 25, 'Washing': 26}
- def __init__(self, root, classes, d_type, remove_unknowns=False,
- transform=None, quantize=False, download=False):
+ def __init__(self, root, classes, d_type, dataset_len, exp_len=16384, fs=16000,
+ noise_time_step=0.25, remove_unknowns=False, transform=None,
+ quantize=False, download=False):
self.root = root
self.classes = classes
self.d_type = d_type
self.remove_unknowns = remove_unknowns
self.transform = transform
+ self.dataset_len = dataset_len
+ self.exp_len = exp_len
+ self.fs = fs
+ self.noise_time_step = noise_time_step
+
self.noise_train_folder = os.path.join(self.raw_folder, 'noise_train')
self.noise_test_folder = os.path.join(self.raw_folder, 'noise_test')
self.url_train = \
@@ -81,16 +89,13 @@ def __init__(self, root, classes, d_type, remove_unknowns=False,
'https://api.github.com/repos/microsoft/MS-SNSD/contents/noise_test?ref=master'
self.quantize = quantize
- if self.quantize:
- self.data_file = 'dataset_quantized.pt'
- else:
- self.data_file = 'dataset_unquantized.pt'
-
if download:
self.__download()
- self.data, self.targets, self.data_type = torch.load(os.path.join(
- self.processed_folder, self.data_file))
+ self.data, self.targets, self.data_type, self.rms_val = self.__gen_datasets()
+
+ # rms values for each sample to be returned
+ self.rms = np.zeros(self.dataset_len)
self.__filter_dtype()
self.__filter_classes()
@@ -101,24 +106,16 @@ def raw_folder(self):
"""
return os.path.join(self.root, self.__class__.__name__, 'raw')
- @property
- def processed_folder(self):
- """Folder for the processed data.
- """
- return os.path.join(self.root, self.__class__.__name__, 'processed')
-
def __download(self):
- if self.__check_exists():
+ if os.path.exists(self.raw_folder):
return
self.__makedir_exist_ok(self.noise_train_folder)
self.__makedir_exist_ok(self.noise_test_folder)
- self.__makedir_exist_ok(self.processed_folder)
self.__download_raw(self.url_train)
self.__download_raw(self.url_test)
- self.__gen_datasets()
def __download_raw(self, api_url):
opener = urllib.request.build_opener()
@@ -145,9 +142,6 @@ def __download_raw(self, api_url):
print('Interrupted while downloading!')
sys.exit()
- def __check_exists(self):
- return os.path.exists(os.path.join(self.processed_folder, self.data_file))
-
def __makedir_exist_ok(self, dirpath):
try:
os.makedirs(dirpath)
@@ -158,21 +152,25 @@ def __makedir_exist_ok(self, dirpath):
raise
def __filter_dtype(self):
+
if self.d_type == 'train':
- idx_to_select = (self.data_type == 0)[:, -1]
+ bool_list = [i == 0 for i in self.data_type]
+ idx_to_select = [i for i, x in enumerate(bool_list) if x]
elif self.d_type == 'test':
- idx_to_select = (self.data_type == 1)[:, -1]
+ bool_list = [i == 1 for i in self.data_type]
+ idx_to_select = [i for i, x in enumerate(bool_list) if x]
else:
print(f'Unknown data type: {self.d_type}')
return
- print(self.data.shape)
- self.data = self.data[idx_to_select, :]
- self.targets = self.targets[idx_to_select, :]
+ self.data = [self.data[i] for i in idx_to_select]
+ self.targets = [self.targets[i] for i in idx_to_select]
+ self.rms_val = [self.rms_val[i] for i in idx_to_select]
del self.data_type
def __filter_classes(self):
print('\n')
+ self.targets = np.array(self.targets)
initial_new_class_label = len(self.class_dict)
new_class_label = initial_new_class_label
for c in self.classes:
@@ -181,21 +179,22 @@ def __filter_classes(self):
return
# else:
print(f'Class {c}, {self.class_dict[c]}')
- num_elems = (self.targets == self.class_dict[c]).cpu().sum()
- print(f'Number of elements in class {c}: {num_elems}')
- self.targets[(self.targets == self.class_dict[c])] = new_class_label
+ bool_list = [self.class_dict[c] == i for i in self.targets]
+ idx = [i for i, x in enumerate(bool_list) if x]
+ self.targets[idx] = new_class_label
+ print(f'{c}: {new_class_label - initial_new_class_label}')
new_class_label += 1
- num_elems = (self.targets < initial_new_class_label).cpu().sum()
- print(f'Number of elements in class unknown: {num_elems}')
self.targets[(self.targets < initial_new_class_label)] = new_class_label
if self.remove_unknowns:
- idx_to_remove = (self.targets == new_class_label)[:, -1]
- idx_to_keep = torch.logical_not(idx_to_remove)
- self.data = self.data[idx_to_keep, :]
- self.targets = self.targets[idx_to_keep, :]
- self.targets -= initial_new_class_label
- print(np.unique(self.targets.data.cpu()))
+ bool_list = [i != new_class_label for i in self.targets]
+ idx_to_keep = [i for i, x in enumerate(bool_list) if x]
+
+ self.data = [self.data[i] for i in idx_to_keep]
+ self.targets = [self.targets[i] for i in idx]
+ self.rms_val = [self.rms_val[i] for i in idx]
+
+ self.targets = [target - initial_new_class_label for target in self.targets]
print('\n')
@staticmethod
@@ -210,20 +209,36 @@ def quantize_audio(data, num_bits=8):
return np.uint8(q_data)
def __len__(self):
- return len(self.data)
+ return self.dataset_len
def __getitem__(self, index):
- inp, target = self.data[index].type(torch.FloatTensor), int(self.targets[index])
+
+ rec_num = len(self.data)
+
+ rnd_num = np.random.randint(0, rec_num)
+ self.rms[index] = self.rms_val[rnd_num]
+
+ rec_len = len(self.data[rnd_num])
+
+ max_start_idx = rec_len - self.exp_len
+ start_idx = np.random.randint(0, max_start_idx)
+ end_idx = start_idx + self.exp_len
+
+ inp = self.__reshape_audio(self.data[rnd_num][start_idx:end_idx])
+ target = int(self.targets[rnd_num])
+
if self.quantize:
inp /= 256
if self.transform is not None:
inp = self.transform(inp)
return inp, target
- def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0,
- noise_time_step=0.25, train_ratio=0.6):
- print('Generating dataset from raw data samples for the first time. ')
- print('Warning: This process could take 5-10 minutes!')
+ def __reshape_audio(self, audio, row_len=128):
+
+ return torch.transpose(torch.tensor(audio.reshape((-1, row_len))), 1, 0)
+
+ def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0):
+
with warnings.catch_warnings():
warnings.simplefilter('error')
@@ -253,76 +268,33 @@ def __gen_datasets(self, exp_len=16384, row_len=128, overlap_ratio=0,
# Folders
train_test_folders = [self.noise_train_folder, self.noise_test_folder]
- # Determining the array sizes
- num_seqs = 0
- for label in labels:
- train_count = 0
- test_count = 0
+ data_in = []
+ data_type = []
+ data_class = []
+ rms_val = []
+
+ for i, label in enumerate(labels):
for folder in train_test_folders:
for record_name in os.listdir(folder):
if record_name.split('_')[0] in label:
record_path = os.path.join(folder, record_name)
- record, fs = librosa.load(record_path, offset=0, sr=None)
- rec_len = np.size(record)
- max_start_time = ((rec_len / fs - 1) -
- (rec_len / fs % noise_time_step))
- num_seqs += int(max_start_time / noise_time_step + 1)
- print(f'Num sequences: {num_seqs}')
-
- # Creating the empty arrays
- if self.quantize:
- data_in = np.zeros((num_seqs, row_len, num_rows), dtype=np.uint8)
- else:
- data_in = np.zeros((num_seqs, row_len, num_rows), dtype=np.float32)
- data_type = np.zeros((num_seqs, 1), dtype=np.uint8)
- data_class = np.zeros((num_seqs, 1), dtype=np.uint8)
+ record, _ = librosa.load(record_path, offset=0, sr=None)
- data_idx = 0
- for i, label in enumerate(labels):
- print(f'Processing label:{label}')
- train_count = 0
- test_count = 0
- for folder in train_test_folders:
- for record_name in sorted(os.listdir(folder)):
- if record_name.split('_')[0] in label:
- if hash(record_name) % 10 < 10*train_ratio:
- d_type = np.uint8(0) # train+val
- train_count += 1
+ if self.quantize:
+ data_in.append(self.quantize_audio(record))
else:
- d_type = np.uint8(1) # test
- test_count += 1
- record_path = os.path.join(folder, record_name)
- record, fs = librosa.load(record_path, offset=0, sr=None)
- rec_len = np.size(record)
- max_start_time = \
- (rec_len / fs - 1) - (rec_len / fs % noise_time_step)
- for start_time in np.arange(0,
- int((max_start_time+noise_time_step)*fs),
- int(noise_time_step*fs)):
- end_time = start_time + fs
- audio_seq = record[start_time:end_time]
- data_type[data_idx, 0] = d_type
- data_class[data_idx, 0] = i
- for n_r in range(num_rows):
- start_idx = n_r*(row_len - overlap)
- end_idx = start_idx + row_len
- audio_chunk = audio_seq[start_idx:end_idx]
- audio_chunk = \
- np.pad(audio_chunk, [0, row_len-audio_chunk.size])
- if self.quantize:
- data_in[data_idx, :, n_r] = \
- self.quantize_audio(audio_chunk)
- else:
- data_in[data_idx, :, n_r] = audio_chunk
- data_idx += 1
-
- data_in = torch.from_numpy(data_in)
- data_class = torch.from_numpy(data_class)
- data_type = torch.from_numpy(data_type)
-
- noise_dataset = (data_in, data_class, data_type)
- torch.save(noise_dataset, os.path.join(self.processed_folder, self.data_file))
- print('Dataset created!')
+ data_in.append(record)
+
+ if folder == self.noise_train_folder:
+ data_type.append(0) # train + val
+ elif folder == self.noise_test_folder:
+ data_type.append(1) # test
+
+ data_class.append(i)
+ rms_val.append(np.mean(record**2)**0.5)
+
+ noise_dataset = (data_in, data_class, data_type, rms_val)
+ return noise_dataset
def MSnoise_get_datasets(data, load_train=True, load_test=True):
@@ -338,9 +310,11 @@ def MSnoise_get_datasets(data, load_train=True, load_test=True):
classes = ['AirConditioner', 'AirportAnnouncements',
'Babble', 'Bus', 'CafeTeria', 'Car',
- 'CopyMachine', 'Metro',
- 'Office', 'Restaurant', 'ShuttingDoor',
- 'Traffic', 'Typing', 'VacuumCleaner', 'Washing']
+ 'CopyMachine', 'Field', 'Hallway', 'Kitchen',
+ 'LivingRoom', 'Metro', 'Munching', 'NeighborSpeaking',
+ 'Office', 'Park', 'Restaurant', 'ShuttingDoor',
+ 'Square', 'SqueakyChair', 'Station', 'Traffic',
+ 'Typing', 'VacuumCleaner', 'WasherDryer', 'Washing', 'TradeShow']
remove_unknowns = True
transform = transforms.Compose([
@@ -349,14 +323,14 @@ def MSnoise_get_datasets(data, load_train=True, load_test=True):
quantize = True
if load_train:
- train_dataset = MSnoise(root=data_dir, classes=classes, d_type='train',
+ train_dataset = MSnoise(root=data_dir, classes=classes, d_type='train', dataset_len=11005,
remove_unknowns=remove_unknowns, transform=transform,
quantize=quantize, download=True)
else:
train_dataset = None
if load_test:
- test_dataset = MSnoise(root=data_dir, classes=classes, d_type='test',
+ test_dataset = MSnoise(root=data_dir, classes=classes, d_type='test', dataset_len=11005,
remove_unknowns=remove_unknowns, transform=transform,
quantize=quantize, download=True)
@@ -378,33 +352,27 @@ def MSnoise_get_unquantized_datasets(data, load_train=True, load_test=True):
"""
(data_dir, args) = data
- # classes = ['AirConditioner', 'AirportAnnouncements',
- # 'Babble', 'Bus', 'CafeTeria', 'Car',
- # 'CopyMachine', 'Field', 'Hallway', 'Kitchen',
- # 'LivingRoom', 'Metro', 'Munching', 'NeighborSpeaking',
- # 'Office', 'Park', 'Restaurant', 'ShuttingDoor',
- # 'Square', 'SqueakyChair', 'Station', 'Traffic',
- # 'Typing', 'VacuumCleaner', 'WasherDryer', 'Washing']
-
- classes = ['AirConditioner',
- 'CafeTeria', 'Car',
- 'CopyMachine',
- 'Office', 'Restaurant',
- 'Typing', 'VacuumCleaner', 'WasherDryer']
+ classes = ['AirConditioner', 'AirportAnnouncements',
+ 'Babble', 'Bus', 'CafeTeria', 'Car',
+ 'CopyMachine', 'Field', 'Hallway', 'Kitchen',
+ 'LivingRoom', 'Metro', 'Munching', 'NeighborSpeaking',
+ 'Office', 'Park', 'Restaurant', 'ShuttingDoor',
+ 'Square', 'SqueakyChair', 'Station', 'Traffic',
+ 'Typing', 'VacuumCleaner', 'WasherDryer', 'Washing', 'TradeShow']
remove_unknowns = True
transform = None
quantize = False
if load_train:
- train_dataset = MSnoise(root=data_dir, classes=classes, d_type='train',
+ train_dataset = MSnoise(root=data_dir, classes=classes, d_type='train', dataset_len=11005,
remove_unknowns=remove_unknowns, transform=transform,
quantize=quantize, download=True)
else:
train_dataset = None
if load_test:
- test_dataset = MSnoise(root=data_dir, classes=classes, d_type='test',
+ test_dataset = MSnoise(root=data_dir, classes=classes, d_type='test', dataset_len=11005,
remove_unknowns=remove_unknowns, transform=transform,
quantize=quantize, download=True)
diff --git a/datasets/signalmixer.py b/datasets/signalmixer.py
new file mode 100644
index 000000000..68845f1ae
--- /dev/null
+++ b/datasets/signalmixer.py
@@ -0,0 +1,136 @@
+#
+# Copyright (c) 2018 Intel Corporation
+# Portions Copyright (C) 2019-2023 Maxim Integrated Products, Inc.
+# Portions Copyright (C) 2023-2024 Analog Devices, Inc.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+#
+"""
+Classes and functions used to create noisy keyword spotting dataset.
+"""
+import numpy as np
+import torch
+
+
+class signalmixer:
+ """
+ Signal mixer dataloader to create datasets with specified
+ length using a noise dataset and a speech dataset and a specified SNR level.
+
+ Args:
+ signal_dataset(object): KWS dataset object.
+ snr(int): SNR level to be created in the mixed dataset.
+ noise_kind(string): Noise kind that will be applied to the speech dataset.
+ noise_dataset(object, optional): MSnoise dataset object.
+ """
+
+ def __init__(self, signal_dataset, snr, noise_kind, noise_dataset=None):
+
+ self.signal_data = signal_dataset.data
+ self.signal_targets = signal_dataset.targets
+
+ if noise_kind != 'WhiteNoise':
+ self.noise_data = noise_dataset.data
+ self.noise_targets = noise_dataset.targets
+
+ # using getitem to reach the noise test data
+ self.noise_dataset_float = next(iter(torch.utils.data.DataLoader(
+ noise_dataset, batch_size=noise_dataset.dataset_len)))[0]
+
+ self.noise_rms = noise_dataset.rms
+
+ self.snr = snr
+ self.noise_kind = noise_kind
+
+ # using getitem to reach the speech test data
+ self.test_dataset_float = next(iter(torch.utils.data.DataLoader(
+ signal_dataset, batch_size=signal_dataset.data.shape[0])))[0]
+
+ if noise_kind == 'WhiteNoise':
+ self.mixed_signal = self.white_noise_mixer()
+ else:
+ self.mixed_signal = self.snr_mixer()
+
+ def __getitem__(self, index):
+
+ inp = self.mixed_signal[index].type(torch.FloatTensor)
+ target = int(self.signal_targets[index])
+ return inp, target
+
+ def __len__(self):
+ return len(self.mixed_signal)
+
+ def snr_mixer(self):
+ ''' creates mixed signal dataset using the SNR level and the noise dataset
+ '''
+ clean = self.test_dataset_float
+ noise = self.noise_dataset_float
+
+ idx = np.random.randint(0, noise.shape[0], clean.shape[0])
+ noise = noise[idx]
+ rms_noise = self.noise_rms[idx]
+
+ snr = self.snr
+
+ rmsclean = torch.sqrt(torch.mean(clean.reshape(
+ clean.shape[0], -1)**2, 1, keepdims=True)).unsqueeze(1)
+ scalarclean = 1 / rmsclean
+ clean = clean * scalarclean
+
+ scalarnoise = 1 / rms_noise.reshape(-1, 1, 1)
+ noise = noise * scalarnoise
+
+ cleanfactor = 10**(snr/20)
+ noisyspeech = cleanfactor * clean + noise
+ noisyspeech = noisyspeech / (torch.tensor(scalarnoise) + cleanfactor * scalarclean)
+
+ # 16384 --> (noisyspeech[0].shape[0])*(noisyspeech[0].shape[1])
+ speech_shape = noisyspeech[0].shape[0]*noisyspeech[0].shape[1]
+ max_mixed = torch.max(abs(noisyspeech.reshape(
+ noisyspeech.shape[0], speech_shape)), 1, keepdims=True).values
+
+ noisyspeech = noisyspeech * (1 / max_mixed).unsqueeze(1)
+ return noisyspeech
+
+ def white_noise_mixer(self):
+
+ '''creates mixed signal dataset using the SNR level and white noise
+ '''
+ clean = self.test_dataset_float
+ snr = self.snr
+
+ mean = 0
+ std = 1
+ noise = np.random.normal(mean, std, clean.shape)
+ noise = torch.tensor(noise, dtype=torch.float32)
+
+ rmsclean = (torch.mean(clean.reshape(
+ clean.shape[0], -1)**2, 1, keepdims=True)**0.5).unsqueeze(1)
+ scalarclean = 1 / rmsclean
+ clean = clean * scalarclean
+
+ rmsnoise = (torch.mean(noise.reshape(
+ noise.shape[0], -1)**2, 1, keepdims=True)**0.5).unsqueeze(1)
+ scalarnoise = 1 / rmsnoise
+ noise = noise * scalarnoise
+
+ cleanfactor = 10**(snr/20)
+ noisyspeech = cleanfactor * clean + noise
+ noisyspeech = noisyspeech / (scalarnoise + cleanfactor * scalarclean)
+
+ # scaling to ~[-1,1]
+ max_mixed = torch.max(abs(noisyspeech.reshape(
+ noisyspeech.shape[0], 16384)), 1, keepdims=True).values
+ noisyspeech = noisyspeech * (1 / max_mixed).unsqueeze(1)
+
+ return noisyspeech
diff --git a/models/ai85net-kws20-nas.py b/models/ai85net-kws20-nas.py
new file mode 100644
index 000000000..fa6d108aa
--- /dev/null
+++ b/models/ai85net-kws20-nas.py
@@ -0,0 +1,107 @@
+###################################################################################################
+#
+# Copyright (C) 2023-2024 Analog Devices, Inc. All Rights Reserved.
+#
+# Analog Devices, Inc. Default Copyright Notice:
+# https://www.analog.com/en/about-adi/legal-and-risk-oversight/intellectual-property/copyright-notice.html
+#
+###################################################################################################
+#
+# Copyright (C) 2021-2023 Maxim Integrated Products, Inc. All Rights Reserved.
+#
+# Maxim Integrated Products, Inc. Default Copyright Notice:
+# https://www.maximintegrated.com/en/aboutus/legal/copyrights.html
+#
+###################################################################################################
+"""
+Keyword spotting network for AI85
+"""
+from torch import nn
+
+import ai8x
+
+
+class AI85KWS20NetNAS(nn.Module):
+ """
+ KWS20 NAS Audio net, found via Neural Architecture Search
+ It significantly outperforms earlier networks (v1, v2, v3), though with a higher
+ parameter count and slightly increased latency.
+ """
+
+ # num_classes = n keywords + 1 unknown
+ def __init__(
+ self,
+ num_classes=21,
+ num_channels=128,
+ dimensions=(128, 1), # pylint: disable=unused-argument
+ bias=True,
+ **kwargs
+ ):
+ super().__init__()
+ self.conv1_1 = ai8x.FusedConv1dBNReLU(num_channels, 128, 1, stride=1, padding=0,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv1_2 = ai8x.FusedConv1dBNReLU(128, 64, 3, stride=1, padding=1,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv1_3 = ai8x.FusedConv1dBNReLU(64, 128, 3, stride=1, padding=1,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv2_1 = ai8x.FusedMaxPoolConv1dBNReLU(128, 128, 3, stride=1, padding=1,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv2_2 = ai8x.FusedConv1dBNReLU(128, 64, 1, stride=1, padding=0,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv2_3 = ai8x.FusedConv1dBNReLU(64, 128, 1, stride=1, padding=0,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv3_1 = ai8x.FusedMaxPoolConv1dBNReLU(128, 128, 3, stride=1, padding=1,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv3_2 = ai8x.FusedConv1dBNReLU(128, 64, 5, stride=1, padding=2,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv4_1 = ai8x.FusedMaxPoolConv1dBNReLU(64, 128, 5, stride=1, padding=2,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv4_2 = ai8x.FusedConv1dBNReLU(128, 128, 1, stride=1, padding=0,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv5_1 = ai8x.FusedMaxPoolConv1dBNReLU(128, 128, 5, stride=1, padding=2,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv5_2 = ai8x.FusedConv1dBNReLU(128, 64, 3, stride=1, padding=1,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv6_1 = ai8x.FusedMaxPoolConv1dBNReLU(64, 64, 5, stride=1, padding=2,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.conv6_2 = ai8x.FusedConv1dBNReLU(64, 128, 1, stride=1, padding=0,
+ bias=bias, batchnorm="NoAffine", **kwargs)
+ self.fc = ai8x.Linear(512, num_classes, bias=bias, wide=True, **kwargs)
+
+ def forward(self, x): # pylint: disable=arguments-differ
+ """Forward prop"""
+ # Run CNN
+ x = self.conv1_1(x)
+ x = self.conv1_2(x)
+ x = self.conv1_3(x)
+ x = self.conv2_1(x)
+ x = self.conv2_2(x)
+ x = self.conv2_3(x)
+ x = self.conv3_1(x)
+ x = self.conv3_2(x)
+ x = self.conv4_1(x)
+ x = self.conv4_2(x)
+ x = self.conv5_1(x)
+ x = self.conv5_2(x)
+ x = self.conv6_1(x)
+ x = self.conv6_2(x)
+ x = x.view(x.size(0), -1)
+ x = self.fc(x)
+ return x
+
+
+def ai85kws20netnas(pretrained=False, **kwargs):
+ """
+ Constructs a AI85KWS20NetNAS model.
+ """
+ assert not pretrained
+ return AI85KWS20NetNAS(**kwargs)
+
+
+models = [
+ {
+ 'name': 'ai85kws20netnas',
+ 'min_input': 1,
+ 'dim': 1,
+ },
+]
diff --git a/notebooks/Bayer2RGB_Evaluation.ipynb b/notebooks/Bayer2RGB_Evaluation.ipynb
index 24059aec0..c793e444f 100644
--- a/notebooks/Bayer2RGB_Evaluation.ipynb
+++ b/notebooks/Bayer2RGB_Evaluation.ipynb
@@ -22,8 +22,10 @@
"source": [
"###################################################################################################\n",
"#\n",
- "# Copyright © 2023 Analog Devices, Inc. All Rights Reserved.\n",
- "# This software is proprietary and confidential to Analog Devices, Inc. and its licensors.\n",
+ "# Copyright (C) 2023-2024 Analog Devices, Inc. All Rights Reserved.\n",
+ "#\n",
+ "# Analog Devices, Inc. Default Copyright Notice:\n",
+ "# https://www.analog.com/en/about-adi/legal-and-risk-oversight/intellectual-property/copyright-notice.html\n",
"#\n",
"###################################################################################################import cv2\n",
"import importlib\n",
diff --git a/notebooks/KWS_Noise_Evaluation.ipynb b/notebooks/KWS_Noise_Evaluation.ipynb
new file mode 100644
index 000000000..934c52387
--- /dev/null
+++ b/notebooks/KWS_Noise_Evaluation.ipynb
@@ -0,0 +1,868 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Automated Evaluation for KWS Under Different Noise Scenarios\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Using this notebook, you can test previously trained KWS models under various noise types at desired SNR levels. You'll need:\n",
+ "- the trained model's checkpoint file\n",
+ "- a list specifying the types of noise\n",
+ "- a list specifying the SNR levels.\n",
+ "\n",
+ "This notebook uses the signalmixer data loader to mix the KWS and specified noise data, and creates a mixed dataset using the specified SNR level. The notebook performs the evaluation on these mixed datasets and creates comparison plots for different types of models."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "###################################################################################################\n",
+ "#\n",
+ "# Copyright (C) 2023-2024 Analog Devices, Inc. All Rights Reserved.\n",
+ "#\n",
+ "# Analog Devices, Inc. Default Copyright Notice:\n",
+ "# https://www.analog.com/en/about-adi/legal-and-risk-oversight/intellectual-property/copyright-notice.html\n",
+ "#\n",
+ "###################################################################################################\n",
+ "#\n",
+ "# Copyright (C) 2022-2023 Maxim Integrated Products, Inc. All Rights Reserved.\n",
+ "#\n",
+ "# Maxim Integrated Products, Inc. Default Copyright Notice:\n",
+ "# https://www.maximintegrated.com/en/aboutus/legal/copyrights.html\n",
+ "#\n",
+ "###################################################################################################\n",
+ "\n",
+ "import os\n",
+ "import sys\n",
+ "\n",
+ "import numpy as np\n",
+ "import torch\n",
+ "import pandas as pd\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "import torchnet.meter as tnt\n",
+ "from collections import OrderedDict\n",
+ "import importlib\n",
+ "from torchvision import transforms\n",
+ "\n",
+ "sys.path.append(os.path.join(os.getcwd(), '..'))\n",
+ "sys.path.append(os.path.join(os.getcwd(), '..', 'models'))\n",
+ "sys.path.append(os.path.join(os.getcwd(), '..', 'datasets'))\n",
+ "\n",
+ "from types import SimpleNamespace\n",
+ "\n",
+ "import ai8x\n",
+ "\n",
+ "import msnoise\n",
+ "from signalmixer import signalmixer"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 1: Initialize and load the model"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "First, set the checkpoint path and the corresponding model name. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trained_checkpoint_path = os.path.join('..', '..', 'ai8x-synthesis', 'trained', 'ai85-kws20_nas-qat8.pth.tar')\n",
+ "mod = importlib.import_module(\"ai85net-kws20-nas\")\n",
+ "model_file = \"ai85net-kws20-nas\""
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Working with device: cuda\n",
+ "Configuring device: MAX78000, simulate=False.\n"
+ ]
+ }
+ ],
+ "source": [
+ "dataset = importlib.import_module(\"kws20\")\n",
+ "\n",
+ "classes = ['up', 'down', 'left', 'right', 'stop', 'go', 'yes', 'no', 'on', 'off', 'one',\n",
+ " 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'zero', 'unknown']\n",
+ "\n",
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
+ "print(\"Working with device:\", device)\n",
+ "\n",
+ "ai8x.set_device(device=85, simulate=False, round_avg=False)\n",
+ "qat_policy = {'start_epoch': 10, 'weight_bits': 8, 'bias_bits': 8}"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "model = mod.AI85KWS20NetNAS(num_classes=len(classes), num_channels=128, dimensions=(128, 1), bias=True, \n",
+ " quantize_activation=False)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "checkpoint = torch.load(trained_checkpoint_path)\n",
+ "\n",
+ "state_dict = checkpoint['state_dict']\n",
+ "new_state_dict = OrderedDict()\n",
+ "for k, v in state_dict.items():\n",
+ " if k.startswith('module.'):\n",
+ " k = k[7:]\n",
+ " new_state_dict[k] = v\n",
+ "checkpoint['state_dict'] = new_state_dict\n",
+ "\n",
+ "ai8x.fuse_bn_layers(model)\n",
+ "ai8x.initiate_qat(model, qat_policy)\n",
+ "model.load_state_dict(checkpoint['state_dict'], strict=False)\n",
+ "\n",
+ "ai8x.update_model(model)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 2: Set up the test set and evaluation parameters"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Then, load the KWS test set, specify the noise list and the SNR level list. \n",
+ "\n",
+ "Note: Noise types should be picked from the available classes within the MSnoise dataset (`datasets/msnoise.py`)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Processing test...\n",
+ "test set: 11005 elements\n",
+ "Class up (# 31): 425 elements\n",
+ "Class down (# 5): 406 elements\n",
+ "Class left (# 15): 412 elements\n",
+ "Class right (# 23): 396 elements\n",
+ "Class stop (# 27): 411 elements\n",
+ "Class go (# 11): 402 elements\n",
+ "Class yes (# 34): 419 elements\n",
+ "Class no (# 19): 405 elements\n",
+ "Class on (# 21): 396 elements\n",
+ "Class off (# 20): 402 elements\n",
+ "Class one (# 22): 399 elements\n",
+ "Class two (# 30): 424 elements\n",
+ "Class three (# 28): 405 elements\n",
+ "Class four (# 10): 400 elements\n",
+ "Class five (# 7): 445 elements\n",
+ "Class six (# 26): 394 elements\n",
+ "Class seven (# 24): 406 elements\n",
+ "Class eight (# 6): 408 elements\n",
+ "Class nine (# 18): 408 elements\n",
+ "Class zero (# 35): 418 elements\n",
+ "Class UNKNOWN: 2824 elements\n"
+ ]
+ }
+ ],
+ "source": [
+ "sn = SimpleNamespace()\n",
+ "sn.truncate_testset = False\n",
+ "sn.act_mode_8bit = False\n",
+ "\n",
+ "data_path = '/data'\n",
+ "\n",
+ "_, test_dataset = dataset.KWS_20_get_datasets( (data_path, sn), load_train=False, load_test=True)\n",
+ "\n",
+ "originals = list(range(0, len(test_dataset), 3))\n",
+ "test_dataset.data = test_dataset.data[originals]\n",
+ "test_dataset.targets = test_dataset.targets[originals]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "noise_list = ['AirConditioner',\n",
+ " 'AirportAnnouncements',\n",
+ " 'Babble',\n",
+ " 'CopyMachine',\n",
+ " 'Munching',\n",
+ " 'NeighborSpeaking',\n",
+ " 'ShuttingDoor',\n",
+ " 'Typing',\n",
+ " 'VacuumCleaner',\n",
+ " 'TradeShow',\n",
+ " 'WhiteNoise']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "snr_list = [-5, 0, 5, 10, 15, 20]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 3: Define functions to evaluate the model under different SNR levels"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Using the `evaluate`, `snr_testing` and `benchmark` functions, you can evaluate the trained model under different SNR levels.\n",
+ "\n",
+ "- The `evaluate` function evaluates the model under the specified SNR level and noise type.\n",
+ "- The `snr_testing` function executes a loop over the SNR list. It calls the `evaluate` function for each SNR level, for the specified noise type.\n",
+ "- The `benchmark` function executes a loop over the list of noise types. It calls the `snr_testing` function for each type of noise."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def evaluate(db = None, noise = False, noise_type = None):\n",
+ "\n",
+ " if (noise == True) and (noise_type == None):\n",
+ " print('Noise type is not specified. Noise will not be applied.')\n",
+ " noise = False\n",
+ "\n",
+ " model.eval()\n",
+ " model.to(device) \n",
+ " classerr = tnt.ClassErrorMeter(accuracy=True, topk=(1, min(len(classes), 5)))\n",
+ "\n",
+ " transform = transforms.Compose([\n",
+ " ai8x.normalize(args=sn)\n",
+ " ])\n",
+ " \n",
+ " if noise:\n",
+ " if (noise_type == 'WhiteNoise'):\n",
+ "\n",
+ " mixed_signals = signalmixer(test_dataset, snr = db, noise_type = noise_type, noise_dataset = None)\n",
+ " mixed_signals_loader = torch.utils.data.DataLoader(mixed_signals, batch_size = 256)\n",
+ "\n",
+ " else:\n",
+ " noise_dataset = msnoise.MSnoise(root = data_path, classes = [noise_type], d_type = 'test', dataset_len = 11005, remove_unknowns=True,\n",
+ " transform=None, quantize=False, download=False)\n",
+ "\n",
+ " mixed_signals = signalmixer(test_dataset, snr = db, noise_type = noise_type, noise_dataset = noise_dataset)\n",
+ " mixed_signals_loader = torch.utils.data.DataLoader(mixed_signals, batch_size = 256)\n",
+ " else:\n",
+ " mixed_signals_loader = torch.utils.data.DataLoader(test_dataset, batch_size = 256)\n",
+ " \n",
+ " with torch.no_grad():\n",
+ " for batch_idx, (inputs, targets) in enumerate(mixed_signals_loader):\n",
+ " inputs = inputs.to(device)\n",
+ " targets = targets.to(device)\n",
+ " outputs = model(inputs)\n",
+ " classerr.add(outputs, targets)\n",
+ "\n",
+ " print(\"Batch: [\",batch_idx*256 ,\"/\", len(test_dataset),\"]\")\n",
+ " acc = classerr.value()[0]\n",
+ " print(\"Accuracy: \", acc)\n",
+ " \n",
+ " print(\"Total Accuracy: \", acc)\n",
+ " return acc"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def snr_testing(snr_list = None, noise_type = None, noise = False):\n",
+ "\n",
+ " # raw test set evaluation\n",
+ " if noise == False:\n",
+ " db = None\n",
+ " noise_type = None\n",
+ " accuracies = np.zeros(1)\n",
+ " accuracies[0] = evaluate(db, noise, noise_type)\n",
+ "\n",
+ " # noisy test set evaluation\n",
+ " else:\n",
+ " accuracies = np.zeros(len(snr_list))\n",
+ "\n",
+ " for idx, db in enumerate(snr_list):\n",
+ " print(\"Evaluating SNR levels of\", db)\n",
+ " accuracies[idx] = evaluate(db, noise, noise_type)\n",
+ "\n",
+ " return accuracies"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def benchmark(noise_list = None, snr_list = None):\n",
+ "\n",
+ " if noise_list == None:\n",
+ " print('Noise type is not specified. Noise will not be applied.')\n",
+ " noise = False\n",
+ " snr_list = None\n",
+ " else:\n",
+ " noise = True\n",
+ " if snr_list == None:\n",
+ " print('Using default values for SNR levels: [-5, 20] dB.')\n",
+ " snr_list = range(-5, 20)\n",
+ "\n",
+ " if noise:\n",
+ "\n",
+ " accuracies = np.zeros((len(noise_list) + 1, len(snr_list)))\n",
+ "\n",
+ " for idx, n in enumerate(noise_list):\n",
+ " print(f'{n} Noise Evaluation')\n",
+ " accuracies[idx] = snr_testing(snr_list, noise_type = n, noise = noise)\n",
+ "\n",
+ " accuracies[-1] = snr_testing(noise = False)\n",
+ "\n",
+ " return accuracies "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "accuracies_nas = benchmark(noise_list = noise_list, snr_list = snr_list)\n",
+ "accuracies = [accuracies_nas]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Optional Step: Adding different models for comparison"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- v3 Model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trained_checkpoint_path = os.path.join('..', '..', 'ai8x-synthesis', 'trained', 'ai85-kws20_v3-qat8.pth.tar') \n",
+ "mod = importlib.import_module(\"ai85net-kws20-v3\")\n",
+ "model_file = \"ai85net-kws20-v3\"\n",
+ "\n",
+ "checkpoint = torch.load(trained_checkpoint_path)\n",
+ "\n",
+ "model = mod.AI85KWS20Netv3(num_classes=len(classes), num_channels=128, dimensions=(128, 1), bias=False, \n",
+ " quantize_activation=False)\n",
+ "\n",
+ "state_dict = checkpoint['state_dict']\n",
+ "new_state_dict = OrderedDict()\n",
+ "for k, v in state_dict.items():\n",
+ " if k.startswith('module.'):\n",
+ " k = k[7:]\n",
+ " new_state_dict[k] = v\n",
+ "checkpoint['state_dict'] = new_state_dict\n",
+ "\n",
+ "ai8x.fuse_bn_layers(model)\n",
+ "ai8x.initiate_qat(model, qat_policy)\n",
+ "model.load_state_dict(checkpoint['state_dict'], strict=False)\n",
+ "\n",
+ "ai8x.update_model(model)\n",
+ "\n",
+ "accuracies_v3 = benchmark(noise_list = noise_list, snr_list = snr_list)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "- v2 Model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "trained_checkpoint_path = os.path.join('..', '..', 'ai8x-synthesis', 'trained', 'ai85-kws20_v2-qat8.pth.tar')\n",
+ "mod = importlib.import_module(\"ai85net-kws20-v2\")\n",
+ "model_file = \"ai85net-kws20-v2\"\n",
+ "\n",
+ "checkpoint = torch.load(trained_checkpoint_path)\n",
+ "\n",
+ "model = mod.AI85KWS20Netv2(num_classes=len(classes), num_channels=128, dimensions=(128, 1), bias=False, \n",
+ " quantize_activation=False)\n",
+ "\n",
+ "state_dict = checkpoint['state_dict']\n",
+ "new_state_dict = OrderedDict()\n",
+ "for k, v in state_dict.items():\n",
+ " if k.startswith('module.'):\n",
+ " k = k[7:]\n",
+ " new_state_dict[k] = v\n",
+ "checkpoint['state_dict'] = new_state_dict\n",
+ "\n",
+ "ai8x.fuse_bn_layers(model)\n",
+ "ai8x.initiate_qat(model, qat_policy)\n",
+ "model.load_state_dict(checkpoint['state_dict'], strict=False)\n",
+ "\n",
+ "ai8x.update_model(model)\n",
+ "\n",
+ "accuracies_v2 = benchmark(noise_list = noise_list, snr_list = snr_list)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "accuracies = [accuracies_nas, accuracies_v2, accuracies_v3]\n",
+ "model_files = [\"ai85net-kws20-nas\", \"ai85net-kws20-v2\", \"ai85net-kws20-v3\"]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Step 4: Comparing noise types (for specified models)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "You can create data frames to examine the results of evaluation. Using the data frame, you can create plots to compare noise types for each model."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "accs = []\n",
+ "for model_name, model_acc in enumerate(accuracies):\n",
+ " csv = {}\n",
+ "\n",
+ " for idx, i in enumerate(noise_list):\n",
+ " csv[i] = model_acc[idx]\n",
+ " \n",
+ " csv_list = []\n",
+ " csv_list.append(['raw', 'None', model_acc[-1][0]])\n",
+ "\n",
+ " for i in csv.keys():\n",
+ " for idx, j in enumerate(csv[i]):\n",
+ " csv_list.append([i, snr_list[idx], j])\n",
+ "\n",
+ " df = pd.DataFrame(csv_list, columns = ['Type', 'SNR (dB)', f'{model_files[model_name]}'])\n",
+ " \n",
+ " accs.append(df)\n",
+ "\n",
+ "for i in accs:\n",
+ " df[i.columns[-1]] = i[i.columns[-1]]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Type | \n",
+ " SNR (dB) | \n",
+ " ai85net-kws20-v3 | \n",
+ " ai85net-kws20-nas | \n",
+ " ai85net-kws20-v2 | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " raw | \n",
+ " None | \n",
+ " 89.860998 | \n",
+ " 94.140093 | \n",
+ " 91.550831 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " AirConditioner | \n",
+ " -5 | \n",
+ " 34.723358 | \n",
+ " 39.765604 | \n",
+ " 33.878441 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " AirConditioner | \n",
+ " 0 | \n",
+ " 56.146089 | \n",
+ " 66.775688 | \n",
+ " 59.798310 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " AirConditioner | \n",
+ " 5 | \n",
+ " 71.954211 | \n",
+ " 81.793404 | \n",
+ " 77.541564 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " AirConditioner | \n",
+ " 10 | \n",
+ " 81.330063 | \n",
+ " 89.561188 | \n",
+ " 85.799945 | \n",
+ "
\n",
+ " \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " 62 | \n",
+ " WhiteNoise | \n",
+ " 0 | \n",
+ " 71.490869 | \n",
+ " 84.655219 | \n",
+ " 80.703189 | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " WhiteNoise | \n",
+ " 5 | \n",
+ " 82.120469 | \n",
+ " 90.024530 | \n",
+ " 87.135459 | \n",
+ "
\n",
+ " \n",
+ " 64 | \n",
+ " WhiteNoise | \n",
+ " 10 | \n",
+ " 86.944672 | \n",
+ " 92.504770 | \n",
+ " 89.533933 | \n",
+ "
\n",
+ " \n",
+ " 65 | \n",
+ " WhiteNoise | \n",
+ " 15 | \n",
+ " 88.770782 | \n",
+ " 93.622240 | \n",
+ " 91.142001 | \n",
+ "
\n",
+ " \n",
+ " 66 | \n",
+ " WhiteNoise | \n",
+ " 20 | \n",
+ " 88.689016 | \n",
+ " 93.976560 | \n",
+ " 91.196511 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
67 rows × 5 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Type SNR (dB) ai85net-kws20-v3 ai85net-kws20-nas \\\n",
+ "0 raw None 89.860998 94.140093 \n",
+ "1 AirConditioner -5 34.723358 39.765604 \n",
+ "2 AirConditioner 0 56.146089 66.775688 \n",
+ "3 AirConditioner 5 71.954211 81.793404 \n",
+ "4 AirConditioner 10 81.330063 89.561188 \n",
+ ".. ... ... ... ... \n",
+ "62 WhiteNoise 0 71.490869 84.655219 \n",
+ "63 WhiteNoise 5 82.120469 90.024530 \n",
+ "64 WhiteNoise 10 86.944672 92.504770 \n",
+ "65 WhiteNoise 15 88.770782 93.622240 \n",
+ "66 WhiteNoise 20 88.689016 93.976560 \n",
+ "\n",
+ " ai85net-kws20-v2 \n",
+ "0 91.550831 \n",
+ "1 33.878441 \n",
+ "2 59.798310 \n",
+ "3 77.541564 \n",
+ "4 85.799945 \n",
+ ".. ... \n",
+ "62 80.703189 \n",
+ "63 87.135459 \n",
+ "64 89.533933 \n",
+ "65 91.142001 \n",
+ "66 91.196511 \n",
+ "\n",
+ "[67 rows x 5 columns]"
+ ]
+ },
+ "execution_count": 19,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def plot_values(model_num):\n",
+ "\n",
+ " accuracies_values = {}\n",
+ "\n",
+ " for noise in noise_list:\n",
+ " acc_list = []\n",
+ " for idx, i in enumerate(df['Type'].values[1:]): \n",
+ " if i == noise:\n",
+ " acc_list.append(df[model_num][1:][idx+1])\n",
+ " accuracies_values[noise] = acc_list\n",
+ "\n",
+ " return accuracies_values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx0AAAHHCAYAAADaozXzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8WgzjOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5wT1fbAv5OeTdve2KVIFViqVCkqKBawINbnQ0QU9dnbszzfs2NFfyo2sIsIKmIvFFGUjvTe2cL2kl7n/v7IbtiwC+yGBVac7+eTTyaTyck9d25u5sw59xxJCCFQUFBQUFBQUFBQUFA4RqhOdAMUFBQUFBQUFBQUFE5uFKNDQUFBQUFBQUFBQeGYohgdCgoKCgoKCgoKCgrHFMXoUFBQUFBQUFBQUFA4pihGh4KCgoKCgoKCgoLCMUUxOhQUFBQUFBQUFBQUjimK0aGgoKCgoKCgoKCgcExRjA4FBQUFBQUFBQUFhWOKYnQoKCgoKCgoKCgoKBxTFKNDQUHhpEKSJB599NFGf27Pnj1IksT777/fJO1oannNmUcffRRJkigtLT3RTVFQUFBQaKYoRodCvbz++utIkkS/fv1OdFP+MrRu3RpJko74aKqL0Keffpo5c+Y0iSyF48eqVasYOXIk6enpmM1munXrxiuvvEIoFIo67lDj6aabbjrmbXz99df/UsbSli1buP/+++nRowcWi4WMjAwuuOACVq5cWe/x+fn5XH755cTHx2O1WrnooovYtWtXk7bp6aefpn///qSkpGAwGGjfvj133nknJSUlTfo9CgoKCn8VNCe6AQrNk+nTp9O6dWuWL1/Ojh07aNeu3YluUrPn5Zdfxul0Rl5///33zJgxg5deeonk5OTI/oEDBzbJ9z399NOMGTOGiy++uEnkKTQtrVq1wuPxoNVqI/tWrVrFwIEDad++Pf/+97+Ji4vjhx9+4I477mDnzp383//9X5SMHj16cM8990Tt69ChwzFv++uvv05ycjLjxo075t/VFEybNo133nmHSy+9lFtuuYWqqireeust+vfvz48//sjw4cMjxzqdTs4880yqqqp46KGH0Gq1vPTSSwwdOpQ1a9aQlJTUJG1atWoVPXr04Morr8RisbB582amTp3Kd999x5o1azCZTE3yPQoKCgp/GYSCwkHs2rVLAGL27NkiJSVFPProoye6SYfE6XSe6CYckueff14AYvfu3cdEvslkEtdee+0xkf1XBhD/+9//Gv253bt3C0C89957Td6mGm644Qah0+lEWVlZ1P4hQ4YIq9Uata9Vq1biggsuOGZtORxdunQRQ4cObfDx//vf/wQgSkpKjl2jDsPKlSuFw+GI2ldaWipSUlLE6aefHrX/2WefFYBYvnx5ZN/mzZuFWq0WDz744DFt5+effy4AMWPGjGP6PQoKCgrNESW8SqEO06dPJyEhgQsuuIAxY8Ywffr0eo+rrKzkrrvuonXr1uj1erKyshg7dmxUXLfX6+XRRx+lQ4cOGAwGMjIyGD16NDt37gRg4cKFSJLEwoULo2TXFw8/btw4zGYzO3fu5Pzzz8disfCPf/wDgEWLFnHZZZfRsmVL9Ho92dnZ3HXXXXg8njrt3rJlC5dffjkpKSkYjUY6duzIww8/DMAvv/yCJEl8+eWXdT73ySefIEkSS5YsaVR/HszHH39M7969MRqNJCYmcuWVV5Kbmxt1zPbt27n00ktJT0/HYDCQlZXFlVdeSVVVFRBet+Byufjggw8iYTdHuitdXFzM9ddfT1paGgaDge7du/PBBx9EHVPT7y+88AJvv/02bdu2Ra/X06dPH1asWHFE3d5//30kSeL333/n9ttvJyUlhfj4eCZOnIjf76eyspKxY8eSkJBAQkIC999/P0KIKBkul4t77rmH7Oxs9Ho9HTt25IUXXqhznM/n46677iIlJQWLxcKFF15IXl5eve3Kz89n/PjxpKWlodfr6dKlC+++++4R9amP8vJy7r33XnJycjCbzVitVs477zzWrl0bdVx9Y9hut2MwGIiPj486NiMjA6PRWO/3+f1+XC7XIdtT87vIz8/n4osvxmw2k5KSwr333lsnZEuWZV5++WW6dOmCwWAgLS2NiRMnUlFRETmmdevWbNy4kV9//TUyts4444yGdU4t9u7dS7t27ejatStFRUW88sorqNVqKisrI8e8+OKLSJLE3XffHdkXCoWwWCz8+9//juz79NNP6d27NxaLBavVSk5OTpRXqHfv3pjN5qjvT0pKYvDgwWzevDlq/+eff06fPn3o06dPZF+nTp0YNmwYs2bNOqxOI0eO5JRTTqn3vQEDBnDaaacd9vOtW7cGiOoDBQUFhb8LSniVQh2mT5/O6NGj0el0XHXVVbzxxhusWLEi6k/a6XRG/tDHjx9Pr169KC0t5euvvyYvL4/k5GRCoRAjR45k/vz5XHnlldxxxx04HA7mzp3Lhg0baNu2baPbFgwGGTFiBIMGDeKFF14gLi4OgM8++wy3283NN99MUlISy5cv59VXXyUvL4/PPvss8vl169YxePBgtFotN954I61bt2bnzp188803PPXUU5xxxhlkZ2czffp0Lrnkkjr90rZtWwYMGBBjz8JTTz3FI488wuWXX86ECRMoKSnh1VdfZciQIaxevZr4+Hj8fj8jRozA5/Nx2223kZ6eTn5+Pt9++y2VlZXYbDY++ugjJkyYQN++fbnxxhsBDtufHo+HM844gx07dnDrrbfSpk0bPvvsM8aNG0dlZSV33HFH1PGffPIJDoeDiRMnIkkSzz33HKNHj2bXrl1R4UKHoqbdjz32GEuXLuXtt98mPj6exYsX07JlS55++mm+//57nn/+ebp27crYsWMBEEJw4YUX8ssvv3D99dfTo0cPfvrpJ+677z7y8/N56aWXIt8xYcIEPv74Y66++moGDhzIggULuOCCC+q0paioiP79+yNJErfeeispKSn88MMPXH/99djtdu68886GnLoIu3btYs6cOVx22WW0adOGoqIi3nrrLYYOHcqmTZvIzMw85GfPOOMMZs6cycSJE7n77rsj4VWzZ8/m+eefr3P8ggULiIuLIxQK0apVK+6666465wrCF+ojRoygX79+vPDCC8ybN48XX3yRtm3bcvPNN0eOmzhxIu+//z7XXXcdt99+O7t37+a1115j9erV/PHHH2i1Wl5++WVuu+02zGZzxBhPS0trVB/t3LmTs846i8TERObOnUtycjKDBw9GlmV+//13Ro4cCYRvFqhUKhYtWhT57OrVq3E6nQwZMgSAuXPnctVVVzFs2DCeffZZADZv3swff/xRb1/UprCwMCq0UZZl1q1bx/jx4+sc27dvX37++WccDgcWi6VeeVdccQVjx46tMx/u3buXpUuX1jmHQgjKysoIBoNs376dBx54ALVaHZMRp6CgoPCX58Q6WhSaGytXrhSAmDt3rhBCCFmWRVZWlrjjjjuijvvvf/8bCcE6GFmWhRBCvPvuuwIQkydPPuQxv/zyiwDEL7/8EvV+faEu1157rQDEAw88UEee2+2us2/SpElCkiSxd+/eyL4hQ4YIi8USta92e4QQ4sEHHxR6vV5UVlZG9hUXFwuNRtOosJ2Dw6v27Nkj1Gq1eOqpp6KOW79+vdBoNJH9q1evFoD47LPPDiu/MeFVL7/8sgDExx9/HNnn9/vFgAEDhNlsFna7XQhxoN+TkpJEeXl55NivvvpKAOKbb7457Pe89957AhAjRoyI6tMBAwYISZLETTfdFNkXDAZFVlZWVBjPnDlzBCCefPLJKLljxowRkiSJHTt2CCGEWLNmjQDELbfcEnXc1VdfXSe86vrrrxcZGRmitLQ06tgrr7xS2Gy2yNhpaHiV1+sVoVAoat/u3buFXq8Xjz/+eNS+g+UFg0Fx6623Cq1WKwABCLVaLd5444063zNq1Cjx7LPPijlz5oh33nlHDB48WADi/vvvjzqu5ndR+7uFEKJnz56id+/ekdeLFi0SgJg+fXrUcT/++GOd/UcTXrV582aRmZkp+vTpEzWGQqGQsFqtkfbLsiySkpLEZZddJtRqdSQ8avLkyUKlUomKigohhBB33HGHsFqtIhgMNrg9Qgjx22+/CUmSxCOPPBLZV1JSUm9fCSHElClTBCC2bNlySJlVVVVCr9eLe+65J2r/c889V2euEUKI/fv3R84zILKyssTMmTMbpYeCgoLCyYISXqUQxfTp00lLS+PMM88EwmE8V1xxBZ9++mlUqMYXX3xB9+7d63gDaj5Tc0xycjK33XbbIY+Jhdp3bmuoHZricrkoLS1l4MCBCCFYvXo1ACUlJfz222+MHz+eli1bHrI9Y8eOxefz8fnnn0f2zZw5k2AwyDXXXBNzu2fPno0sy1x++eWUlpZGHunp6bRv355ffvkFAJvNBsBPP/2E2+2O+ftq8/3335Oens5VV10V2afVarn99ttxOp38+uuvUcdfccUVJCQkRF4PHjwYoMEZfq6//vqoPu3Xrx9CCK6//vrIPrVazWmnnRYl8/vvv0etVnP77bdHybvnnnsQQvDDDz9EjgPqHHew10IIwRdffMGoUaMQQkT1+4gRI6iqquLPP/9skE416PV6VKrw1BkKhSgrK8NsNtOxY8cjylKr1bRt25YRI0bwwQcfMHPmTEaNGsVtt91WJxPZ119/zf33389FF13E+PHj+fXXXxkxYgSTJ0+uN4zs4KxWgwcPjurbzz77DJvNxtlnnx3VDzWhSTXj72jYsGEDQ4cOpXXr1sybNy9qDKlUKgYOHMhvv/0GhL0VZWVlPPDAAwghImGLixYtomvXrpEQtPj4eFwuF3Pnzm1wO4qLi7n66qtp06YN999/f2R/TbilXq+v8xmDwRB1TH3UhNLNmjUrKtxv5syZ9O/fv868UuPp+eabb3j88cdJTk6OSjahoKCg8HdCMToUIoRCIT799FPOPPNMdu/ezY4dO9ixYwf9+vWjqKiI+fPnR47duXMnXbt2Pay8nTt30rFjRzSapovi02g0ZGVl1dm/b98+xo0bR2JiYiSmfejQoQCRdRA1F2BHanenTp3o06dP1FqW6dOn079//6PK4rV9+3aEELRv356UlJSox+bNmykuLgagTZs23H333UybNo3k5GRGjBjBlClTInrEwt69e2nfvn3kYrmGU089NfJ+bQ6+eKq5eKwd+384Dv58jSGVnZ1dZ39tmXv37iUzM7NOeMvB7dy7dy8qlapOSFnHjh2jXpeUlFBZWcnbb79dp8+vu+46gEi/NxRZlnnppZdo3749er2e5ORkUlJSWLdu3RHP0TPPPMOzzz7LjBkzGDt2LJdffjlffvklgwYN4l//+hfBYPCQn5UkibvuuotgMFhnDZTBYCAlJSVqX0JCQlTfbt++naqqKlJTU+v0hdPpPGI/hEIhCgsLox5+vz/qmFGjRmGxWPjpp5+wWq11ZAwePJhVq1bh8XhYtGgRGRkZ9OrVi+7du0dCrH7//feIkQtwyy230KFDB8477zyysrIYP348P/744yHb6XK5GDlyJA6Hg6+++ipqrUfNzQmfz1fnc16vN+qYg3WtMUauuOIKcnNzI0bSzp07WbVqFVdccUUdmTqdjuHDhzNy5EgeeeQRpkyZwvXXX8+33357yPYrKCgonKwoazoUIixYsID9+/fz6aef8umnn9Z5f/r06ZxzzjlN+p2H8ngcvAC2htp3mWsfe/bZZ1NeXs6///1vOnXqhMlkIj8/n3HjxiHLcqPbNXbsWO644w7y8vLw+XwsXbqU1157rdFyaiPLMpIk8cMPP6BWq+u8X/vi6MUXX2TcuHF89dVX/Pzzz9x+++1MmjSJpUuX1mt0NTX1tQ+os5i7sZ+vb39DZcZCzbm/5ppruPbaa+s9plu3bo2S+fTTT/PII48wfvx4nnjiCRITE1GpVNx5551HHGuvv/46Z511Vp1FzxdeeCF33303e/bsOaxhW2O0lZeXR+0/VH/XRpZlUlNTD5kY4mCj5WByc3Np06ZN1L5ffvklan3CpZdeygcffMD06dOZOHFiHRmDBg0iEAiwZMkSFi1aFDEuBg8ezKJFi9iyZQslJSVRRkdqaipr1qzhp59+4ocffuCHH37gvffeY+zYsXUSIfj9fkaPHs26dev46aef6txgSExMRK/Xs3///jptq9lXsyYnIyMj6v333nuPcePGMWrUKOLi4pg1axYDBw5k1qxZqFQqLrvsssP2H4TTZWdkZDB9+vTIuhYFBQWFvwuK0aEQYfr06aSmpjJlypQ6782ePZsvv/ySN998E6PRSNu2bdmwYcNh5bVt25Zly5YRCAQOufi45g76wdlcDr7zfjjWr1/Ptm3b+OCDDyILkoE64Rg1WWeO1G6AK6+8krvvvpsZM2ZEai3UdyezMbRt2xYhBG3atGlQrYWcnBxycnL4z3/+w+LFizn99NN58803efLJJ4HGhai1atWKdevWIctylNG2ZcuWyPvNgVatWjFv3rw6i3kPbmerVq2QZTniTath69atUfJqMluFQqGoWg1Hw+eff86ZZ57JO++8E7W/srIyatFyfRQVFdVrUAcCAYDDejrggLfuSAZCfbRt25Z58+Zx+umnHzJTVg31ja309PQ6v6nu3btHvX7++efRaDTccsstWCwWrr766qj3+/bti06nY9GiRSxatIj77rsPgCFDhjB16tSIN7VmEXkNOp2OUaNGMWrUKGRZ5pZbbuGtt97ikUceiRhpsiwzduxY5s+fz6xZsyKeztqoVCpycnLqLRq4bNkyTjnllMi4O1jXLl26AGAymRg5ciSfffYZkydPZubMmQwePPiwCQRq4/V6j8prqaCgoPBXRQmvUgDCccyzZ89m5MiRjBkzps7j1ltvxeFw8PXXXwPhO5pr166tN7VszZ3rSy+9lNLS0no9BDXHtGrVCrVaHYnzruH1119vcNtr7vLWvmMuhKhTaC0lJYUhQ4bw7rvvsm/fvnrbU0NycjLnnXceH3/8MdOnT+fcc8894gXlkRg9ejRqtZrHHnuszveJ6iw3EE6revDFZ05ODiqVKiosxGQyNTj15vnnn09hYSEzZ86M7AsGg7z66quYzeZ6L9BOBOeffz6hUKjOmHnppZeQJInzzjsPIPL8yiuvRB338ssvR71Wq9VceumlfPHFF/Uam7FUh1ar1XXO32effUZ+fv4RP9uhQwfmzp0bOdcQ9tTNmjULi8USCRcrLy+vY5wEAgGeeeYZdDpdZM1VY7j88ssJhUI88cQTdd4LBoNRY6m+sWUwGBg+fHjUo/aaDQgbK2+//TZjxozh2muvjcwXtWX06dOHGTNmsG/fvihPh8fj4ZVXXqFt27ZRXobafQVhw6HGO1X793Dbbbcxc+ZMXn/9dUaPHn3IfhgzZgwrVqyIMjy2bt3KggULorwVB+tau01XXHEFBQUFTJs2jbVr19a5IeFyuepdj/XFF19QUVFxxNS6CgoKCicjiqdDAQgvWnU4HFx44YX1vt+/f39SUlKYPn06V1xxBffddx+ff/45l112GePHj6d3796Ul5fz9ddf8+abb9K9e3fGjh3Lhx9+yN13383y5csZPHgwLpeLefPmccstt3DRRRdhs9m47LLLePXVV5EkibZt2/Ltt982Ks6+U6dOtG3blnvvvZf8/HysVmvkz/1gXnnlFQYNGkSvXr248cYbadOmDXv27IlUCa7N2LFjGTNmDEC9F2qNpW3btjz55JM8+OCD7Nmzh4svvhiLxcLu3bv58ssvufHGG7n33ntZsGABt956K5dddhkdOnQgGAzy0UcfRS6ga+jduzfz5s1j8uTJZGZm0qZNG/r161fvd99444289dZbjBs3jlWrVtG6dWs+//xz/vjjD15++eVDpgg93owaNYozzzyThx9+mD179tC9e3d+/vlnvvrqK+68887IRXmPHj246qqreP3116mqqmLgwIHMnz+fHTt21JH5zDPP8Msvv9CvXz9uuOEGOnfuTHl5OX/++Sfz5s2rE6p0JEaOHMnjjz/Oddddx8CBA1m/fj3Tp08/ZP2G2jzwwANcc8019OvXjxtvvBGj0ciMGTNYtWoVTz75ZMQj+PXXX/Pkk08yZswY2rRpQ3l5OZ988gkbNmzg6aefJj09vVFtBhg6dCgTJ05k0qRJrFmzhnPOOQetVsv27dv57LPP+L//+7/IeO/duzdvvPEGTz75JO3atSM1NZWzzjqrQd+jUqn4+OOPufjii7n88sv5/vvvoz47ePBgnnnmGWw2Gzk5OUA4hKpjx45s3bq1Tr2ZCRMmUF5ezllnnUVWVhZ79+7l1VdfpUePHpG1Pi+//DKvv/46AwYMIC4ujo8//jhKxiWXXBKpAH7LLbcwdepULrjgAu699160Wi2TJ08mLS2tTvX3Q1FTJ+jee++t87uE8PqZ4cOHc8UVV9CpUydUKhUrV67k448/pnXr1kdM9augoKBwUnKcs2UpNFNGjRolDAaDcLlchzxm3LhxQqvVRlKPlpWViVtvvVW0aNFC6HQ6kZWVJa699tqo1KRut1s8/PDDok2bNkKr1Yr09HQxZswYsXPnzsgxJSUl4tJLLxVxcXEiISFBTJw4UWzYsKHelLkmk6netm3atEkMHz5cmM1mkZycLG644Qaxdu3aelOgbtiwQVxyySUiPj5eGAwG0bFjx6i0mjX4fD6RkJAgbDab8Hg8DenGKA5VkfyLL74QgwYNEiaTSZhMJtGpUyfxr3/9S2zdulUIEa4IP378eNG2bVthMBhEYmKiOPPMM8W8efOi5GzZskUMGTJEGI1GARwxfW5RUZG47rrrRHJystDpdCInJ6dO39SkeX3++efrfJ4GVPquSZm7YsWKqP2Hqlhd3zl1OBzirrvuEpmZmUKr1Yr27duL559/PioFrxBCeDwecfvtt4ukpCRhMpnEqFGjRG5ubr3tLCoqEv/6179EdnZ2ZBwOGzZMvP3223V0b0jK3HvuuUdkZGQIo9EoTj/9dLFkyRIxdOjQqDSzh5L3448/iqFDh0adhzfffDPqmJUrV4pRo0ZFfltms1kMGjRIzJo1q057DvW7qOnzg3n77bdF7969hdFoFBaLReTk5Ij7779fFBQURI4pLCwUF1xwgbBYLAI4Yvrc+s6v2+0WQ4cOFWazWSxdujSy/7vvvhOAOO+886JkTJgwQQDinXfeidr/+eefi3POOUekpqYKnU4nWrZsKSZOnCj2798f1QfUSk178OPg32Bubq4YM2aMsFqtwmw2i5EjR4rt27cfVseD+cc//iEAMXz48DrvlZSUiBtvvFF06tRJmEwmodPpRPv27cWdd955wqq2KygoKJxoJCGO4SpOBYW/MMFgkMzMTEaNGlUnfl9BQUFBQUFBQaHhKGs6FBQOwZw5cygpKYlanK6goKCgoKCgoNB4FE+HgsJBLFu2jHXr1vHEE0+QnJzc6OJxCgoKCgoKCgoK0SieDgWFg3jjjTe4+eabSU1N5cMPPzzRzVFQUFBQUFBQ+MujeDoUFBQUFBQUFBQUFI4piqdDQUFBQUFBQUFBQeGYohgdCgoKCgoKCgoKCgrHlJO+OKAsyxQUFGCxWJAk6UQ3R0FBQUFBQaEBCCFwOBxkZmaiUin3SBUU/uqc9EZHQUEB2dnZJ7oZCgoKCgoKCjGQm5tLVlbWiW6GgoLCUXLSGx0WiwWA3du3k5iaiqe8nIW33cbwqVPDng+VCo1eT8DtRlKrw9suFyqtFrVOF97W6VBrtfidTjQGAyqNhvKCAi469VR+yM1FC2hNJlRqNT67HZ3ZDJKE3+FAZ7GAEPidTvRWK3IoRMDlCm8Hg3jKy/n93ns547XXkFQqdGYzoUAA2e9HazIR8vuRAwG0JhNBnw8RCqGNiyPo84EsozEaCXq9AAhZZt4NN3Dma69hSEhotE5+hwON0UjI72fe9ddz1ttvo7dYGq1T0ONBV/25BTfdxPBp01BptTHppDEYqCwu5sL27fk+Nxe9RhOTTiqNBldREYvuvZdhb72FHAzGpJMcDOKtqGDRPfcw9NVXUWs0MekU9HgIer38escdDH7pJXRmc0w6+ex2kCQW/utfDHr+eeJSUmLSKej14pdlzsvO5uutW0lIT49JJ1QqRCjEvAkTOHPKlPA4jEEnrclEyOdj3vXXM2zqVLQmU0w66cxmvFVV/HLzzeFxqNHEpJNGr8ddVsZvt9/OsKlTQYiYdFKp1ZTn53Nh5878sG8fOkmKSadQIICvqopFd9/N0FdeQa3VxqRTwO0m5POFx+Hkyeit1ph08tntSCoVC26+mcEvvEBcampMOsl+P0gS82+8kSEvv0xccnJMOklqNV6fj5HZ2Xy1axe2pKSYdNKZzQQ8HuZPmMCwadPQGo0x6aQ1mfBWVvLLLbcwfNo0JLU6Jp00ej3u0lJ+u/NOhr39dngcxqATkoS7uJhF997LWW+8gZDlmHQK+f3Yy8sZ1bEj3+3cSVxcXEw6BVwuQoEAv95+e3gc2myotVrK9u/nlE6dIv/jCgoKf21OWn/llClT6Ny5M3379gVg7eOPY7Va2fzSS6jtdmwJCfz58MNsmzIFq9XK0ttuY89HH2G1Wvlt3Djy58zBarUyb/RoShcswGq18sPZZ1O1YgVWq5W5w4aRBlitVj7v3JlQQQFWq5VPsrNROZ0YJIlPsrMxSBIqp5NPsrOxWq2ECgr4vHNnrFYrnq1b+e6MM2g7ZAiONWv44eyzsVqtlC5YwLzRo7FareTPmcNv48ZhtVrZ89FHLL3tNqxWK9umTOHPhx/GarWy4Zln2PDMM9gSEhDFxeyYOjUmnb7q1w/P1q3YEhIomT8fubg4Jp2+6tcPq9WKY80a7CtXYktIiFknq9XKxscfp2d1X8eqk9Vq5cvevcno2BFbQkLMOlWtWMHPo0bRdsgQyhctilmnPx9+mB1Tp9J2yBBW3ntvzDp93rkzcnExbYcMYVaHDjHrVDP22gB/XHNNzDptmzIFW0ICwdxc9s2cGbNOoYICbAkJFH7/PRqP56h0Kl+0CNeGDdgSEmLWyWq1svLeezGoVNgSEmLWyWq18lXnzlgA41HoVLpgAQuvvpq2Q4ZQ+N13Meu09Lbb2DdzJm2HDGHxxIkx6/RJdjYaj4fW/foxq0OHmHWaN3o0toQEzAYDiydOjFmnmt/TcKD4229j1knldBKn0VD4/ffEaTQx62S1Win87ju827djS0g4Kp0WT5yI2WDAlpAQs04GSWJWhw607tcPjccTs075c+aw4uabUQN5n34as06/jRtH4Xff0XbIEBZefXVEp7kXXQSghEYrKJwsiJOcqqoqAYiywkIhhBABj0cEPJ7wttstAl6vEEIIv8t1YNvpFEGf78C23y+EEMLncIhQICCEEKIsL0/0BOGoqhLeqioRCgaFEEJ4q6qEHAoJWZbD27Is5FBIeKuqhBBChILBA9uBgPDZ7Qe2HQ4hhBBBv1/4nc7wts8X2Q54vcLvckW2A253k+rks9sj281Jp4rCQtGruq9PFp2a43lyVFWJniDKCwpOGp2a43kqy80VPUDYKytPGp2a43lyVFWJ00BUlpScNDo1x/NUXlAgeoCoLC5ucp1K8vMFIKqq26SgoPDX5m9jdNRMWn6nU8w+55zIpBkrjqoq0aP6QvhoaKr2NKWs5ianufX1ySpH6efjI0fp5+MjR+nn4yPnWPbzwf/fCgoKf21O2vCqQ6HSaml/2WWotNoT3RSgadvTVLKam5ymornp1dzkNBXNTa/mJqepaG56NTc5TUVz06u5yWkqmlt7FBQUmp6TviK53W7HZrNRVVWF1WptMrlOu53BNhuLqqowN6FchboofX18UPr5+KD08/FB6efjw7Hs52P1/62goHBiOKGeDofDwZ133kmrVq0wGo0MHDiQFStWRN4XQvDf//6XjIwMjEYjw4cPZ/v27Uf1nQGXi5kDBhBwuY62+U1CU7anqWQ1NzlNRXPTq7nJaSqam17NTU5T0dz0am5ymormpldzk9NUNLf2KCgoND0n1OiYMGECc+fO5aOPPmL9+vWcc845DB8+nPz8fACee+45XnnlFd58802WLVuGyWRixIgReKtT8MWCSqej1913o9LpmkqNo6Ip29NUspqbnKaiuenV3OQ0Fc1Nr+Ymp6lobno1NzlNRXPTq7nJaSqaW3sUFBSanhMWXuXxeLBYLHz11VdccMEFkf29e/fmvPPO44knniAzM5N77rmHe++9F4CqqirS0tJ4//33ufLKKxv0PUp41V8fpa+PD0o/Hx+Ufj4+KP18fFDCqxQUFBrKCSsOGAwGCYVCGAyGqP1Go5Hff/+d3bt3U1hYyPDhwyPv2Ww2+vXrx5IlSw5pdPh8Pnw+X+S13W4HwhOjCvA7ncw+6yxGL1gQLpIUI65quTXPsdJU7WlKWc1NTnPr65NVjtLPx0eO0s/HR47Sz8dHzrHsZ+dRylRQUGhenNCF5AMHDkSn0/HJJ5+QlpbGjBkzuPbaa2nXrh3vvfcep59+OgUFBWRkZEQ+c/nllyNJEjNnzqxX5qOPPspjjz1WZ38OoD5WiigoKCgoKCg0KSFgPSieDgWFk4QT5ukA+Oijjxg/fjwtWrRArVbTq1cvrrrqKlatWhWzzAcffJC777478tput5Odnc2PublNOmm57HbOrZZrUibDY4rS18cHpZ+PD0o/Hx+Ufj4+HMt+ttvttMjOblKZCgoKJ5ATWCMkgtPpFAXVVZAvv/xycf7554udO3cKQKxevTrq2CFDhojbb7+9wbIPLi7ks9vFtBYtIpVWY6WpCiI1VXuaUlZzk9Pc+vpklaP08/GRo/Tz8ZGj9PPxkXMs+1kpDqigcHLRLIoDmkwmMjIyqKio4KeffuKiiy6iTZs2pKenM3/+/MhxdrudZcuWMWDAgJi/S2M0cv5nn6ExGpui6UdNU7anqWQ1NzlNRXPTq7nJaSqam17NTU5T0dz0am5ymormpldzk9NUNLf2KCgoND0ndE3HTz/9hBCCjh07smPHDu677z4MBgOLFi1Cq9Xy7LPP8swzz/DBBx/Qpk0bHnnkEdatW8emTZvqLEA/FEr2qr8+Sl8fH5R+Pj4o/XzsEUKwv6SCc9t34vMNGzBZLKgkkJCQJJAADnotSVL1c3g/Eod8T5IO2j74GEk6ccofZ5TsVQoKCg3lhK7pqKqq4sEHHyQvL4/ExEQuvfRSnnrqKbRaLQD3338/LpeLG2+8kcrKSgYNGsSPP/7YYIOjPnx2O+9mZTE+Lw99M5jEmrI9TSWruclpKpqbXs1NTlPR3PRqbnKaiuam17GWI4TA7g1S6vRR6vBRUv1c6vRT4vCF9zt91dt+/CEZbn6Pc6asOMy3HVsONkjkQAC1ThtloKgi21ItY6j6dT0GDULgKS4mLi0NlUqqa/gcxiCqLRtZpnLrVhI7dUSlVle396B2RQy02kZX9HFyKITjqkks3F7GyN4nfvwoKCg0X06op+N4cPCdEjkUomLLFhI6dYpMtLHQVHd3mqo9TSmruclpbn19sspR+vn4yFH6+QBCCBy+YNhQqDYWiu0e8vYU4DRYKHX6q40JPyVOH/6g3LhGBf3o9HpAQiAQAgQgi/C2QtPxv/Pacd3QjjF/vr7xo3g6FBROLv52RkdToYRIHD+Uvj4+KP18fDjZ+7nGkDi0F8JHidMf8VY01pCw6DUkW/SkmPUkW3Qkm2u29eFti55ksw6j8DM8KeGI/SzEAWNECFH9TMRI4aDXBx9HPe/J1fuI7Kvn8w2RHbX/wHFyrJ8/SL/62idXHxOl10GyQyGZUFBQ5vSxu8TOl7O/4bHbr+aSfm0bdS6PhGJ0KCicXJzQ8KrjSdDjAasVV3Ex09LSuKmqCrVWCyoVGr2egNuNpFaHt10uVFotap0uvK3TodZq8TudaAwGVBoNfoeDmqhdn92O1mRCpVbjs9vDhY0kCb/Dgc5iASHwO53oqz0tAZcrvB0M4ioq4t2sLG4sK0Ot06EzmwkFAsh+P1qTiZDfjxwIoDWZCPp8iFAIbVwcQZ8PZBmN0UjQ6wUg5Pfzps3GDcXFxKWkxKSTxmgk4Hbzps3GjeXlGBMSGq1T0ONBZ7HgKS/n7aQkbqqqQmM0xqSTxmAg6PFQk/EgVp1UGg2OvDzezc7mpqoqgJh0koNB3MXFvNOiBTeUlqI1GGLWye90MjU1lev378eQkBCTTj67HTkU4u3ERMbn5mLOzIxJp5q2SUDA5QKrNSadUKkI+XzR4zAGnbQmEwGXizdtNiZWVKC32WLSSWc24y4rY2pycngcGgwx6aTR63EWFvJORgY3VVWhUqtj0kmlVuOvLngmhAj/tmLQKRQI4Ckt5Z3MTG4oKUFrNMakU8DtJuByhcdhQQHGpKR6dVLr9bhDUFBYTkVQRbknyP6SKir8UOb2U1ThotTpZ8+WnfgS0/GFGncvy6LXkGTWkRynJcmkpXD6+wz+1w20yEwmQa8iyagmI8VGvBYMaumIOklqNV6fCk31vEj1uK7vPAWcTjRGI2qNBp/dET5PmvBcrjeb8TkcvB0fz8TKSvQWS6PPU8285y4tZWpKSvi/R69v9Hmqmfec+/fzTovMA+OwHp18VXbQ6AmFJFxlVaDWEQqCp9IBKh0Bv4yzqIzfH3qEfk88TTAg8KOmPBCkwu/HLknYQyGqRAiHBA6VwKkBt1bCpZNw6VQ4dRJ+jQSJwIRR/LG9nJE5GTHpFHC5CHg8TE1JCY/D5OSITgoKCicPzSJ71bFgypQpdO7cmT59+gCw6L77AFg5aRJdJkxAZzaz8LbbWDlpEgA/X3st66ZMAeDb0aPZ/OGHAMwePpxdc+YAMLNfP3Krs2l90bcvydXf9W5WFhVbtgDwps2Gs6AAv8PBm9UXSs6CAt602QCo2LKFd7OyAChasYKZ/foxPjeXomXLmNmvHwC75sxhdnUl9s0ffsi3o0cDsG7KFH6+9tqIHgtvuw2AxQ89xOKHHkJnNtPhyitZ+9prMen00amnUrRiBTqzGa3ZjCsvLyadPjr11PD2smXEd+iAzmyOWSeAJffdR7fqvo5VJ4CPOnfmknnz0JnNMeuUO38+X559NuNzc8mbNy9mnRbedhtrX3uN8bm5/HrrrTHr9G5WFq68PMbn5vJudnbMOtWMvZbADxddFLNOKydNQmc20/qCCyJ6xKJTxZYtkarEfrv9qHTKmzePlF690JnNMesE8Outt9L3kUfQmc0x6wTwUXY2cUDgKHTaNWcO340ezfjcXHbOnh2TTkIIvho3gfnvzqDHss08f8cTPP/K50z+eSv/uHky17zwPRdP+YO+D33Jqf/7mZxHf2bEmyu5ctpybpn+J0/8vJPXFu5kxvJcFmwvZ91+J3ZbWsTgMGlVxJcX0Kd1AsNaxtFz/c/cfXYH/t09jssXvs6Xtwzk0/5q/vvdQ6x/bARTW5dy2cf38ebYPjxyzim0ff0BrurbktT5syh++HayEuLY8MJzRzxPteeIM4EdM2bEdJ5q5ojaLoVYzlPNHLFz9mxaDBmCzmxm7WtT+PHa6/E4/fzx5GR+uu1hivbY+fnfL/Ljv19mx6pivrp9Mt//533+/HkvM296la8f/ZJfP9nKrHtnkXr35/z8wS7enfgpMx/6hc/+t4QZd8xl5j2/MfOOhXz+yCqmP7qE959dyocfbeXNGRv4v683MnlpLk+s2s1/tu7jP243nz3+EDdq3fwj3svVyW5uzfDzSCt4vqXgrTYqPj1Fy3dttPzWSsefLXRsSdWSG6+hPE4VNjgAjSxI9AbRFO1v1O/p4Ll85+zZjM/N5bvRoyPnafZZZ6GgoHDy8LcJryorLCQxLY2Ax4Pf4SAuJYWQ1xuzp6M8P5/hWVn8VlWFFmL2dATcbiCcLjDk8x2Vp0Ot1+MuLkZns6E1GGL2CkhqNc78fOLS06vv/sXm6QgFAnhKSjBlZCAHgzF7OiqLihiWns6vVVXoNZqYPR3eqiqELGOIjw/rEaOnI+DxgBCoDQZEtR6xeAWEJCH7/UhqNSqNJmZPhyYujqDbjRACvcUSs6fDL8sMsdmYX1BAQkZGzJ4OtU6Hq6gIfXx8eBzG6OmQVCqc+fmYMjKQVKqYPR1Bvx9vWRmm9HTkQCBmT4ff5SLodmNMTibodsfs6SjPy2NYdja/VVaik6SYPR0hnw8hy+G75sFg2Dvk9eL0+KkMqSkqd1Lq8FLuFxRXuCh1+SnzhCiu8lDm8lPq8uMNNC60yaRTR0KbkgwqUuJNpFgMJGhl0hIt2NQhkk06WmQkYdCoYvIKaOLi8JSVoTEYwucvBu9N2NPh40ybjXklJdiSkxs99jwVVUg6IwFfCHteIVpbEkF/CG+VCzR6/J4gPocbodIR8Abwu33IQhPe9gaQQxJ+b5CAL0goIAj5gsi+ULjMdiCEBgm1FA43UEugkUAjSaip2QZ19cptt77aw6APexjsOgmHTsKuU1Gpk6jSSlHPLk1s2bPUsiA+ILD5BdaAjMkfxBjwo/d7MQS86Pwu1AEP6qAbKeRFJfvQhoJIwNC4ZAbdOj5mT4ek0RDy+ZBUKtR6PWqtltKCAlJatFDCqxQUThL+NkZHzaTls9t502bjpqqqo8qQ0VRx2U3VnqaU1dzkNLe+PlnlKP18fOQ0tp+FELj8oeo1EgfWRRSWOfjttbdIvfwayr2hyP7GGhJxOjXaolza5nQi1RZHskVHitlwYL1EzfoJsx6j7tALxJtLP4eCMvZSD0V7y3h03M3c/cLLqFRagr4QAX+o+lkm6A8R8IWqn+Xwe/4QIV8I2S+jFqL6wp8DBkLNo9brmvcj2xFDQjpgPBDOBhWUwK6VqNQeMBAqdeHXtZ+rar12amMzIFRCYAoI4vwCg19GH5DR+QWaQBCtz4fZ68TsdWD2VmENODEHXGhkLwGNhNegR1Y1LBBCDfgrKzl/xAgGnHdeTG2F+s+7sqZDQeHk4m9ndAghIndMjyaXelNdoDVVe5pSVnOT09z6+mSVo/Tz8ZFT088/lZTjRhe1yLqkJltTTUpYp49Shx9PINSo76jxSBxYZK2rtcg6/Eit3jZoVc2qfxoiJ+APYS/xUFX7UeymqtiNv9KHUZIwqkAv1TIGOOA9OGAYhL0LNYZBxLvQAEKAo7axUMuIqG001DYu7DEaEBJgkyQsQsIoQO2XISjweYLYnX4qHX5UgRB6v5+4oA+z30Oqt5KUkAOb8BAn+dFpQNaqCGkbuJRTCIyyjEmtxmI0YrXZsKakEt8iE1tyMhaLBavVStDvZ0h8/DGZNxSjQ0Hh5OJvs5A8ghD4a4ULnXCasj1NJau5yWkqmptezU1OU9Hc9GoGcortXpbvKWf57nKW7Syl4q7P6fvC4kbJiNOpo7IzJZt02PCTmZFMssVwwCNh0RGna/jULmT5hPdPfXJQG7CX+aqNCjdVJR7sRW58pR5wBohTUW1cSFhVkK4KGxpqq7bRXykDDi11PA1VRjWVBhWVWqgyqMNGhAYq1FAlgYhRzXiNmkSthkRtzbMGm0aFJigIeUN43QGcDj8VFV6KyzwUl9jB70YtBdDgxyQFMOMlQXZhxodeFUKt4UC/qwFT7W/UEaj1ShMIYPT5iRMyFr0ei9mCNSkRW3o6iS1bEt+qFRabDXUDUh87A4EjHtMgmts8pqCg0OT87YwOv9MZyWDUHAoQNWV7mkpWc5PTVDQ3vZqbnKaiuel1vOUIIcgt97Bsdxkrqg2NPWXu6IN04QKnRq06YkTU9kKkRNK/Hgh1OtiQqAlHuewv1j+18boCVBVXGxXFbhxFbrz7HXj2lRJnsGBUgVElEaeClioJg6r6YtR8+L8ulVVHZbyGb9Yv5ZRhg3EatVRoJSo1UKkSVKigQhJUCpkKIVMhyzSyAkgEq0YVMRxqDIkErYakWq8TtRrMPi+fdevByN+WUexTsa/czb58B/mllWwrr8TldGLET5zkJ04KEIefdHy0kQJoVAL0h2tFuF8kWcbg9WL0eDB6vZgkFWajAastHltKMvFZWSS0aYO5TRtCktQk46epaG7zmIKCQtPztwuvaipO9lz7zQmlr48PSj/HhiwLthc7I56MFbvLKbR7o46RJDg13UrfNol0SzPw6LmDmbd9I6nJCSeo1ccHIQQeRyAc+lTkxpnvxFvkJlDuRTj86EIi7LGo9lJoGnKHWyOhtunRJBrQxBtQx+upsGrYZITNapn1AT/rnB7yfY2/A29Wq6KMh/q3NSTq1CRpNcRrNGhVB9ockgWFdi97Sp3sLa5iX2EZRWUVVFTZcbucSAEvJumAYWEggKqBN/W1fn/YmKj1iAuFsJgt2BISsGakE9+yJfqWLdFlZ6PNyEDSNt7r01iO5byhhFcpKJxc/O08HU1ZAby5tedkqFB8LGluejU3OU1Fc9OrqeVY2ndgc5GL5bvLWb6nnBV7yql0R1/gatUS3bLi6dM6kX5tEunVKgGbMXwB6LTbeaJyP3GHWZR9IvSKVY6QBc5KL5X7HJSs2Y0UiiNQ7kO2+1F5ghgQGFUSJgnMtY2KmlXWB8vTqxEGgSHThi4pDnW8Hk2CHnW1gVGqFqxzeljv9LDO4Wadw0GBMwD1lHRQFe2nc5tWpBj0JGo1JBxsPGjVEY9EvFaNvp7F0wf3j93tY3t+CRv2l1JQXEFpRSV2uwOfx4nwe6q9FQG0Uth3Yqt+hHWu20ZJlusYE0Z39bPXgyXOhC0lhbisLHQdOqBpkYU3FCRx8GC0SUkxr5+J6bwLAc5iqNxLafFG1hSt4s+KbbT6v3Zs3DSdfv1vjqktMbdHQUHhL8XfxuioKQ7oKStjZv/+XJ+f32yKA84aMIBxe/Y0SXHAmf37M27XrqMuDjizf3+u27fvqIoD+qqqIn3dHIoDuvbvj7QHjq444KwBA7h29+6jLg44a8AA/rlt21EXB5w1YADXbNrUbIoDRo3DoygOOLN/f8bn5h5VcUBvZeWBcRhDcUBvSLCh2MMf6/fxzcwfKW7bA/dBGaKMWhW9WiXQO9NM/3ap9GydhNrnjj5POlWTFwecNWAA1+7addTFAWcNGMA/t249ZHFASaXDVeimYlspvjI/gXIfoUovKk8ITVDGKIFWkkgFwH+gYzQScOCiWJZANmiQTBp0qXHok42orWr06VYkswbJCEISvNOiBWO3bcOZmMya8irWOTxsKLOzdo+bIn+w3jn+FIOO7tY4uhg0dLPE0V6r4sLEnnzRkJS5ai2SJFFZVIQ7FCK/pJLduQWU2t2Ul1dQsnMH+kQb6pAPnQhELTlQAfG1X9RC6/djdHuI87jrGhQ1D0DXogW6li3RtG6DNqsFhlNOQZWSgiYrC53VWqc44OwOHbg+Pz+curkR6Zprz+U18+H43FwklerA2KsoQh8sRy7bhVyyA427kFD5bnZU7WJdoIw1GonVBj25tb0oNgOr9y+ll/vaoyoOGBmHSnFABYWTkr9dccBVzzxD1xtuQG+1NovigLP69eNmu53i6kKBEHtxQL3VSocrrojoEWshPb3ViiRJuAsKYtKppkhW8YoVWFq2RG+1NovigB937swVS5eit1qPujjgzXY7+QsWHFVxwHVTpnCz3c6v1dux6PRuVhbuggJuttubTXFAvdVKq3PPZctHH8WsU8WWLeitVgJOJwGn86h0yl+wgKSuXdFbrQ3Saf5Dj/Dmwy/w3I9bOO8/s+jx5HyufHspry4pYE/LbrgDMsagl75xXh46vxP/+vNdZuc4mT6hPyn3XUGL3asx6tTHpTjgzXY7u+bMibng4c/XXsuWjz5iYnE5i276Nxv+bw57v9jO0ttnsPGxRWz572L2PrqCwseW4nx7PdqF+zGvLyMh30myK0iiLLCqJLTVV+EBCSoc5XiT9PhbGlm7+CPir+yI/jwrP733D7KfHoT+HJj38iVkjO2CQ72dryeej75tPKv+mMvjd97L/5W5+GnGN/RauZ0eizcybksek/PL+LnMTpE/iCQE7eP0DMrbxdiNK/iyZzvenvkWk3+axRtdWtPmgbswf/w+FrUqUhwwGAzy6ahRLJ0+nQ0bNvD6P8fy3pvvMOXdj/nff5/k0Ukv8OjjT/DyG2/w9ttv892Xs9i08neKt/1JsHQ3CTY1cSEneqoNDlmg9fqxlpWTlZtHh61b6b56Df2XLOHM+Qs4/9vvuPSzzxk9+0vO+/FHztq4iT55+bTctYv+555LSof2eBLiyfn5J6ouupDdGelkv/E62yvK2bR+PeahQ1k8eTJ/Tp4cOU81c8TcceMY8tJL6K3W2Aoe5u3Fn7uBuUNac8MPzyP98gR7xqfD1LPg2VPQv3Yq7rcGseqbCby7+iVu3jubwf5NjDH7eTzBwtcWM7laLZKAUwIahufL9Px+P+22Wo+qOOCuOXO42W5XigMqKJzE/G3WdNQUB/Q7nRSvXEnmoEHIgcAJLw7odzio2LKFlJ49kYPBo/J0qDQa8n//nfQ+fcJ3imP0CgDkLVxI5uDBaPT6mD0dQa+Xgj/+IGvoUIQQJ744YHk5ZZs2kdG/PwG3O2ZPh9/ppGLzZpJ79ABZjr04oCxTum4diV26oNbrY/Z0qPV6Sv78k4SOHdHHx5/w4oAqtZr8RYtI79s34rGIxdOBEOQtXEiLIUNQabUxezoCHg+FS5bQYsgQhCzX0ckuq1m6vZgVeypYmVfFpgI78kGzYqpFT+8sC50kO2efdRpt47VodLoTWhww6HZTvmkTyd27gxCHPE9qvQF/qYNQpY+QQ8a5txJfmZdQVQAcftT+EJoG/AvIQuCTJIJ6NZJZi2TWYEw3Y8qyoE+QMKRbKV63msROndAnJBxSp1AgQK7dyWZZYm2Vi7V2Fxs8fkrq8WCogHZGHTkmPT3irXQxaOhi1GEzmwh6vQQCATyBAFVlZTjdbtxeL1UVFbjcbsorq9jw5xoSM9IJBXwN/s8IhUDlD2L0+bB63MTbK7HaK6M8FHqfj6igJo0GbWYmulat0Ga1QJ2WjrF9O9Tp6ajT0tAnJxNwuylcupQWQ4Ygh0IxFTzU6PX4qqooWbuWzIEDCfl8dceeWo2/aDcabxEqex7Boq2oXQVIlfsQ5bvBUYAkoj11xWo1q/U61hj0rDbo2arTETwobMug0tItoRPd006jW2I3emX3xYQBe1kZZ2VmsrC4mDiTKWZPB5JE6dq1JHbujCYuTikOqKBwEvK3MTpqJi2/w8FHp57KPzdvDv/Zx0hTLZ5rqvY0pazmJqe59fXJKufv0s/5lR5W7C5n2e5ylu8uY2eJq85nWibG0bdNYvjROpFWSXEEnM5m2c/XrN2AKqQjVOElWOnDX+rBW+wmWOZFOP2ovCEaEvXvlwUeIKhVI0wa1DY9+mQjcZlmLK0smDPNqDWHdo7Xd76EEOT5AtVrLzyR57JA/QZGB5OBrgYN7ldf5tK776CVRiLkduFwOHA6nTidzqhtn68RxoSQ8MlqREBG4wtg8nhI9rpIdlSQVFaM2WHH6PGgluvPY6WyWdG1bIUuOwttdsuoZ01aGtIR1iE05XiekdOJqxd8idZfAhV7oXIvVOw5sB1wH/LzIWCH0cyfthQW2x1sS0+kQHjrHJcal0rP1J70TO1Jj9QedEjogFZVd2H6sZw3lIXkCgonF387o6OpUDL9HD+Uvj4+nIz9LIRgV6krklVq2e5y8is9dY7rmGahb5tE+lQbGek2wzFrU2P6WcgC2RkgWOkNeyqqH/5SD/5yL8LuQ/IfOdmrLAReAW457K0QRg0qmx5tkoG4DDPmbDPxLczEWXUxL0wWQrDP648YF+sdHtY53ZTXU9hQDWSrBK1lP5k+NynOKqyVZfgddpxOJ6FQw4shhlDhFlrcQoun+qHz+kirKiW9rIDWfheZFUXElxUf3vhSq9FmZKBrmY02Kxttdha67JbVz9moj+dvIhSAqry6xkTNtrv0CAIksLaAhFa44rNYZ4hjjSrAGl8p6xx7cAajjRKVpKJDQgd6pPSgR2oPeqb2JMOU0aCxoGSvUlBQaCh/m4XkNcjBILnz55M9bBgqzYlXvynb01SympucpqK56dXc5DQVJ1KvkCzYvN8eqY+xYk85pU5/1DFqlUTXTGu1JyOJ01olkGDSHZP2HAkRCBGsZUwEK30Rj0Wwwotc5adOrFctai4JA0LglsEjCzyyIKBRI1m1aJMMGNJMWFqYsaXF0TIlDr1JE3UxWaOXscOwBhscQgj2ev2sdbhZU+lkTZWTjW4/9nraqhIySW4nSfZyUhyVJDurSHJVoanlUfABJQd9zmg0YjabUemMeNFREVBR4IK9dhlHSF1tZOgIoCLVXcEg+x6G2zfRNm8LentFve1WmUxoW7ZEl5WFtmV2OLVsdvZhU8wek/GsVoOrNGxEVO6Fit1hY6LmdVU+iMMbXsKYgBTfChJaQ0IrqN4uNJhY7S1mddkG1hSvYWvFMmR7tGEap4mjW3IObRxWhvYbTfe0Hph15ph1awqa2zymoKDQ9PztPB1+p5OZ/fpxxbJl4Zj+GGkyl3ITtacpZTU3Oc2tr09WOX/FfvYHZdbnV7Ks2pOxck8FDl906I5OLZFZtIMLLj6T/h3T6dUyAZO+8Rc1seolZEGo3EugyEWg0I0nr4pNC5bSoW0XhPvId/SFEHhEjUERfnbLIBvU2At3kT6oB7ZsG7YUI/GpcVhTjOiNDdevPr1kWcbj8eBwOLA7HGy3u1jv9LDVH2KnrGKfWodXXfc7VLJMostebVxUkuKsJNFpR1O9hkClUmEymbBYLJjNZsxmc9S2I6RhV4mHb96YjnfoSDYVuvDU4ynJknycH8yjV+kOMndvRFtYEPW+pNej696dj7//jolvvIG1Qwe0LVuijo9vtCcn5vHsc1YbFGEvRah4OwXfTqdFTitU9tzDhkABoNZHGRM12wFDKl9cch2j/1iBKs7AtoptrC5ezZriNawuXk2Ru6iOqAxTRsSD0TO1J+3j2xNye5ps3jgrOYkFpWVNPm8ong4FhZOLv53R0VScjKEozRWlr48Pf4V+dvuD/Lm3sroQXxmr91XiC0bfxTXrNZzWOiFSIyMny4Zec+zz/gshkO1+AkVuAoWu8HNR+JnAoUOggrW8FO7ahoUAtUWHPsWINS0ubFSkxGFLNWJNNqLVN16nYDAYWQ9x8PoIh8OB3ekkLxBir0pHsclKiSWeUnM8fk1dD4BKDpHktJPsrCTd46C1HKSNRiLefMCoONi4MBqNqFQqhBAUVHlZl1vJuvwq1uVVsj6vCru37lqPOJ2aXik6zvTmc2rhVhK3rkPs2B59kFqNMSeHuAH9MfUfgLFnD9xe77Edz6Eg2PPqD3+q2NOoEKgowyKhdfi1OQ0Oqhvi8DtYV7IubGSUrGFdyTo8wehwQbWkpmNix8hajB4pPUg3pTed3rWo2J/P0jmfsW7eT1z+6DO0yenepPIVo0NB4eTib+fDDAUC7Jozh1Muvjhcp+Mkak9TyWpucpqK5qZXc5PTVDSlXms+n0NZ14GszLWzfHc5G/KrCB4UwpNo0tG3dWJk4fepGVbUtatEBwJs/2x2k/azFIBA4QGjosbIEJ76a0iEhMARArsscIQEzpDALQReIWFM1GNLDRsVttQ4slOMYcMiyYhae+iF2zXtaXPRRQRluY4hUd/ia4/nwAWqDFQZzWHDwhJPiTmV0pT2BOoxMDRCpkUoQFuVzKl6DV1NBrrG20i0tsZsNqPX6w973kscPpbuq2RdXn7YwMivqhP2BqDTqOicbqGNu5Cz03Sckr8V/bo/8X6xPpxWCqg5+/qOHTH1709c/37E9emD+uC79d66i6MbhRDgKiVUupPieZ+T1i4VVdW+A96LqrwjhkBhiI8YE7I1m9K9lSQNvRB1SjuwZYFGf5ivF+Q78lhTsibixdhesR1B9Pi3aC10S+1Gz5SwkZGTnEOcNu6I6sX6OxVCULB1Myu/nc2OlctACDQaNbtWLTsqo6O5zWMKCgpNz9/G6KgpDui321n1wgu0Pv98RDB4wosDesvK+HPyZFqecw4htfqoUuaKUIhVL7xA9rBhqBMTY06ZK/v9rHzuOVqOGIFaq409Za7bzcrnn6f1+ecDnPDigN7SUla9+CKtzz8/3MYYU+b6ysv5c/Jkss8+G1mrjVmnoMfDn5Mn0+KMM9BZrTGnzAX4c/JkMgcNIi4t7YQXBxTBIKuef/7AOGyETiXuIIs35fPnfjfLd5extTgO1q6J+i1nxhs4LctK//Zp9GllI9sIBpstopNaJUWnzHW5DoxDIRqlk7/KSajMh1wewLO7FO/cKoq2rUJ2RFcgr0EWApcM9pDAHhI45PCzX6MiIdNEUgszlrggr911PW8t/JaEBB2GeFu950lSg72ykqqyMryyjKOqiqrKSjx+Pw67HXtlJcW7dsHWrQSC9Rs7kXYBlXEWSlOzKbXGU25LojjOgl9V11uil6CjXksPm4keCRY6q+HUeCt6nfawReckSWLViy9iOq0/OwJ61udVsWZPGRuKXOyvqmsAaFQSHdPMdEk307NVAl3t+SRvXYNvxUpcy5ahImxg1HxSm52NsW8f4vr0wTJ4MJhM0b8nny9qLofwH1zIHzZu6h17so9A/ibUniJU9lyCRdtRO/ORqvYhKvYgBdyogQyAvLr9KtR6pPiWiPhWyOYWqNPaI1uzCBkz0GZ2IqQxReY9f0UF8/87gjHXPIfQaBD+EFoNkbEn9Bo27V/HmtK1rK3YwOqi1ZR663pLWhgzSFhTzIVX3kP35G60T+6EVqdvdHHAmvmw1bnnEvR4jpwq3O1m36Z1rPhmNoU7tkXak905h3envM31r75LwO2OOWVuyO8Pz4dDh6JPSFCKAyoonIT87YoDrnjqKTJPPx2tydQsigN+etppXLFkCYVLlx51cUCtyURyTg5rXnklJp1qCkppTSYqt27FmZsbk041xcwKly4l6HKhNZmaRXHADzt25Ox33kFrMh1VccAvzjqLK5YsIXfu3KMqDrjmlVe4YskSfrnllqMqDujMzeWKJUuYlpnZLIoDak0mLK1asen99w+r06f9+rH023l8tjKXy66bxOBJc+n39HzumrOFj5btY2txOJVtmwQ9l/dI59xvXmDBv/rw0zUdafvPvlzdryWJZXm8l519WJ1y585FpVajNZkOrdPTz7D4zkdwry1h8yMfsfO/X7H/+RUUPf0nZW9vouLz7XhXVZCQ2DFicLhlQWFAZps3xCpXkF/sAb6r8LBSFcCek8yuNTNoPUTL6CcGEHz/Is4aFcdZ/zyV5Zf3wG3fRkVFLq8NHMCSRYv46euvefGaa5g+fTpvvPoqzz7+OE888QSTX36Zdz76iOnTp/P1t9/y6++/s3z5cjZv2UJ+YSGBuLiIwaHT6TCpVJjcbhK69aQ0LZt12R347ayLef/0kczqM4wFp/ZmXYu25Jnj8avU6AIBTnVWMb5FMmO/m8XbuRvZOaQ71989gRs2ruDqjCTWnzmEwl8W1Dv28tZvYtmuMm4YPo47Zq3j9UueYuBb6xj77gqe/3kbc7eVsb/KiwQklecxulcL7s6JY/z3T/Pnte34v+Kfufh//6DX7Veiuf0GKqdMwVNtcARVKqwjR+IfMoR9HTvQbu7P5Gq1rPr2WzRJSQ0qOjdMgn0fT4Fdv7L62t5UvTUWPr+eqgfbIJ49BZ7ORPvBcFSz/gE/PoBm9TtI23+E4k1IATcCCWHOIH9vkFDnMfh6/YufvvTAdT9SPvIr3nzeC7etpLDdvbx/22wYeBu5+XF8euH1YIyPmvd2fPEFhoQEtCYT66ZMYc6Ea/gt7zcefvMfjHl7GAM/Gcg188bxwpqXmLt3LqXeUtRCIic5h0G7ErjVcSYLLlvAxHckHj7lVq7q9k/WX3oTe776+ohzRH3/T9MyM7nk55/xVVUddo7wez388upk3rj2Mr556ZmwwSEEOWedw+kDhqH6bTlFJeVsnjbtqIoD7vjiC65YsoRvLrpIKQ6ooHCS8rdZ01FTHNBnt7Nl+nS6Xn89IhQ64cUBfVVV7PzySzpefTVClo/K0yGpVGyYNo1T//lPdBZLzF4BIcusf+stukyYgNZojNnTEXC72fjuu+TceCNI0gkvDugpLWXH7Nl0Hjcuchc8Jk+H3c7O2bPpcNVVSNXnPhavgBwMsm3mTNqNGYPGaIzZ06HSatk6fTptL74YQ2LiCS8OKEkSG6ZO5dSxY8PjoFonSaNl895iVuY7WZlrZ9muUood0SE2Kgk6pZro2zaZPtk2TL9+w6CbxqPW62MuDuh3udj8/vt0veEGhCwIlLrALvDl2wkWuQiW+AiWeA6ZJcpbHRJlr/ZaOELgFAJzipHEFhbiU7QkZVlJzrZiNMroTMbIeUKrpaSsjNzduykuL2f//v0UFRUhH6IWRH3ExcWF10aYTJiMRqwJCZji4jBqNJStWIHu3AvYJdRskSXW2V1sdHnx1qOLUSWRY4mjq1FLN7ORHolWWiGjluXwOLz0UrQm0yHHnl9IrN9ZyMZSL+sLnKzdV87OMjf1/YO0SoyjW5aNzikGerVN49R0M+q8vQTWb8C5eDHuZcsIlUbfxVeZzRh79yKuf38KCgpof/PNGBMTGzX2NHo9AUclqh0/wap3EXuXoFEffuG4MNggvjVSYmuCcRmoUtqhSmqDX5uMNqMjIaFiw9tv0/XGGyP90ZgijrLfjyYujl1FW/j+qzco7RLP2tK17KzaVactVp2V7knd6JXRmxzbqXRO6orFZIuay70VFWybOZMu48cjBwKNKkwZ5ekoK2PHl19y6j//Scjvr6OTvaSY1d9/zYZf5+F1hT0OBrOF7sPPJWfocGyZLQj5/U1WHFAIwbZPPw2PQ7NZKQ6ooHAS8rcxOmomrYDLxbejRzNy9uxw1eMYaapFt03VnqaU1dzkNLe+PlnlNHU/j/jsc7ZVhSL1MVbuLafSHR2WpFVLdM+KD9fHaJNI71YJWA3ao9ZLCIHsCBAocuHdV8HuT78jI2cgoRIv4hCLugOi2rgIEWVkGJIMJGaaiU/RsWfGmwx79mFSWifVWW8RCAQoLCxk//79kUdxcXG9BkYoGCQhMRGLxXLIRddmsxmTyYS6OlQoIAu2ujzhOhhOD2srnWyodBCoJ/7dpFaRYzbSzRJHN0v4uW2cHnU9mZvq6+dASGZroYP11Yu81+VVsbXQUWc9DUCGzUC3LBtdUuNwT53M9W++QEpyPMHyctzLluFashTXsqUE9u6L+pyk12Ps1RNT/wGYBvTH0LkzkkYT+3mvzIVV78OfH4KrOLJbqHXVqWVrLdKunWbWGH9YsbG0xx/ys6lsE2tL1kYyS5V5y+oc18raKqo2RhtbG1TS4QMQjvW8UbpvDyu/m8OW3xcSqvaixadn0PuCS+gy9Cy0+ugaNsdyflYWkisonFz87YyOpuKvkOnnZEHp6+PD0fazNxBiTW5lpD7Gqr0VuP3RC23jdGp6tUyILPrukR2PQXt0maVkTzCSjrb2s3AfflG3I+K5CD+rbDqSMs3htReZJhIzzSSkx6Ez1F365vP5KCoqoqCgIGJglJSUUN90ajQaycjIIDMzk4yMDGwWC6NatTpsP/tlmS0uL+sdHtZWV/He7PLgq+ei36xWkVNtWHS3xJFjNtI2To+qgalhQ7JgV4mTdXnVBkZ+FZsK7HWyggEkmXR0y7LRLSueblk2crJspFrCF6Gyy4V75cqwkbF0Kb7qkJ4IajXGrl2rM0z1x9izJyr9oRdSNwhZhp0LYOU7sO1HqE7Nizkdf9erGH3V43y6pxyzLf7ovucIVHorWVOyJmJgbCjdgF+O9uJpVVo6J3WOyiqVZEw6pu1qKEII9q1fy8rvvmTPmlWR/ZkdO3PayItpe1o/VPWs/wGlOKCCgkLD+dssJK8h6POxbsoUuv3rX2iO9g+vmbWnqWQ1NzlNRXPTq7nJaSx2b4BVeytYsTtciG9dXhX+UPSFqs2opU/rRPq2SaBvmyS6ZFrRqhu2lOxgvUQgRKDYU50pKmxcBItchKrqZkGC8IVUZFF3LQMjZNRGDIsWLcwkZppIzDBhMNWfMcfr9VJYWEhebi6bf/sNr9VKWVndu9YAJpMpysDIyMjAZrNF1YZwVi/+r8Eny2x2elnvDBsXax1utji9+OsxYKwaFTnmsPeiq1GLds4XnHv9degMDaugLoRgX7k7YmCszatiY34VLn/dLEwWg+aAgdHCRrfseDJthogust+PZ80aSpYuxbVkKZ716+GgBe36Dh2I698PU/8BxPU5DbXFcsQ2Nmg8u8pgzcew8t1wetoa2gyBPhOg4/n4XR7yKx+DI3gOGtseIQR77HsiGaVWF69mj31Pnc8l6BPonto9Uhujg7ktW9+cRrdhzeP3HvT5WPPqqxh6dePPH7+hZO9uACRJRfu+A+g98hIyO3SKWX4s7WlO/xcKCgpNz9/O6BChEPuXLCHnpptOdFOApm1PU8lqbnKaiuamV3OTcyRKnT5W7gmHSq3YU86mAnudZRCpFj19WtowL/yKsY/czqktU1CpGleMTYQEwTIP3n0VyFtkKmZsI1jiJVTuhUP4Zd3yAY9FTdYor0ZNfKaJhFQDJQtmM+CeG0g9JQmjRXvIAnEejyfiuajxYpSXl0cfVG1wWCyWiGFRY2RYLJbDFp8TQrDZ7cM1agwP7S1hs3c/W1xeAvUYGDaNOhIalWM20t0SRyujLuLBCLjd/LxwAdJ11x7yuwrtXtbmVrE+v7La0KiiylM385ZODtCtVTLdWyVGDI1WiXFR506EQng3bMS9LGxkuFetQhyUljag1ZI08gLMgwZh6tcPTXLywV91RA45noWAvJWwYhps/BJCvvB+vQ16XA2njYeUDrU+EF2/Ila8fjdLtsxn1cY41lVuZG3xWip8dSuet7G1CXsxUsKhUq2sraLGQsDtbja/d5/bxeofvmHZ8oUEVywEQKPXk3PmOfQ6/yLi045NXY/D0dz+LxQUFJoeJbwqRpSQn+OH0tfHh4P7Ob/Sw/LdZSzfXcHy3WXsLHHV+UyrpLioGhktE+MaXPFZyIJQpS+q1kWw0E2gxA2h+qclnxyditYeArckYcmIIymz2mtRnZrWnKA/bFtcLlfU+ouCggIqKyvrPdZms0UMjJqHpQF37QHswRC/lTuYX27nlzIHhf66F/0JGnXYuIiESRlpadA1qnp2mdMXMSxqwqRKHL46x+nUKk7NtIa9F9UGRrtUc1RtEwgbLf7du3EtWYJ76VJcy1cgV1VFHaNOSorUyjANGICuOvNRk+J3wfrPwsZG4foD+zO6h70aXS8FXd21DbHOG2WesqjaGJvKNhGQo8+ZXq2nS1KXiBeje0p34g3xsWp43LCXFPPnD1+xbv7PBLxho8wUn0DPc0fR7ezzMJobNqZro4RXKSgoNJS/nacj6POxctIkTnvwwWbhwm3K9jSVrOYmp6lobno1Nzm5FR583UfwwNdbWZ3nIL+y7p3iTumW6nCp8CPNWjesp772hBz+WiFR7kiIlPDXv6g7KA5kiqoJjXIKMKYYSaoOicqqNjKsKcbDelOCPh9/TJpE2mWXUVRaGjEyqg66gK4hPj4+KjwqIyMDU3UGr5WTJnHKEfpZCMFml5f5ZXYWlNtZUeUiWMuGMqokQssXM37keZyWFE83i5HsRhoYVZ4Aa/eU8sP0ryjv0JsNBfWfL7VKokOapTo8yka3FvF0TLeg0xwIOQr6fKx4/DFOe/BBRHl59ZqMJbiXLiNYXBwlT2U2E9enD6YB/Ynr3x99+/aRdgd9PpY++mjTjecbRqNZ+xGs/RR81SFpGkPYyDjtemjRCxrRZ/UhC5ndVbsjYVJritewz7GvznHWoJ7TWg+kV3pveqT2oHNiZ7TqxhWwO5G/98Kd21n57ZdsW/o7ojqxQVKLbBJkNSOefAbDwYUVTwDN7f9CQUGh6fnbGB01xQGDbjf2PXtAlg+bvu94FQf0V1XhzMtD9vvxBwJHlTIXIbDv2UPI44lZJ43RCLJM1a5dyIEA6PUxp8yV/X6qdu8GWY5Zp6YsDuivrMSxbx/Icuw6BYP47XaceXmEfD5EMBizTiGfD2deHoHqAlixpsyVVCqceXn4KytRp6Q0WqfdRXYm/7yVbzcWI869jW83hC801SqJLulm+rdLoXeWhV4tLKQk2WrpZKibBtgvEyxyoyrSU/X1TuSKIP7CQy/qloXAUb3uIhIeJQu0CXoSs+OoWr2QnuNGk9Imkbi4EMaEegrpOR0RnQJuNz4gPy+P/NxcisvKKMjPxwnw2Wd1vj8xIYHMFi1IS0khPTWVrNat0VZfyNZO8QkQcDqx790LslznPLlUahY7vfxcWM6vdjf7/dH6ttVrOSvZyvDkeDo4Kzn/jFu458ZKdJKEzqADIfA5HPWeJ3uVk+0OmTV7y1m3r4INRS52l9Z4nbJhU/h8SRKckhRH1wwLPVon0SUtjlNTTVis5rqFKUPhec+bn49r6VLUC39l9+9/EMyLroAn6XQYunfDNGAg5tMHomrZEq3FEhl7QpaRquc9lVqNIzc3PA5TUxud2jgUCCB7nKh2/EQH70dopr4UaYeIb4PUdwLBzmNAb2tQKlaoWxzQpwqxuWorq/KWsa5iI2tL12H3R6+xAWgX346c+C70zuxDju1Utt37BMOueiacOtjpRKvWNiplrtZkIuT1Yq+eDxudBrj2vOdwRI/DQ8wRar2ePetXs3zO5xRs2xzRrWXX7pw2ajSp6S1Y/PDDqCUJn93e6DTANfNewBUeiyGf76iKA8rBYHg+dDiQVCqlOKCCwknI36444PInnsCQmIjGaGwWxQFn9OrF8GnT2L948VEXB6y5EF398ssx6VRTUEpjNLJrzhwce/fGpFNNgbb9ixdTvHJlRN6JLg74Qfv29LrnHjRG49EVBzzjDIZPm8a+n346quKAq19+meHTprHgppuOqjigY+9ehk+bxtT09Ebp9HqvfvxnznqGv7yIbzYWIwDTvvWctftXPr6+H5+23s913z3FQ+efSsq8WSy/aUJEp19vuwN/gZN1/3mDLY9Mp/S9DeT+dyHFk/6k/N0tZNoG4VlVhm9XFcIdRAiBMyQo8Mts9YZY4QqywB5gnj/ArpZW1q7/Butpaobc1xvvjCs4/+p4Lri1JyXv3k1WGzUWq2BqUkKUTkII9q5axetnnMH8+fN57803efbJJ5k8eTIzZ83i9yVL2LZtG06XC4QgOTmZlnFxZO7Zw7hx4zjPYqHt778zZswYtL/8wt4XX8RoNB6ymNmCm24iOScHjdHIN6NH88OMWUzZV8xZM76ly5LNjN+wh09L7ez3BzGqJDqsWcEDGj/L+p/KNecO4M6AnaGJFma1akkcEKjnPPmCIX7/fS23jriO+z5by/Bn59Hz2UVc9uYSnvphK99sLI4YHImeCi7olsF1SXb+tf0L1v3vHJ5XreacOc9y3eltkD9+g2V33xk19mSXiyX/uIYNl1/BrktGs2vYcIof/g/mwkKCeXkIScLQrRvFBj2qcdfSYfkyFv35J+62p2Ds3p2Pc3IOWXTOW1HBkJdeYmp6euMLU1blUfnWOIKT2qL+eiKJhtJw/Y9OI9kedw3f/9EOBt7KypffbFTRuQE2DTM+e4rnVjzHyCkDGTRrMON/Gs+UjW+xqOB37H47Gr+gu7EDN+TcwAVvFPFNj2l8edGXJJ3xFGcZe9PCkM7Wjz4OXxQ3sthm7Xlv+2ef4SosRGM0NqrY5sE6/fiPf5B5+ulojMZ654ig38+0M07n3dtvYM5zT1CwbTOSSkXnwWei/nkR5153M5mntGdaRgZDXnoJb0VFzDpt/vBD5l9zDQCbpk49quKA2z/7jOHTpvH1qFFKcUAFhZOUv82ajprigN7KSpb+978Meu658MLEE1wc0FtRwcpJk+j/+OMAR+fpAH6//34GPPEEepstZq+AHAyy6J57OP2559CZTDF7BfxOJ3888ACDX3gBSa0+4cUB3cXFrHj6aU5/5hlCfn/Mng5vZSUrn36afo89hkqlit3T4fez7LHH6POf/6A1mWL3dKjVLH3kEU574AGMyclH1MmrNfLmL9t5b/FevNVpUQe3TeD2oa2Z2LFFVHHAkM+P5FXhy6sisN+FXO7Hv9912EXdHrnWgu5qz0XAoCGhhZn4FD1JWRaSs62YbWBKMB+ymJkcCLDonnsY9PzzqA0GivPyKLXb2b9/P/l5eRQVF+Px1A0pkiSJlORk0lJTaZGdTUp8PLunTOGM559HUqliKnio0espLSnl/WnvU3jRGBZUOCk4yJtxilHPUIuBs1PjGZBoQ+121VugrTwvj2HZ2Swor2BfqZvNFcFwJql9FWwrcRGoZz1LmlVPtxbhWhg926bSJS0OU9DLiqeeot+jj0Yqrh+sk/D5CGzdimPR77iXL8e7YUOdDFPaU06hSg7R+qabsQwehC4pqcFjr/a8p9JoWPzww/R58EGMKSlH/j2ZTMjb58GKaah2zo2kuxWmVPaWZpB2y+sYW3Vt9Hnyu1wsKlrMtA3vsKFiY52+TDWm0i2xK73Se9MzvRdttC0wmiyHLKQX9Pn4/d57GfTCC2H5MRQH1FbPo4sffpjBzz8PkhSzp8NTVsayxx9n0LPPIkKhyHmq2l/AxkW/sGbu93js4dBBnTGOrkOG0WvkxdhS06Lmck9JCSsmTWLgU08hB4MxezqaqjigHAqx7NFH6fPww+isVqU4oILCScjfJrxKYzSGn6v/PGvvA9DGxR3YrlUoqfa2rlbcq85iiVxz6WtNhvVuS1JkW6VWH9jWaMIXhtXbmuq0l2qtFnV1wS+1Todapwu3t1aca9R29eeCXi8qjQZ19Xux6AQgB4Oo9XpU1SEKR6NTTdtj1QnC56km8j9WnQB0VitSdajM0ehUI1+t1R44ZzHoVBOPro2LixzXWJ30VmvkT71e/Wrp5AvBB6tLeGPhzkgGo14t47n/3E70a5OII6+MXqf0J7TORflvW8PrLooPvajbL4cNipqCevaQwKNVYU2Pw5+7gVMvPIP2rWwkZpqJs+rqlVGfTlqzmfLycvL37WO31cremTMpLCrCe1CmJACVSkVqamrU+ou0tDR0ugPfF/R6yY9h7Akh2CVLzC+pYkG5nWWVLvz9h0NRJQAGlcSAeDPDkqwMS7TSJu6gOPSDzhNAicPHO6vLsf/jOQa8uCRi9NUmIU5Lt6x4umfZyKmuh1Hv2hmvOqJTZBxqNHi378BeO8PUQYaZtkWLcK2Mfv0x9e8HFguLH3oI27kjInIaOvZqbwe9XiRJCo9DSTr078lvR7cunO5WVbH7QMNaD4Y+Ewi1Hsa+R/5HVlq78Plo4O8pJIf4YfcPTFs/jW0V28JvyIL2Ce0jazF6pvYk05R5yPUz9c0LkiSh1oeTEkgqVaPniKh5r3q7wXNENQfPezVzs9Zkorwgnz+/n8PGhfMJBsKhZJbkFHqffxFdzzwHfa3P1tav5jwdrU41Y0Wt10faGYtONfOY1mSKyNc1g7UmCgoKTcffxtOhZK/666L09dERCMnMWpnL/83bTnF1NqP2iXHc3jGDQWjCxfQKXQhP/esugrUrdVd7MVwqCVNaHInVi7prMkcdKWPUwciyTGmtxd01D7+/bu0NtVpNWlpaHQNDo2m6eyeuUIg/KpzML7Mzv9xOnjc6a1Erg45hSVbOSrIyMN5MXANrjuwrc/P2op3MWpmHv5ahYdFr6FprkXe3LBtZCcaGZwATAv/uPeGF30uW4lq+vG6GqcRETP37Ede/fzjDVHZ2g2Q3KUJA/qpwBqoNsw9Kd3tVdbrbjjGJDoQCfLvrW97Z8A577eGQUJPWxOjWl/DJeQ/ze275STdvCCHI37qJld98yc5Vy8L9C6Sd0o7TRl5Ch/6DIobJsUbJXqWgoNBQ/jaejhqCHg8Lb7uNM159Nequy8nQnqaS1dzkNBXNTa9jLScUkvlmeR4vLdjOXkf4LmK6SsX1Qsc55WrUS0qonQRXFgLnQYu6nQJ0qUYSW5hJyjSRkWkmMePwGaMO3Z4QpaWlUVW8CwsLCQTqppDVaDSkpaQgb99OrzFjyGrVipSUlJgMjMP1sxCCnR4fC8rszC9zsKTSGVWUT6+SGGALezOGmnTsvf8ezmzE+dpYUMWbv+7iu3UFkZom3TIt7Jj6GDO/nk6XVmmNrmMSKCzEtWQpzt9/p3LuXNQHGWgqk6lWhqkB6Nu3i3jA6uOYjkO/C9Z/Xp3udt2Bg9O7hdPd5oypk+62oe3xBr3M3j6b9za+R6GrEACb3sY1p17DVZ2uQu2TmGF/IGZ9Gtue4yFHDoXY+vuvLHzzVdy10vie0qsPp40aTdapXRtssJ6s87OCgkLz5YQaHaFQiEcffZSPP/6YwsJCMjMzGTduHP/5z38iE6cQgv/9739MnTqVyspKTj/9dN544w3at28f25eqVJizsiIZaU44TdmeppLV3OQ0Fc1Nr6aU0yKbQLEXX5kdf4GT33aW8VpROdvlcKXpeCTGoedCWYsOiQBQHpCpqjYuqmRBwKhh8/pfuXDCGFq3TiQx00R8WhxqTSPbp1IRl5VFYXFxOHtUtZFRVFREMFjXm6LVaklPT48qspecnIwIBlk5aRI9e/Y8uhSaB/WzOyTzR4WDBeUO5pfZ2eeNvmjPrvFmJFo4PcGMqfqOcdDno7wB50sIwbLd5byxcCe/biuJ7B/aIYWbz2hLlyQNQ+5YQJukuAYZHMGKCtzLV0S8Gf49eyLvqQFJq8XYq1fEm2Hs2hVJ24h0rsdiPJdsDVcLXzMDfNWeF7U+nO62z/XQoveh090eoT1Ov5OZW2fy4aYPKfeGCzcmG5MZ12Ucl3W4jDhtOGzHWZNm92hpBr93v9fDhl/msuq7r7CXFAHhMKfOQ86i9wUXk9QiBu/VyTo/KygoNFtOaHjV008/zeTJk/nggw/o0qULK1eu5LrrruOpp57i9ttvB+DZZ59l0qRJfPDBB7Rp04ZHHnmE9evXs2nTJgyGunHOB6OEV/31Ufo6mpArQGC/k8B+14FH9dqLDQR5Ex9rCBsbccCVWiPnqAw47AEqAzL2kMArQKWSSG9ro2WXRFp2TsJglRmSEN/ofg4EAhQXF0cV2SsuLiYUCtU5VqfTRYVHZWZmkpSUhOoYX2jscvtYUG5nfpmdxZVOfLVKqeskif7xpmpDw0q7uMaFiNUgy4K5m4t4Y+FO1uRWAqCSYGS3TCYOPYUumeEMQUcaz7LbjXvVqki9DN/mLZHwmbBQFYYuXTD1749pQH+MvXqhasBceMwJBWDLt7DiHdiz6MD+hDZhQ6PHPyAuMWbxld5Kpm+ZzvTN03H4HQBkmjIZ33U8F7e/GL062jA9GeYNZ3kZq3/8hrXzfsBXnZrWYLHS45wL6DniAuJs8Se2gSjhVQoKCg3nhHo6Fi9ezEUXXcQFF1wAQOvWrZkxYwbLly8HwncMX375Zf7zn/9w0UUXAfDhhx+SlpbGnDlzuPLKKxv9nQG3m5+vvZZzPvggaiHbiaIp29NUspqbnKaiuel1JDlCFgRLPVEGhn+/C9led73DLkK8rfLxuxz2JGiB09HRrUqFXsAqwuFV5kQ9bbsk0bJzEi06JaA3HpgCnPYj3xn2+/0UFRVFrb8oLi5GlusuiDbo9WTUKrKXmZlJQkJCgw2Mo+lnT0hmcaUzHDZVWsUeX3QIVwu9NrwAPMnKoHgzJs2R498P1R5/UGbOmnze+nVnpGq7XqPistOyuHFwW1omHb7twu/Hs25dtZGxFM+6dXBQyJmuXVtM/QeEQ6b69EFttUa152hMtqMez1X5sOp9xKoPkFzhu/BIKuhwXtjYOOXMRt29Prg9Je4SPtz0ITO3zsQTDC+Kb21tzYScCZx/yvloVY0r0tdYTsS8UbJvD6u+/ZLNv/+KHAr/phMyMul9wcW0P20Av9x4I9qRl8Tclsa253jQ3NqjoKDQ9JxQo2PgwIG8/fbbbNu2jQ4dOrB27Vp+//13Jk+eDMDu3bspLCxkeHVOcACbzUa/fv1YsmRJvUaHz+fD5/NFXturL6ScdjsqwiES8T174nK50NQT6tFQXNVyXQ24UDscTdWeppTV3OQ0t74+FnJUTh9ysYdQkYdQsZdQsYdQiZeoUta1UCXoUKcaKbSombKvlLlFToQsIQno6lcz0KvBKlSoNRLpbS1kdrDRoqMVa4ohchc/EHBHXdse3M9+v5/ikhKKi4rCoVJFRZSVl1Ofc9RoMJCWlkZqaiopiYlULljAaddfj/agO/DuRhT7amw/7/UF+LXKza9VbpY6vPhqtVMjy5xmMXJGgomh1jjaGbQHQjjdLhrSqoPb4/aH+HxNIR8sy6PIUZ01SK/myt6Z/OO0TJLNOiBYx5hzVlbSSq+ndNo7lKxfj2/NmjoZptTp6Rj6nIa+Tx8Mp52GOjk58p4HwG4/seNZyKj3LkK79iPUu+YiCRkJ8GNCPu06Qj3/ibBkVivcuAJvNe3ZWbqTGXs+59u93+KXw/3b3taecR2vZWjmENSSGp/Tg4+6aZPhrzdvCCHI37yBtT9/R97GA+tf0tt1pPuIC2jVrReSSoW/mc1jx7KfG3IjREFB4a/DCQ2vkmWZhx56iOeeew61Wk0oFOKpp57iwQcfBMKekNNPP52CggIyMjIin7v88suRJImZM2fWkfnoo4/y2GOP1dmfQzj+WUHhRCIhkR6fSZvUdrRJbUvr6uc0W0a9x3v8bvaW7GJ38U52F+9gd8lOihzlWFv2wX7aBexJzUCuvnju4FcxyKtFVZZLXu4K8nJXULh/HaFQXc9IfcRnZpLUsiW2jAziMzIwJyfXG2bkdTqp2r+fyv37w88FBXhOwMWB0Orwd++Ft98gfH1PJ5TdOup9VXEhhmW/o1/+B7o/l6PyuJvke2WjFV/vUfh6jUQYwylFJUcZhpVfoV/zA5K//otggP4WC1cmp5Cqi04hbA8G2eh2s9HtYoPbTXE9i+ubA1YDXNRTx5jeWlomHZhRV+wOMmuln4VbgtSTBbhRiHQd8gUpiAHxoKkef9tdqL4pQVrnpPGBb80blUqiVXYmnTueQkJ8OIRIlgW5+fvZtHU3ZeWVJ7aBJ5AQsB6U8CoFhZOEE2p0fPrpp9x33308//zzdOnShTVr1nDnnXcyefJkrr322piMjvo8HdnZ2eTn5mK1Wgm4XPx0zTWM+PjjqFz0jcVlt3NudjY/5uZiOorJsKna05Sympuc5tbXDZUj/KEDXouiWt4Lf/1XZZJVizrNiDrVgDrViDrNiCpBh5AFxXtc5G+rYteWSn6ucLBSHyRQffXVOqTizNJ8zr90INk5KZgTGr7oWpZltu/YwYoVKygsKqrzvtlsJi01lbS0NNJSU0lNTcVsNh92zcOx7OfcGm+G3cNShwdPrbUZGqC32cBQWxxn2OJoX+3NaKr27N1fzlPPfMyfLXrhrfZAtUo0cl3/LC7smoruMAvufevXU/ny/+Ffvx4AjxzCOmAgpv790fc5DW27w2eYqo/jNp6FQFW4Bu3aD9Fs/QapOt2t0FkIdB5DoPs1iKQOR92ebZXb+GDbR/yS/wuiugpSn5TTGNfxWnom92z0OpvmPm/43C42/zqf9Qt+wl1ZAYTrW3QadAY5w87DmpJ6XNsTK8eyn+12Oy2ysxWjQ0HhJOGEhlfdd999PPDAA5EwqZycHPbu3cukSZO49tprSU9PB6CoqCjK6CgqKqJHjx71ytTr9ejryXRjtloxW62EDAa6XnUV1qSkSJGwo8FULTdWmrI9TSWrucmpobn09cFyhBCEKn21FnaH12AED1W1WyOhTTOhSTNStm8DWaPOwJBtQxV3IDbdXuph36Zy9v2wn7ytFXi8QVbrgyzTB/FURyy1NRm4Y0hbzu2bzrbpH3PqOe0arFcgEGDt2rUsXryY8vJwBiCNWk3uxo2MGT+e1m3akJGRgTmG4lxN2c8drrqaNWo9C4scLCi3s93tizomXadlWJKFs5KsDEmwYKlnbcbRtmdroYM3f93J12sLCKX1hKAgp4WNm89oy4gu6agPk4HKn5dPyeTJ2L//HgDJaMTyz2u47t57mbdyZbMczwca74YN1elu9689sD89B/pMQMq5DJ3OhO5Ico7AmuI1TF0/ld/yfovsO00+hTvO/R89MnrFrFcNzW3eEHKIFbM/Zf0vcwl4w14xU0IiPc8dRffh52E4wm/u7zQ/H6XTTEFBoZlxQj0dSUlJPPnkk9x8882RfZMmTeK9995j27ZtCCHIzMzk3nvv5Z577gHCdz5SU1N5//33G7SQXMle9denOfW1CIQIFLlrLex2EtjvRnjrj4lWWXRoM0zoMkxoqx+a5DgkdfSFasAfomBbJfs2lrFvUzmVReFQIBnBBl2IJcYgdin8Uz0lycT953VkRJf0Rt/9dbvdrFy5kmXLluGqzoZjNBrp27cvnU89lXMzMk54P+d6/Swos7Og3M6iCifu0IFLD7UEfaymyCLwU02GmDJNNYSVe8Jpb+dvKY7sG9QumZvPaMvAtkmH/d6Q00nZW29T/sEHCL8fJAnb6EtIuf0OfEZDsxnP9VKyrTrd7ScHpbsdDaddD1mnHTrdbQMRQrCscBlT101leWE4cYhKUjGi9Qgm5EygQ0KHo9WiWc0bAIU7trHi2y/ZvvQPhAiP6eTsVpw2ajQdBw5B05g0x80IJXuVgoJCQzmhno5Ro0bx1FNP0bJlS7p06cLq1auZPHky48ePB0CSJO68806efPJJ2rdvH0mZm5mZycUXXxzTdwZcLmYPH87oefOOOpypKWjK9jSVrOYmp6loTHuEEMgOP/7aaWn3OwmWeOr3XqgltClxEcOi5qE2138HUQhBya5Svr/zWeLPvJLCXU5CtYPhVVDcQs/coJsCTzi+P9Nm4M7hHRjdqwWaWpWwG6JXZWUlS5Ys4c8//4wU47PZbAwcOJCePXui0+mabNFmY8+7X5ZZXuViXpmdBWUOtrm9Ue+natUMS7ZxVqKVIQlmbNrGTVuNaY8sC37ZWswbC3eycm845EWS4PyuGUzol8m2f15C36vmHdLgEMEglZ9/TskrrxKq9iDF9e9P2r/vx3DqqQD4TlA/H07Ol2cPY/Rrd6FZ/zHsPuBxIKF12NDo8Q8wJR11e4QQLMxdyNT1U1lfGg4106g0XNj2QsZ3HU8raysCLhczBwz4S84bByNkmZ1/rmDVt1+St3lDZH+rbj057YKLadW9V6ONZmV+VlBQ+KtyQo2OV199lUceeYRbbrmF4uJiMjMzmThxIv/9738jx9x///24XC5uvPFGKisrGTRoED/++GODanTUh0qno9fdd6NqAndyU9CU7WkqWc1NTlNxqPaIoEyg+ID3IlAYNjBk1yG8F3EaAmoX1pzW6FpYwgZGahzSEYro+dwB8rZURLwZzgoftDgf17bwRag5UU/LLkmUJKr5cHshGwoqAUiI0/KvM9txTf9WGLR1w4cO18+FhYUsXryY9evXR7JOpaWlMWjQIDp37oxa3fTpFRpy3vO9fhaUh42M3yocuGp5M1RAH5uJM+JNdFyzgnNGnofmKMZQQ9oTCMl8u66ANxfuYmtRuAaETq3i0t4tuGHwKZySYiYUCGA+jBznokUUPfss/h07w59v04bU++7DfOYZx8Qb0yS/r6p81CveZfT5BWi+vjG8T1JBh3Or092e1eB0t4drT0gO8fPen5m6firbK7YDoFfrubT9pVzX9TrSTelNq1cTEkt7An4fm35dwKrv5lCxPz8sR60mM6s1Q2/8F+ntYvfk/N3mZwUFhZOHExpedTxQwqv++jRlX4ec/uiievtdBErChfXqIIEmxYg2wxzxXOgyTKgsugZdRApZUJLriBgZhbvsiFoLn9UaFS06xJPdOZGWXZLYF/Dz/M9b+WNHGQBxOjUTBp/CDYPbYDE0PPRCCMGePXv4448/2LFjR2T/KaecwsCBA2nbtm297T+WYzogC5ZXOSNVwLe4or0ZKToNZyZaGJZkZWiChfhGejNixeMPMXPFPqYu2k1+ZTi+3qzX8I9+LRk/qA1p1iPf3PBu3Ubxc8/h+uMPANTx8STfeisJV1xeb2XwEz53yDLs/jW8VmPrDyCqiziaUqHXWOg9DuJjqHBdD4FQgG93fcs7G95hr31v+Gu0Jq7seCX/7PxPkoyH954cDSein932Ktb89C1rfvoOjyN8M0EfZ6Lb8HPpee4oLEnJR5Dw10MJr1JQUGgoJ9TTcSLwO53M7NePK5YtQxfDItnm3J6mktXc5MSCCAmCpe6oonqBAgeys37vhWRQVxsVBwwMbVocUj2ehcPp5bb7yd0UNjL2bSrH64xOfZqQHkfLzklkd0kkJUPDF4MH0va7BTw0bws/biwEwnfY/9G/Jf86sx3J5iNnoqppz2VLlrAzN5c//viDgoKCsF6SRJcuXRg4cCCZmZkN6rujpaY9Qxf9we/eEPPL7fxW7sBxkDejlzUuXAU8yUqO2YjqIEPoWI7DSrefD5fs5f3Feyh3hVMKJ5t1XHd6G67p3wqbsa6xcLCcYGkpJa+8SuXnn4cv5LVaEq+5huSbJqK22WJu79HodVjc5eF1GivfhfKdkd1y1gB+/2wr/WctQ2eLvWJ47fbIBg1fbP+C9ze+T6ErPK5tehvXnHoNV3W6Cpv+0P3zV5yjywvyWPXdHDb9uoBgIDyerCmp9DrvInLOOhudMQ6/08lHXbo0m3n1r9jPCgoKf23+NkZH0OOB6jslpz/zDBqDIbxPpUKj1xNwu5HU6vC2y4VKq0Wt04W3dTrUWi1+pxONwYBKo8HvcETyxfvsdrQmEyq1Gp/dHp4wJQm/w4HOYgEh8Dud6K1W5FCIgMsV3g4GkQMBhkyeHJbpdKIzh8M4ZL8frclEyO9HDgTQmkwEfT5EKIQ2Lo6gzweyjMZoJOgN3zXWGAycPmnSgeJvMeikMRrRGAwMeOIJVNV3aRurU9DjQWexoNJoGPjUU2gMhqPSKejxRCou16eTFFLh2V1KqNRPsNiLP99O8BCF9QQCTZIRdbIefbYNbYYJrGBokRgublZLJ7/LhV4brZMcDCIHgwyZPBlJrcZnd1BWFGTPuhJyN5dTmhddC0KrV9Oig43W3VLIbGvCkmiI6JRf4WbJjc/zv7dWIgtQSXBRThp3DmtPqzQbAZeLUEB1yPOk0mjw2e3IKhWp99/Pm9OmUVm9XkCj0dCzZ08G9O+PSas97HmSg8FIf0uEY6uxWht9njwuN6tcPhZWufjx/97jvrV7ovoiSavhDKuRYck2zkiJx+zzHlInrckUGYc1GcIaM/ZqdNKZzUhqNQOffhqNwUBeiZ13ft/NzNX7cfvDd/hbJsYxYWBLRndLw2w1E/R6CXpDdeYIIcuc/swzqICiV1+l4r33Ee7w+TaffTZp990LiYlI1aGf9emkUqvxV58jIUT4txWDTqFAABEKhcehSkXA5Tr0eSrfhLz0baTNc5CC4fMl9Bak7lcR6Ho1JHWgVfbvCNSE/P4GzREH6+Sz29EYDPR+/ine2/Q+n+z+jHJveE1LsjGZsaeO5eIW55GQmI4cDEbO5cE6yX4/GoOBQc8+iwiFz09D54iD53II/8GF/GEjIBaddGYzar0+PA6rx0DNeQoFg+xds4p1v/zMzpXLIuM87ZR29Dj7fDoPHYaQZeTq75dUqsg4jFUnjV6PCIUY9OyzaAyGmHVCkpD9fga/+CJqnQ6f3d6osVczlwd9PpwV2+h7ngWPMx+9RhOTTgGXC0mlYsjkyYhQiFAgENFJQUHh5KFxieH/QkyZMoXOnTvTp08fABbddx8AS//7X/J++QWVRsPC225j5aRJAPx87bWsmzIFgG9Hj2bzhx8CMHv4cHbNmQPAzH79yJ0/H4Av+valxlH+blYWFVu2APCmzYazoAC/w8GbNht+hwNnQQFvVt/5rNiyhXezsgAoWrGC6Tk5tBoxgvxff2Vmv34A7Jozh9nVVdg3f/gh344eDcC6KVP4+dprAVg5aRILb7sNgMUPPcTihx5CpdGw6+uvWfX88zHp9NGpp1K0YgUqjYa548ZRVR2a01idPqpeMJv/668sfvjhcLti1AlgyX330Y3qRagTbmfri59Q9fMettz7KfmP/07BY0uo+HA79u/34l5ZRHC/B4ICSaeiomQbUmuJ+Ivb8fsX92C8MpGM+/owY3x3VJ3UqLN1TG2ZQsDpbJBOufPnM/OsUTiMXZnz9K+8c88ivnxxNavn5kUMDpPejc29ikvu6UlO/EL0q1+jy+AWrH/hcRY/9BDlLj83P/A2w19ZzPf7BbKAvjoHP945hCEfPIzjm88adJ7cbjevXHopr7z6Kkt276bSbseg1zOof39MkyYxfPBgtB5Pw3SqHnstgR8uuqjB5+m7x57gqTfeYcKG3XT5fT1jNu7ltbxSdqh1SELQyxrHyEU/81reJtaf3oUhE68h549fSNRq6tWp9u9JpdHw3aWX4i4ubvTYq63Tnm+/5btXpvLvLzdyxou/8d6yPNz+EK01Xq4r+pUF9wylw7yPWHr3nXXGXu05Yt748Th++IHdoy6kfMrrCLcbQ04OOyxmvEMGo2vZ8og6AXyUnU0cEDgKnXbNmcOcc8+l1YgRbP3kk7rnye9m76R/4H7iVJh6Fqr1n4YNjrQcNlf0ZoVvLJz/PD/f8zTr33qLViNG8P3llzd4jjhYp5czE3ll6YtMqHyO1za/Rbm3nHRDKgM/KODHS3/kQlVfPm3d4Yg6zR4+HJVGg6uwkO8vv/ywY+9Q56n2vHcmsGPGjJh0qpn3gh4P3116KUGPB2dBAW/Ex7N1ySI+vu9Wvnz+iYjBoSmr4or/PcOgoeey+ra7UKnVUfPe1k8+Yd3rr6PSaI5Kp+8vvxxXYSEqjSZmnfwOB28lJZExcCDu4uIGjz0hBFu/nsp3D5zOho13sejXfmzceQWX35vClm+fi1mnb0ePZusnn9BqxAjmnHtuRKfZZ52FgoLCycPfZk1HWWEhiWlpuEtK+KRHD8ZWX9TE6ukoz89neFYWv1VVoYWYPR3u4mJm9u3LP9avR6XVHpWnQw4E+LBTJ/6xdi3G5OSYPR1Bj4cPO3bkmk2bMMTHx+zp8FZU8HGXLozduhW1wdBonYQsCBX4qFqxj/Xf/0Gn1t0gUH/mdpWtOjVtphkpQYOhpQ1tipmAyxm54+fMz+fTvn0Zu2ULQogG6+R3+8jdWELBbjf7NpZRWRRdcdpg1pLdKZ6sDlZa98hApxf16lRZ5eS9Jft4Z0kuTl84zKtV0VYm3XERfU/NavB5Ks7LY+XataxesyaSiUrtcHDGiBH0GzoUrU4Xk1fAL8sMsdmYX1BAQkZGvedJMhhZXlbJL+UOfrF72OCM7otEjZqhViOaJ/7LA6+9RIv0tEaNvdp3ZoNuNx927Mg/N29GZ7XGpNPG8gCvzd3M/O0VkTb2axXPLcM6MLClBWS5QXdm/Rs3sv+JJ/Fv3hx+Ly2N5DvvIP6ii8KeuEbcbS7Py2NYdja/VVaik6SYPR3esjI+Pe00rl67Fo3BEO6zgo1Iq95DvXEWeGvS3eqQO12I3GscmlMGhfWrNe8F3W4+6dGDK1euxJCY2KjzVCm5+XjrdGZumYknFB4LLeOyuKHnRM5vfR7C7Wv0HXQhy3zYqRNXrVqFKT09Zq+A1+fjTJuNeSUl2JKTY/YK+J1OPurUiSvWrGbbiiWs+m4OjrLScNdqtXQZOoyeI0ZhTUg8rFfAU1bG9Jwcxm7dikqni9nT4SosZEbv3ozdsgVJpYrZ0+EqKODTvn3556ZNIEn1nqeA201QXUx52RIqypdS5fwTv/9ACmkACQ271jsZfsFLtMgcGbOnI+j18kn37uFxmJSEWqultKCAlBYtlDUdCgonCX8bo6Nm0pKDQYpWrCCtT5+w0REjTbV4rqna05SyTrScQKEL15/FeNYUE7L7o9/UqNCmx6FNr6l9EV6DoTIeWX5D2yOEoKLQHVkAXrC9klAtY0dSQWKyirZ9W9IqJ5mUbAvSYQrE+YIhpi/dx5RfdlBWvX6gS6aV+85uT4eKXaT37dug/tm/fz+LFy9mw4YNkUxU6enpDBwwgCSnk4x+/Y7JmC7xB1hQ5mB+uZ1fyx1UBUOR9ySguyWOYUkWhiVa6W6NQwqFTuj4EULw67YS3vx1J0t3lUf2n3NqKjed2Y5eLRMaLMufm0vxCy/i+Omn8A6DnuQbJ5I0/jpUMWbQa/K5o1cPVDt/hhXvhBeI1xDfCk4bDz2vAdOhFzDH0s8FzgLe3fAuX27/Er8cHtMdEzpymeEMRp9xA1rdkdciNWV76qOp+tleXMQfH0xj56a1+KrD6YwWKz1GjKTHiAuIszZs/c6JnlcbIkcIgcu1nYrKZVRWLqeiYhmBQFnU5yRJh83Wg/j4viTE90MtteWMxPRj8l+oLCRXUDi5+NsZHU3FCc9Ac5IRrPLhWVOCe3UxgUJXZL9k0KDtZOXJx2/niW9nYG2VUqewXlPg8wTJ21LOvo3l7NtYFk5nWwtzQjidbcvOiWR1SkAfd+RsUiFZ8OXqfF6auy2SGalNsol7zunA+V0zUB3GUKlBCMHu3bv5448/2LnzwOLftm3bcvrpp9OmTZsmS8daM6YXVlayDQ0LyuzML7Oz7iBvRoJGzRnVmabOSLSSrGseS8OCIZnvNxTyxsKdbN5fvbZFJXFJzxZMHHoK7VItDZYVstspffMtKj76CBEIgEpF/JgxpNx2K5qUlKNqZ5PNHfYCWPUB/PkBOPaH90kqaD8C+kyAtg1Pd9tQdlftZtr6aXy/63uCIuyt65HSgxu63cDgFoOPWaHGWDjafi7Zu5uV337Jlj9+Qw6FdU3IaEHvCy6m89Czjsqwai4IIeN0baOyYhkVlcuprFxOIFAedYxKpcdm7Ul8Qj8S4vtitfZArT5gcCvZqxQUFBpK87haOI747HbezcpifF4e+mYwiTVle5pK1vGSI3uDeDaU4V5dhG9X1YGie2oJY6dE4nqmYuiUiOv/2Tvv8Kiqp49/tqb3hHQSem/SCQLSRQUUEZHe7ApW9GdBfa0odgWkI1WlKEjvLXRCC4ROQnrdzW6273n/2GQhEkKy2UCUfJ+Hh83u3bkzc869e+fMnPkWaNg9dBuyQNcKBRw36qP09CpsZ5tDYnx2ie1sw+r7UrOxPzUbB+AX6m5/oDKo1Uz3DrilXUIINsWn89XGBM5n2DZCBnu7MLFHfQa3iUBRSOxXmn8sFgtnzpxh7969pKbaHiiLOlHFxMQQGhpaZj+XBSarYG2Ohtx3P6P98avkWYqXsTX3cqOHv40FvJW3O7JSHi7v9DzUmyz8ceQav+y6RGKObSXaXSljaLuajOtciwCpibkR4USWQR9hMpG7/DeyfvwRS14eAB6dOlFj8mQkoSHMutv3DiHs7W7F2XVI7O1ug25od1uzXCLL4uezOWeZdWIWm69uRhReqB1CO/B086dpE9wGiURS5e4/jkAIwdUTxzi8dhVXTxyzvy/NyePB9/6PBp27InEwkKsK/hHCikZzlty8A2Rn7iUzcSsy7+L2SKWu+Pjch59vO3z9OuDj3RyptPIDrKr221yNalTD+bjngg6FhwdPxMZWGcZTZ+rjLFmVKUdYrOjP51FwNB1dfA7cwMKtjPbGvVUN3JsFIi1DJqG8MFkVtJu3jZ2/J3LtbC66/OLtbH2D3anZxMaZEVbPF4WyZOK80vwTezGbLzacJS4pDwAfNwXPd6vDqE7RNxH7lSTHaDQSFxfHvn37yCt86FUoFLZOVB074ud3c2lQRcZLb7GyPC2HHxLTuaY3Qfe+6C1WfOUyuvp70d3fm+4BXgQpyz4ed2oeqnQmFu2/yry9l8nS2Ep8/NwVjImpxciOUfi620jGrBblbfURQqDZsYOMqV9ivHwZAGWdOgRPfhOP+20r+FaL5e7dO3S5ELcUDs+BbFuDBwlgCmyJ7P4XkDYZCHLHSNVK83NcRhyzTs5i17XrLOUPRD7AhGYTaBbUrMxynKVPZcFiNnF27y4Or11FVuIVACQSKfU6xND6wf64mK34NWzocMABd8c/QljIz4+3lUrlHSAv7xBms9r+ucxbilTqhq9vm8Igoz3eXs2QSu88QV9V+22uRjWq4XxUl1c5iOryqrJDCIExKZ+CYxnoTmQWY/qWB7nZAo2WNZD7l1wj76ivLRYr6ZfU9r0ZmYn5xT5XuMqIaOBnL5vyDnRzzEDg5DUVUzeeZfd52wZTN4WMsZ2jebpLnRI5H/4JrVbLoUOHOHDgADqdrZzJ3d2d9u3b07ZtW9zd3R3WrcTzWSwsTsnm58RM0oy24CtQLkO34BfmfvQeMSFByMtQ/nU3kK7WM3fPZRYfSLRvyA/3dWPC/bV4om0k7uUs99KfOUP6F1Mp2L8fAJm/P0EvvYjv4MFIKrjPqiSUaz4nH7UFGidXgLmwzE3pBS2etO3XCG7sdP2EEOxP3c+sk7M4lGbrgCSVSOkT3YfxzcZT389xNu07ibL4Wa/RcHzLeo5tWIM211ZWpHBxpVn33tzXrz8+NUJK/F5VhdVqRqOJJzd3f2G51CEsluJtZ2UyD3x9WuPr1wE/33Z4eTVFKnV8kae6vKoa1ahGWXHPZToMajUzfHx4VqWqEilcZ+rjLFnOklNwNZPdT71B8wHPYcm5viFc6qnAvUUQ7q1qoAj3dGoduDpbR1K8bW/GtbM5GPWWYp+LzPO0fOJ+at8XSnBtH2Sy8q9c3uifZIOUaZvP8fcJWwmUXCrhqfY1ebF7XWp4lb7R2KBW81NUFPXmzeP4qVOYzYV1435+dOzYkZYtW6JU3n7FsTzjlW+2MC85i5lJmWSbbOcLc1HwQs0aDPBU0GvOj7T++pMKBRyVNQ8vZ2n5ZddFVhxJxlhY/lU/2JPnutXh4eZh9rK1supjSs8g8/vvUK1cBUIgUSjwHz2KgKefRuZ18/6PO3bvMBbA6ZW2jeEpR6+/H9wU2o6DZoPBxcumj0TiND8/k5dHrOoos07O4mTWSQDkUjn96/RnbNOxRHlHlUlOVbn/lAZVRhpH1v3JqW2bMRls3ZU8/fxp9WB/mvfoi+sN5HRVza4b5Sg83cjPP2ULMHL3k6c6WkKQ4Ymvb1t7JsPLswlSqfwf+jg/s1xeVLXf5mpUoxrOxz0TdBSRA0rlckaeP29jFK4C5IAIwdikJOSurhUmB1R6ejLy3Dk7qZ+jLXOVnp4Mj49H7uZmt6+sNpnVOjRH0jCeUWFMzKfJ/eOw5BiRKKS4NPDBs20Y8poeCKvZKeSAViEl7WoBV46ncy1BdVM7Wxd3OTUb+xHVNJCgcDkyax28IyMxajRIJThEOgfw0JlLTNl4id+PJmMRIJHAI01q8NqDjQn3lBcjNivJpqTLl4k9eJD8SZM4EhcHQGhoKB3atKFxkyYoCom/LBLJbdthyt3cGJuUhLBaEVZrieNU4ObOL4kZzEnOQl34wF7TRc7E6FAGBXohNRoxWq0VIgcsup5umocOtswtmodnc03MXHOE9SfT7Nt+Wkd483yP+nStG4BFV4BCJr1lK1aZiwsjEhJs15bRiFmdj/q35WTPmo0ozCp59ulD4Esv4la3biE5oP6mFp8SqZRRFy6g9PR02KbSyAFNSSdQnvkNEbcISWG7WyFTYq3/ELKOz2ENvQ+zwYDSxXaPkEgkjE1KsutQ3nEquu8JmZTIQ78ydNsoLqhtzQpcpC48VvdRxjYfh7/wRH4bwkODWo3C3Z0xiYm2eSiEQ22ArUYjSk9PRl28aF+McCY5YHriFY5tWMP5A3vtHeACwiNp88hjNLq/G+YCHYp/3PcUHh4Mj49H4eFRjBywvER6MqXSPg8dtUmqkJCvOU7vI/9H/MWXyFMdwWotfs+Ty73x9myFn39H/P07oBQRKD297eMkQYoQAmG1MiYxEYW7u8PkgBaj0Xa/ACwGA6aCAodb5sqUSsYmJSGRSKrJAatRjf8o7jlywH3vvEPct9+CRFIlyAF/bdIEpbc3Sdu2VZgcEImEg//3fxz+/HOHbLITSkkkLG/fntyEhDLZlHPqDOu7PknWgtOkfXYYzcZrGBPzEQiyM07j90R9CpqksvWnCbg28Ofs4l8dIgcE2DhqFAe+mc3xrUkseG4pc9/Yy9ofjnNqVxp56TokEpCpLtKgkYXH32oDvw2jWRMNDTqEsqxJHQrS0kAicZjw8PSGLYwb+388tOgsy47YAo4eDWvwfUQmD/z6LlEBHre0ae///sfa995j4cKFzFmwgPgzZxBC4J2fT0d3d55++mku/e9/JCxaVLZxKpp7CQkovb2Z6ed3k01XEq8x5PX3aBMbzzeJGagtVuq5u/Cxwsj4J/sxLCyA9O3bHSYHLJH4SyJhzxtvcOLnn8s/9wptyjlzhj0Xs3n0wxUMmL6fdYUBxwN1/VnwWB26vNSFHo2CUZ1LuD2R3p9/smn4cIQQnJ08mYSuXcn6/geETofezY2opUtI9vNlb+F1cysys81jxnBu+XKQSByyqSRywJm+PpiP/oZldj+U87rC/p+Q6FWo8wT0/JCMLguZ/9oWqNn+pnvEqt69UXp7c+bX8l1PRTaZLCY+eXcADy/vw5TTX3BBfRE3oWRc03E8P1fG4Gv1CfEIKTvpXGoqEomEmX5+DhMeruzZEyQSrvz9N38//nj55x43kwOeX7KEC4f2M+Opx1j+wWTO7d+DEILg8JoMeuf/MP+2hgBXT2RyRcn3co2GRY0bYywPgWhJ9/Jff2X7c8+BRFJmmw59/jG5eYfY+l1v9m7ozc5drTh+djQpefPIyd2D1apDanUnKLAXqhVyIk1v0+X+wxztvwmX1KZ4ezdjXmRUyeSAfn5IJBI0qamO27RwIVuHDwcgftasCpEDnvn1V5Te3qzq3buaHLAa1fiP4p7Z01FEDqjNyGB2cDDPqlTIFIq7Tg6oTU9nbkQET2dnI1MqK5TpsBiNzPDxYUJGBu5BQQ5nOkwFBczw8eHpnBzc/PxKtElYrGjPpGNK0KA7mYUwXC9jkge74dEmFGmUnNlRITyrUiF3c3PIJrmrKxlXU3i22xM89/7PpJxTo8ktzt3h6edCRH1vajYNpGaTQCRWQ4mrzfnXrjE3MpJnVbZV5PKMk1qlYdHxTGbuukS+3pbtuC/cizd61qFjo/BSbbKazSRcusSe3btJz7ARa0kkEhrVq0fSq6/yTFwcrn5+5R6notVmq8XCL/7+jE1KwjMsDCQSrmbnMiungMWp2egLu3I18XDlxWBvBtQMBYvFIXLAsqxiWgyG4vOwHDYJqYy1hy4x60AKp1JsGQGZBPq3DGds62Ca1gkp9wp6QXY2f0RGEtO7N8aztkBaER5OwMsv49GzB8pC+263MqtJS2NOaCjPqlRIZTKHMx05167xZKOarPljCsqTS5Bo0gAQSJDU74P1vjGYQtrj4utX6mqzLiuLOWFhTMjMROHmVuZx0uTnsurKXyxMWESa1nZuF42ZkS3GMqLlGPw8HSPSE1YrM/38bPMwPNzhTIfVYmGGjw/jUlLwDA11OCugyc/n2Q6t6fFgT9QZ6QBIZXIade5K8wd6E1KvQZmI9Az5+cz09eWZvDxcvLwcznQUZGUxKyjI9tvj4lKiTcYCFer846gL4sjNjkWtOY7VWrx9t1zmS/b2a7Qa9hG+vu3w8mmMXOlSbnJATXIycyMjeSY3F4lU6nCmQ52dTfewMHZkZODu4eFwpsOk0zErKIhxKSm4BQZWkwNWoxr/QdwzQUfRTevGcpqK7CVw1uY5Z+njTFmlyTGlayk4mkFBXCYW1fUfQ5mvC+4ta+DeKghFsIdT9MlO1hC3OZFzh9KxWv7RzraeDzWbBBDZ2B//UI8yyXdEH6PZyrJDiXy/9QJZGpu9DUO8eKVLTXq1rIm0lG42RqORY8eOERsbW6wTVevWrenQoQM+hdkIZ45Xot7Ij4kZLEvNwVR4ad/n7c6kqGB6BXiXep67OacNZgurjiYzc9clLmfZyjVcFVIGtwjh6e71ifR3rKON8coV0r/8Ck3hSr3U05PAZ5/Bb8QIpC7lawPqlOtLlYxp/TtI4lde3zfjHni93a1f6fsmKqKPxqhhecJyFsYvJEdv2zQd6BbIqMajGBDWF1+/4Eq7b9xpORePHGTL7J/R5NgaO7h4eNCi54O06vsInv4Bd1yfW8mxWHSoVMfsZHxqdRxWa/FFFYUiAD+/9nYyPnf3Opg02irhZ6jc+0b1RvJqVOO/hXtmT4cdQmC8YbXnrsOZ+jhL1j/kWNQGCoqI+1JvJO6T4d7MtiFcGe19Myu3A/oIIbh2Npe4zYkkxl8nqcrLS6LjQ62p0yqUsPq3bmdbHrtKg9Uq+Ot4CtM2J5CUY6uZrunvzmu96/Nw0xAK0lK5lQStVsvBgwc5ePBgqZ2ohNXqtPE6k5XDnGu5rMzIpSg+6+TryStRwXT2c+5m/bLoU1a78vUmlhxIZM6ey2Tk24I6HzcFozpGMbJDTVzU2Xj6lr+rmCUvj6zp08lZvATMZhu53xODCXrpJeQB5XvotKMi15fFBAdmwo7PUBg1IJVgCW+HrMMz0OgRkDvAg1BGffL0eSw+u5jFZxaTb7R1cAvzCGNs07EMrDcQpUSBJiUFfIVT7xt3Q44mJ5vt83/h3IG9AGi1OnqNe4bWDz6C0tXB7nROtEuXl47GGEee6hC5eQdRq48jRPHW3UplEH6+7e1kfO7udYpdv868b/xnfwurUY1qVEncc0GHUaOxl9hUhQ4ZztTHWbKMGg0L69Rn+LZ4jGfzMVzIK0bc59rARtzn1tAfiaKUlf5y6GOxWLlwOINjmxPJvmbbPCiRQO1WNWjQyZ/HmvVg4i8VW0kriz5CCLadzeDLjQmcTbM9oAV5ufBy97oMaVsTpVxqI7EqQU5OTg6xsbEcO3bM3onK39/f3olKoSjeIcYZ43Vao+ObC9dYm51vZ59+wN+LSVHBtPf1vM23KwdlsSsz38D8fZdZGHvVXq4W4u3K+PtrMbRdTTxcCrvrlNM/wmgkd+lSMn+ejrWwjM4tphNbFi1ixKuvIq/k+VMiEvfD2lch4zQAltDWDP9gJ7MSVlTqfM4syGRh/EKWJyxHV9huN9o7mvHNxtOvdj8UhW1SbzWfna1PZcqxWi0c37yePUsXYNTpkEilNO/Vj7eefpFXl6xyPOBwUJ8imM1aVKoj5OYdICdrH2rVcSTy4g/ULi4h9iyGn1973NyiS10kuJt+rkxUNX2qUY1qOB/3XHmVs/Bf5OkQFoH+Qi4FRzPQx2cjTDcQ90XZiPvcmgUi83Bee0WDzkz87hRObE9Ck2tb6ZYrpTSKCaNF90h8gtzumK8PXs5h6oazHL6aC4CXq5xnu9ZhTEx0qdwPycnJ7Nu3j/j4eHtHnLCwMDp37kzDhg1LLcFyFEfVWr69ks6m7OtEXw8G+jAxKpiW3o5xetwJPydmF/DL7ov8dvgaxkJiyDpBHjzbtQ4DWoajlDvmKyEEmq1bSf/yS0xXEwFwqVePGpMn49k5xmn6lwvabNjyPhyzNQbAzQ96fYSmTn/u9/WrND8na5KZd2oeq86vwlhYqtPQvyHjm42nZ82eyKQOZAmrMDKvXmbzLz+SesG2Xyekbn16TXgRd//AO36PNpvzycs7bCfjy88/hRDF23a7uITi59fels3wbY+bW807m4l0Mqp5OqpRjWqUFfdcpsNqsZB79ix+DRsild39H19n6uOILCEEpmsaCo5lUHAiE6vmeqpfFuiKR6tg3FsGIQ8o/0phafrk5+g5vi2J+D0pmAq5NNy9lTTvHkGT+8NxdWJgczt94lPUfLnxLNsTMgFwkUsZHRPNc13r2Fmt/ykn58wZcpRKYmNjuVzIYA1Qt25dYmJiiI4ufbWyNH1KQ2yehm+vpLMz15aFkQKPBPkw2qKlfeOaVXZOx6eombHzImtPpFC4r52Wkb48160OvRoFIy2BF6Ss/tGdPk3G519QUNhVSRYYSNDLL+E7aBASmcxp11iZ5VitcGwhbPnAxiQOtj0bPT4AjwBQq2/93Qroc1l1mdknZ7Pu0jrMwpY9ahnUkgnNJ3B/+P23nI933D9OkmPS64ldsZTDa1chrFaUbm50HjqKFr0eRCqVoakkPxfTwaRGpTpsJ+PLzz8NWIsd4+oagZ9vO3x82iHJ9ie4cVdkFSCdrGrj5SxUNX2qUY1qOB/3XNBh0mr5rWNHxl67ViVSuM7UpzyyzDl6W6ARl4E583qfd6mHApdGPmx8aziPHdmGa2ErRWfpk5mYz7HNiVw4koEofPr0C/WgVa9I6rcNQVZKuVZF8U99rmZr+XrzOf46noIQIJNKGNI2kpe71yPEp2RiP4vFQtzhw6xfuBBzUBAAUqmUpk2b0qlTJ0JCys5gXNbxEkKwMzefb6+ks19l21Mjl8Djwf68FFWDCLORuREtuK+KzekxSUnEZZuZvuMiO89l2j/vWj+I57rVoX0t/1IDs9v5x5SWRuY336L66y8buZ+LC/5jRhMwfgIyT48yyymvXaXKST0Bf78K12wBEMHN4OGvIbKdw+e9nT4xp7ax4NJSNl/djCisg+wQ2oGnmz9Nm+A2tw1+76h/nCTnctwRtsz+GXWmrStVvfadeGD003j5B5Z4fEVwoz5SNyt5eYcKyfgOkK+J53rtqQ1ubjXx9bXtx7BlMsKBwjK2RhGMvXYN2b/Ez3cSVU2falSjGs7HPVNeVdQyt6zt++5Uy9yytCR0pG1pSTZhkmA4q0J7JBVT0g0bwhVSXBsHoGzohXvjIGQuygoRHv7TJoWHB1eOZxC3JYmUC9dXH8Mb+NG8WygR9bxQet66bWleejo9QkLYqVLhIpc71Ab4xtaRWVoT32yI5/e4NMyFgc/DzUN5tWc9wl1FiTYVqFScOn+e2H37UBWuoCoUClo1b06n++/Hy93daeNUZJNRo2GrxsB317KJyy8AQCmRMCTQixejQ4jydHfqODmrZa5UoWRDXCK/7Esi7pptX4VUAg81D2N8u1Ca1gwoVyvWf9pk1WjImDkT1aLFiMLzez/yCIEvv4TE1/eOXU/F5p4wINs9FXFwJhJhBaUn5k6vI+30HFKl600tc3tERrIrLw+lROLwPeJYymHmnv+V3cm77ddU1/AujGs4mlYRbStuUzlb5t6J+54qPY1di+Zy7uA+ADz9A+k5/jmiGje/ySa9wcADPj5syczEJ9CxNsAojeSpD5OdsYf8gjg0mrPcHGRE4+vTFm/3lgSGdEUpD7qzc+8uj5OzWuaWZFN1y9xqVOO/hXuOHHDvW2+xefRorGZzlSAHXNioEamxsVzdtKnC5IBWs5l1Q4Zw6JNPrtv0488UnMzi7GtLSPv8MHmrL2BK0iIQuNT15cyx+Zg7aAgY2pDfHmlPxtEjWM1mZoeGkn3qlEM2FRFKXVq/iQV9n2PpRwdYN+M0KRfUSKQSavjnE5g8n4GvtCJv+xI2jxl9S5ugODmgw4SHwE+16/P2t6vp8uV2lh5NxWwV3F/bj2HzXmbaw3UJMqpuskmj0bB2yRK+/vJLNmzYgEqtRqbX07ZePfpHR5P/6af4+vo6RKR36JNPSI2NZdPIkcVsOrVwIX9m5NLhrx2MOZNEXH4BCqOBoRYtBzo2omHfLihPHrfPvexTp0iNjXV4nG4k/qoIOeCWl17mq//7hV7f7OT5304Rd02FUi4lJvMEM2tm8MPQVpwd/miZifSsZjMzfHzIT0y025S1eDEX+vYlb/YchF6PolFDjmRmEP7lVHKuXSvRpgsrVrC8fXusZrPjhIfAppEj2fPGG1jN5utzTwgODW+L+LYlHJiORFjRBnSCFw+xYPg00o8cK2YTFCcHLO84LWvfntiUWIYve5QxO55md/JuJEJCsyturOi/grEn6pDyytSy2zRqFMe//57U2FjWPvqow4SHReOUtHWrw3Ov6L5nNZvZP2UKax991D5OG0eN5Pjm9cyb9AznDu5DIpES7OFLfRdf6rRuXyo54IWlS8ts04ImkVyOm0PCuQ/Y8lsT9uxrz6lTL5CasRSN5gwg0F81Eh42lCjv17g4JptOHbfipxrAxs6v4+oaeksivfh581jRvTtWs7lChIdrH32U/VOmYDWbHRqnG+8RSVu3kp+YWCXIAePnzSM1NpaVPXpUkwNWoxr/UdxzmY6CzEyWtGzJyLNnkcrldz3TUZCRwfJ27Rh28iRShaJCq2NWk4mFDRvyVFwcsnwlmsMp6ONzEfrrGxkVoR64NPHFvVUwygCPElfHzDodCxs0YHh8PK6+vuW2SZOdz/ljKo5vTUSXb6stV7jKaNg+iFZ9auPuKS3Xil9FMx0mmZJfD13j523nUReSGLYM92Lyg43oUCewRJuyMjPZu3s3J+Pji3Wi6tShA/VCQ/mjY0eeOnECuYuLw6uYJq2WJS1b8uSRI7j4+iIUSv5ISuPH1Fwu6mwbgD1lUsaGBzLa350QL88SVzGF1cripk0ZcuAAHqGhdzzToTWY+eNkJrN2XSRNbWsG4GIsYNT9dZnQszG+UrNDK7PmggIWNmjAiDNnMJ0+Tfpnn2M8f97mw/Bwgt98E48e3TEXFJS6MqvLyWFx06aMTEhA5uLi8GqzNj2dpffdx8izZ5FIpUjVicg2vwWXdtguLv/amLp/jKxhn9uSA5Y30yH39GDH1W38cmIWp3PjbfpJ5DQ4pOXD13+ndmBdh1fQzQUFtnl4+DCu/v4Or6AjBL82bsyTBw/iERbm8Aq6sFpZ2LAhQ48cwSMkhLSL59k2d4Z9o3iN6Nr0fuZlAsIibmlTWTMdJmseWak7UBfEoVIfRqs9f9NviLtrbdLWnKPtM9MIDL4ficnNoayALjubxc2aMTIhAalS6XCmQ5uWxtLWra/PQwczHdqUFJa1a8eI+HiQSO56psOs17OkRQvbPAwIqM50VKMa/0HcM0HHvdC9ypRRUEjcl4El7wbiPh9lIXFfDRQhjpGslQXqLB3HtyYRvy8Vc+HDvYevCy26R9L4/jBc3BzbQuSor00WK78dTuK7LeftHBD1gz15vXcDejUumQgtOTmZvXv3Eh8fb38vPDycmJiYSutEZbBaWZ6aww+JGSTpbcGGr1zGhIggxkUE4qu4M1uvyuvnHK2R+fuusGDfFVQ6WwOCIC8XxneuxVPta+LlWvFmAIZLl8iY+iWaHTsAkHp5Efj88/gNewqp8uZN/ncEJh3s/hr2fgsWI8hc4P7XIGYiKEreC3QjyuNni9XCpqubmHVyFudzbQ/ELjIXBtUbxJimYwjxKPseon8bTEYDB1Yu59BfK7BaLChc3eg8ZDgt+zxcpo3GJfnZYEgnN/eAvbtUQcGlm77n6dEAX792+Pl2wNe3LUqlg7wu9wiqu1dVoxrVKCvuuY3kVrOZpK1biezRw5bp+JfrY1EbKTieSUFcBqZkjf19iYsMt2aBuLeqgUstn5uJ+5yoU/plNcc2J3LpWAZFIWxAhCctu4fjojpFVPewO+prq1Ww9mQqX29K4Eq2bS9EuK8br/Sow33ZZ4huEFicbEsILly4wN69e7ly5Yr9/Xr16hETE0NUVFSx4501hzQGIz/t2s8yd39SjbZsSqBCzrORQYwOD8RTXrYOLnd6Tl/LLWD27sssO5SIvrCtcq1AD57uUptHW4WjlAiStm7FowL6mHNzyfzhB/KWLbd1g5LJ8Bs6lMAXnkfu51cuWc7yj9VsJvOPL6mRthRJ3lXbm3V7Qr8vwb+2w3JLgsliYs2lNcw5OYfEfFsLYA+FB0MaDGFE4xEEugViNZu5unGjU+xyln+cJefwwnmcOLYfVYZto3idNu3pPuZZvAODyiXLJ0hGVvbfJCWfIDfvIDrdlX8cIcHTs2EhGV87fH3aolT6V5pd/0U5zkJV06ca1aiG83HPZTqMGg3L27dnyIEDtjSzg3DW6o4j+lgNFnTx2RQcTS9O3CeFrJTj1H5+AF6twpAoHGs7WBadhFVw5WQWxzYnknpBZX+/ZmN/WvaqSURDP0xa7R31tRCCnecymbohgfhU22bvAA8lL3avy1PtayLR64rpY7FYOHXqFHv37iUjIwOwdaJq1qwZnTp1Ijg4uMTzVHQO5ZstzE/OYkZiBtlmW0Yo1EXBCzVr8FRoAO6y8mVT7tScTkjLZ+bOi/x5PAVL4Qb8ZuE+PNetDn2ahCArDGwroo/VaCR30WKypk/Hmm9rC+x+//2EvP0WLrUde7B3in9U17CufR3p+fW2v73Doe/nNjbx8rJml+JnvVnPivMrmH96PmnaNAB8XHwY3mg4QxsOxcflejc5Z417VZJToMpj29wZJOzfA4CnfwDdxzxDvXadyixDCEF29nYuXPwerfbkPz6V4uXVqLC7VHt8fduiUJTeoa8q+acqyqnM38LqTEc1qvHfwj0XdDgLd7q8SlgEhgu5FBzLQHf6H8R9Nb1sxH3Ng5xK3FcSzEYLCQfSiNuSRF66LYsglUmo3zaYFj1rEhjhfBbssvj6yNVcpm44y4HLOQB4ush5ukttxnauhadL8VUzg8HA0aNHiY2NRV3YiUqpVNK6dWs6dOiATwXaBJeGXJOZOdeymH0tk7zCYKOmq5KXo4IZHOKHSyWUbpUHt/Lz4Ss5zNh5kS1nMuzvxdQN4LmudYmpG+AUYjMhBPkbN5ExbRqmpCQAXBo1Injym3h06FBh+Q7DYoL9P8OOL8CkBYkMOj4PXd8CF8fmekl+1hg1LE9YzsL4heTobXM40C2Q0U1GM7j+YNwVjhE+/lsgrFZO7djCrkVz0Ws1IJHQqu/DxDwxAhf3stkuhJXMzM1cufIT+Rob+7vVIvDyakJAYCf8fNvj49MGhaL64dWZqC6vqkY1qlFW3HM5TIvJxKXVq6k9cCAyReU+oFdUHyEEpuRC4r7jxYn75AGuuLeqgXvLGsgD3eyyzv/+e4VtK0knncbIqZ3JnNxxDV2+TQ+lm5ymXcJo1i0STz+XctnmLCSk5fPlxgS2nLGVYSjlUkZ2iOL5B+ri71G85l+Vm8umxYu5qNGgL9zc6OnpSfv27WnTpg1ubmUjQCyvXZlGE78kZTIvOQuNxRYs1nV34aWIQJrv20H9NvWQVSDgqAw/CyHYnpDB9B0XOXTFRnAnkcCDTUN4tmsdmkf4Ok0f3YkTpH/+BbqjRwGQBwURNGkSng/14/KaNdRu3drp87lMuLoP1r4KmWcAEJEdSFT2JeKBF53m5zx9HovPLmbxmcXkG22ZnTCPMMY2HcvAegNxkd18XRXBWeN+t+VkX0ti86wfST5rCxSComrRsE5jWg8bWyY5QljIyFjP5Ss/odWeA0Amc6dG4GCeuf8j1l+Jq9DD8N32T1WX4yxUNX2qUY1qOB/3XNBhNRo5+vXXRPfrVyVubCXpY87RU3A8g4JjGZgzbiDuc5fj1iII91Y1UEZ63bTC7CzbbpSTn2Pi+NYkzsSmYinMrnj5u9KiRySNYkJRut56ClWmr5NyCvhmyzlWHUtGCBsPxODWkUzsWY8w3+LBQ1ZWFrGxscTFxWGx2DIMAQEBdOrUiebNm6Mop25ltSvVYGR6Yia/pmShKyxHauzhyqToEB4K8sFaUMDKr7+mrhPHq6J+FlIZa05lMP9AHAnptodgpUzKY/eF83SX2tQOuv3qfln1MaWkkPH1N6jXrgVA4upKwLhxBIwdg9TDA5NW6/T5XCY5mkzY/D4cX2L72z0Aev0f5nr92d+rN4899nTF/ewj5/uTP7L6ymp0Zts1Hu0dzfhm4+lXux8K6e3lV8b1fiflmI1GDqz+nYOrf8dqMSN3cSFm8DCade3J6j59aDV8ZKlyrFYz6RlruXLlZwoKLgIgk3kSGTGSyMgxGPVyNLlTHLbHUbvuNTnOQlXTpxrVqIbzcc+UV1V1ckBzvh7tsTQM8SqMV64T6CGX4FLfF8+2ocij3AFxRwilEk+kcGpvFpdPZNn3jATV9KJp5yAadIpEKpXcMcLDG1vm5uutTN+byNLD1zBZbIo92DSElztHUj/cr5hNKWlp7N65k4Tz19tgRkREEBMTQ62wMFy8vCqFzOySKp+fr2XxW6YaY+Hl1crLnZfD/Ojp54misC1xVSL+Mup0LDqczKe/7cPqY9vL4qGUMbR1GBMeqE+Ai8RpZGaYTOTOm0/O/PkIgwEkErz69SPo1VdwCQ+/K6RzZoMBLGbk8csRWz5Eos8DJFhbjsDa7R3kviFOGScLVj7f9TG/XfwDFLbsVkO/hoxvNo77/dvj7uN3VwlE79Tcu3LsMDsWzyM3NRmAWq3a0G3kBLx8fG9rk9VsIEu1kctXfkKvt5XiyWXehIeNICp6HJgUTiMHrKpEr9XkgNWoRjX+jbjnyAH3TJ7MX488gsVovOvkgGn7D7Kh9wgu/d86Uj89SP66JIxX1AgEebnn8Xu8HnmR59iz+DXcGgVwcsb0UsmXLEYjq3r35uDHHztk08JGjTn6x37++PwQa34+y+XjtoDDejWW3iMi6P9CfTZ3rYW5QFsm4q8rGzawsH59LEajw4SHYCMHbKx058edV+j61Q4WHkjCZBHUVyfydUQW04e35sTQAVxavRqr1crcAQOY+d13zJ492x5w1K9fH99ly2ianEz9OnWY6evrOJFeu3acmj2bC3/8Ucym2eOf5uUzV+l85DyLMlQYhaBJXhaTt/7Jutb18PjqM2LfeQewkWQd/PhjTs2ezcYRIxwmPJwbEUHWyZOcmj3bYXLA+A1b6P/yTD7eeBGrTzAeRg1v9GnAnPBkmvz8BsHeruUiM7MYjfzRpQtx331XzCZhNrPj/vu50KMn2TNnIgwGpHXrEP3H72xcvoycxMRi15PFaGSGjw/qK1cqRHh44Y8/WNS8ORaj8ZZzL/6zSWg/bgprX0Giz0Nj8Ydxm9m2Vsfhb2cAsHHECDaNGIHFaHRonC6dPMD4TeP5LXElKKQ09WlMn6+v8GvX2XRSNGWWr3+Zbbq0ejUrevTg1OzZnJ4713HCw1GjiPvuO07Nns2agQMrRA6ovnKF4z/+WOo4FahVrP74fVZ99TG5qcm4urnjnZjOo5OnkL13Hyt79sRiNLJlwgTWDBxYzCar1UDs/DHs2tqRM2ffsgUcRiV1ar+OaWkLsharUSh8KkQOWNK9XJ+dzQwfH/TZ2Q4THgKcnjuXZe3aYTEaK0QOuGbgQLZMmIDFaKwwOeDxH39EfeVKlSAHPD13Lqdmz2bFXSIHtFgs6PX66n/V/6r/lfOfyWSirPmLey7TocvOZv2QITzy559IpNI7numwmMzozmVgOqel4EQmQneduE8W5IpnmxBcmvghcZOUe3VMWCz8NWAAD/32G67+/mW2SUgUnDuUybFNV8nPKeT3sJpp0CGE+x6sg4eHxaHVMYNKxdrHHqP/X38hVSodWvFDoWT6xpN8veE0wt32w9gszJvJDzaifZib3Sa9Wk38+fPE7t9PZmYmYOtE1bRRI2I6dyY4NBRtaiobR43ikVWrsFocs8lqNqPPzmbjyJE8uHw5MoWC80LKt5dTWZOltjcS6+rjziu1w2jjprjlip9Zp2P90KH0WbQIpbe3w6uYAOsGD6b3/Pm4BweXy6aLGsGzvx7mao4OF7kU2YYZbF31M6GR4Q6vzAqzufg81GrRHTpE1rSvMRQGgcqoKPxfegnvPr1t9pWUFdDr+at/fx5ZvRqFp6fDK7P6vDz+HjTINg8ViuI2FeSiiJ2GODQbibCC0gtLl8mI+8Ygd/cstjJbkJnJhqee4pHCB6LyjNOppKO8duAtUrSpeMjc0U07w+7tibhIpQ6vNhtyc9k4YgQPLluGTKl0eAXdotfb5uGvv+Li6+vwCrpEImHtoEH0WbAA95CQ4vc9s5mTWzaw948l6PPVIJHQolc/YgY/hUwqK7aCDrYH676LF+NeowaGAhWpab9xLXU+BoOto5dSGUhE6GjCQp7AxSPAYXLAsmQFTAUFrBkwgEf+/BOFu7vDWQF9bi5/P/44/f/6C4lc7nCmoyAjgw3Dhl2fhw5mOgrS0tg4ahQPr1iBEOKuZzosRiPrn3zSNg/9/O5opkOj0XDt2rUyPzhVoxrVKA53d3dCQ0NR3oY/654JOu529ypTRoFtQ3hcBpbc68R9Uu/rxH3K0Moj7isJBWojJ3dc4+TOaxi0Np4IFw85zbpG0LRrOB4+t97EeicghGDyihP8dvgaALX83XjzwUb0bRpi38+i1+vtnajyC1usKpVK2rRpQ4cOHSr1h+qYuoDvrqaxIet6OVzfQG8mRoXQyrvqdxv6My6Zt1acRGeyEOHnxjePNuTpBuFO7UJjOH+e9Klfot29GwCpjw9BLzyP35NPIrlb5H4AQsDJP2Dj/0Bb2JWr6ePQ5xPwci7h3tbErby9+210Zh01vWryRbvPGBHZokoRi1YmclKS2TL7J5JOnwAgsGY0vSa8QFj9RqV+z2IpIDl5KVcTZ2E02hYSXJTBREU9TVjYk8hkpRMxVkUC1/8i/u3dqywWC+fPn8fd3Z2goCCndOOrRjXuFQghMBqNZGZmYrFYqFevXqkkyvfcRnKzwcCJn36i+QsvIHep3IdqS/4NxH3XbiDuUxYR9wUhC3fj5PSfad7jhQqfr6y25aRqOb4lkbMH0rCabTGnd6ArLXvWpGHHUCSYneKjivr6+60X+O3wNaQScN3wE6u2L8XX15btyM/P58CBAxw6dAiDwRbEeXp60qFDB9q0aYOr680PJM4a+32ZuXyy7yhHvG1MxRKgfw1fJkYF09izbB2wnKlPeeWYLFY+X3+WOXsuA3B/vUC+f7IVCoveYR1u0uerrwjRG1CtWGEj91Mo8H/qKQKfexaZr2/Z5VSGfzLPwbrX4PIu2wEBdeGhaVC7m1P1EUIw++Rsvj/2PQDtQ9szres0ZAbnPNTcrflTVjlmk4lDf/7BgVXLsZjNyJUudHx8KK0fGoisFPI3vTaHo6texhyVgMlkax/s6hJGVNSzhIY+jqyUjl6Vgaru57stx1m4W/oUlYYEBQWVuYNhNapRjetwc3NDoVBw9epVjEZjic9fRfjP7um4FYTFQmpsLMJiuf3BDsBqtFAQl0HWvFOkfnYA1dpLtoBDCq4N/fEf2oDQd9vjP7g+rnX9QFidpk9ptgkhSD6Xy98/HWfphweI35uK1SwIruVN32eaMuyjjjTrFoHCReY0H1VEzm+Hk/hmi6395bt96uIStx65VEJWVhZ//fUX3377LXv27MFgMBAYGEj//v2ZNGkSnTt3vuWEr4g+Qgh25eTz6LHzPHbqKke8A5ABT4T4satdQ2Y2iS5XwFFRfRyVk5lvYNjsA/aA44UH6jB/TDv8PJyTdbAaDOTMmYPL4iWofv8drFa8evWkzpq/CH77rTIHHFAJ/tHnw9aPYHonW8Ahd4Xu78Jz+24bcJRXH71Zz+Tdk+0Bx9CGQ5nec3oxcr+Koipcp7eScy3+FL+++RL7fl+MxWwmusV9jPrqJ9oNePyWAYfJpOby5R84cKQnurBYTKYc3Fxr0rDhp3TsuJWIiGF3POCAqu3nqiDHWbjb+lRnOKpRDcdRWnbjRtzV8qro6GiuXr160/vPP/88P/30E3q9ntdee41ly5ZhMBjo06cPP//88y2ZokvCnSiv8vD0wnAxj4KjGehOZyGMNxD3RRYR9wUi87zz5SRWi5WLRzM5tjmRzERb+RESqN0iiJa9ahJap3KI8CqCnecyGTf/EGar4PludXi+Uxj9mzRh7KefcuHiRftxkZGRxMTEUL9+/TJP+PJCCMHmbDXfXk3nqNpGhqiUSHgy1J8XatYgyu3urxCWFUcTc3lu0RHS1QY8XeR8NbgFfZteLyWqSJmEEAL1unVkTvsaU0oKAK5NmhD81mTcC5s53FUkbID1b0CebbM69fpAv6ngF+30U2UUZPDytpc5nX0auUTO2+3f5okGT9g//y+X/eg0+exaNI9T2zcB4O7jywOjJtCgU5dbPtSZTHkkJs3j2rUFmM2FLPTutYiOep7g4P5IpY4l5P/Lfq5K+LeXV+n1ei5fvkytWrVKXaGtRjWqcWuU9Tq6q5mOQ4cOkZqaav+3efNmAAYPHgzAK6+8wpo1a/j999/ZuXMnKSkpPFbYpcVRmA0G9n/wgW2jWwUghKB2jXrotqSQ+tlBsuacouBYBsJoRebvilePmgS/1poaL7TEs1PYLQMOZ+nzT1lGvZnjW5NY9N5+Ns05TWZiPjKFlKZdwhn2QQcefLbZLQMOZ+nkiJxTySqeX3QEs1XwaKtwRrb0Zdny5XQZN84ecDRo0ICxY8cybtw4GjZsWOaAozz6WITgr4w8eh5OYOTJyxxVF+AmlTAhIpA999XhsaVzCK/g1XOn/CyEYPGBqwyZGUu62kCdIA9WvxBTLOCoCAqOHePqk0NJee11TCkpyGvUoKB9eyIW/VqhgMMp/slLxLp4CCwdYgs4vCNgyGJ4anm5A46y6HMq6xRD1w7ldPZpfFx8+KX3L8UCDmfibl6n/4QQglPbNzPr6RH2gKNZjz6M+XoGDWO6lhhwGI3ZXLj4JXv3deHKlR8xm/Px8KhHo/pfwoZOBPk/5HDA4UxUJT9XRTnOQlXT59+OHTt2IJFIyMvLu9uqlIrRo0czsLBTHUC3bt2YNGlSqd+ZP38+vuXImlej6uCu3tGDgoKK/f35559Tp04dunbtikqlYs6cOSxZsoTuhW3z5s2bR6NGjdi/fz8dOnRw7KRWK5pr12x15hVAwaqrfDdmDoaDhZ2S3OW4NS8k7qt5M3FfZetTJCv3WjYH/rxMfGwGRp1tc7ibl4Jm3SJo2iUcN68yZFucpVM55VzLLWDs/ENojRY61Qng8Zp6Zs2ahcViwWI207JlS7p07XrTvHGmPmarYFVGLt9fTed8ge3Hz0MmZUx4IM9EBhGkVGDW6Th3F/zjiBy9ycL7f56yb8bv2ySEr55ogadLxS9947VrZH79Nep16wGQuLsTOGE83kOGsOvNN6lwsUJF/GM2wv6fYOdUpKYCrEICHZ5H2uMdUDrYsOE2+qy7tI73972PwWKgjk8dfuj+A5HekY6dywn63Ck5eWmpbJnzM1dPHAPAPyyCXs+8RETDJiUebzBkkJg4m2vJS7BabcSInp6NiI5+gRpBfbDoDcRfW+ece6IzUEX8XGXlOAtVTZ9/CWJjY+ncuTN9+/bl77//tr/fqVMnUlNT8fG5fTWDWq3miy++YMWKFVy5cgVfX1+aNm3K888/z6OPPnpHS89WrlxZjLA3OjqaSZMmFQtEhgwZQr9+/e6YTtVwHqpM9yqj0UhYWBivvvoq//vf/9i2bRs9evQgNze3WEQbFRXFpEmTeOWVV0qUYzAY7BuLwXYxRUZGkpyU5NT0rHpHIvpdabg08MO9VQ3kdbyQyO5e4ig3tYDTu9K5HJeD1VK0OdyFJl1CqN06ALmiam/fUelMjFh4nEvZOuoGuvFEQDIpV22ZjajISH555RVWx8fjUUkpdoNVsCo7n5lpeSQZbcGat0zK6Bo+jKzhja9cVinnrUykqvRMWnmG06kapBKY2C2asR0ibvkDolWr6RsZyYakpFL9bNVoUM+bT/6yZWAygUSCxyOP4PPsM8gCA2/5vTsFWVIsLlvfQZpja89rCW+PoccnWAMbVMr5rMLKrDOzmZ+wAICYkBg+bDMFD0XJwU1Z/VzVYTGbOb5xLUf/XoXFZEImV3Dfw4/Sos/DJe7bMBjTSU2bT0bmKoQoDOjdGxMeNgFfn5KzIRXBf8XPVR2V6We1Wk14ZGR1eVUpGD9+PJ6ensyZM4eEhATCwsLK9D2LxYJEIkGtVtO5c2dUKhUff/wxbdu2RS6Xs3PnTr744gsOHz5cqVmF0aNHk5eXx+rCFtD/RElBR1WB0Wi8bYvYewVlvY6qTNDx22+/8dRTT5GYmEhYWBhLlixhzJgxxQIIgHbt2vHAAw/wxRdflCjngw8+4MMPP7zp/WaAMx8b3ZUeSCQStAbN7Q+uRISF30ezFoOJjGxnfy815TgnT/xO4tX92OnEqzCETI7mif/DXLMZ8oJc+ini8fdSYjGbOb15M5cPHqy8cytdKHjoUTRDRmGtYSs3kubm4PH7r7j/9TvSAm2lnbsyYYpqgbb/mwh3HyQFKjz+mori6vEKyZQC3X19eTwgEO/Ch8pTWi2LMjNIrAIlEf4eEl7p5cLDLWw/AjlaK19vMvD3CVOlnVO4SLE+HYFobXsgkvydifSPdCRV/7KrEIIC/Gjfphm+Pl4ApKZnceDISTSagpuO9ash54GhvrTr64VcaQssrpzWs2VRLmcP6u6o3tX4d8ECnITqoOMW0Gg0hIaGcvjwYaZMmULz5s35XxER444dPPDAA/aF2/nz5zNp0iQWLlzIW2+9xblz57hw4QJTp05l4cKFnDt37qaARaPR4OrqilwuJzc3l4kTJ7JmzRoMBgNdu3bl+++/p169egB2+cuXL2fSpEkkJSXRuXNn5s2bR2hoKGALdN544w3mzp2LTCZj3LhxpKeno1Kp7EFHt27daNmyJd9++y3dunVj586dxXQSQtjPdWPp2PTp0/nqq69ISkqiVq1avPvuu4wYMcL+uUQiYdasWfz9999s3LiR8PBwpk2bRv/+/e3HnDp1ijfeeIPdu3fj4eFB7969+eabbwgsXEzr1q0bTZs2RS6Xs2jRIpo1a8b27dudM5j/cpT1Orr7BbOFmDNnDg8++GCZo/Rb4e233+bVV1+1/12U6dhQmOkw6/Uc/PBD2k2ZgrwCNxhnre44oo/FbOXK8VxO70ojN9X2oy2RQGQTb0T8aobNfhm567g7qpOjcqxC8Obqs2w4k4WrTNDbNxl/qRJ/f38eeeghgt58s1J8rVcoWZqpZk66CrXZ1i0lWCFjQrAvQ1pF49azDcz8zmG7yquPs+TIXFyYt/8a3+64ghDQOMSTbwe1Jezjh28r51Z+FkKg37ePvO+/x3z5CgDy6Gh8X36JvjExPPiPFeo77h+rBfmJRbjsnYrEoEYgwdxiOMqYN3nrPV9eryR9UgvSeDN2MhfUF1BIFbzVajL9Hn0QZpcu527eOyoqx6DVcGDlMs7s2gaAq6cXHYeMoF77GCwGQzE5en0SKWlzyMr+GyFs2UMvz/sID3uadq3bMWRUyZmN/8I9+l6SU5l+Lsp03EkIIdCZ7k4HLTeFrFwZv99++42GDRvSoEEDhg8fzqRJk3j77bdvKaOgoIAvvviC2bNnExAQQI0aNVi2bBnDhg0r8dnL09PT/nr06NGcP3+ev/76C29vbyZPnky/fv2Ij4+3l0MVFBTw1Vdf8euvvyKVShk+fDivv/46ixcvBmDatGnMnz+fuXPn0qhRI6ZNm8aqVavsJfT/xMqVK2nRogVPP/00EyZMuKUfVq1axcSJE/n222/p2bMna9euZcyYMURERPDAAw/Yj/vwww+ZOnUqX375JT/88APDhg3j6tWr+Pv7k5eXR/fu3Rk/fjzffPMNOp2OyZMn88QTT7Bt2za7jAULFvDcc8+xd+/eUkamGrdClch0XL16ldq1a7Ny5UoGDBgA4HB51T9RVcgBnQGDzszp3cmc2HYNbZ5tZVnuIqNxp1Ba9IjEO/Df12P8s3VnmLnrElIEPRUJhMnyadOmDb1797anLZ3pa5XJzJzkLGYlZZJbGGxEuip5qWYNhoT641JJXbDuBDQGM2/+cZx1J22szY+3juDjgU1xVZQtx1eSn/UJ58j44gu0+/YBIPP1JfClF/F74gkkN9Td3jUkH4W1r0BqnO3v0Jbw8NcQ3rpST3s0/Siv7HiFHH0OAa4BfPvAt7Ss0bJM3/03dlUSQpAQu5vt83+hQJUHQNMHetFl2BjcvIrboNVe4srVn0hPX4MQtmvM3y+G6OgX8fNr90/RlYZ/o5//jfivda8qMJpp/P7GSjnX7RD/UR/clWVfC46JieGJJ55g4sSJmM1mQkND+f333+nWrVuJmY4xY8YQFxdHixYtAMjIyCA4OJivv/661Geq8+fPU79+ffbu3UunTp0AyM7OJjIykgULFjB48GC7/AsXLlCnTh0Afv75Zz766CPS0my/SWFhYbzyyiu88cYbAJjNZmrVqkXr1q1LzHRAyeVV/8x0xMTE0KRJE3755Rf7MU888QRarda+z0UikfDuu+/yf//3fwBotVo8PT1Zv349ffv25eOPP2b37t1s3Hh97K9du0ZkZCQJCQnUr1+fbt26oVarOXr0aJnH6F7Bv6J7VRHmzZtHjRo1eOihh+zvtW7dGoVCwdatW+3vJSQkkJiYSMeOHR0+l1mnY8v48Zh1VSOtXxZ98nP07PnjPAve3kvsyoto8wy4eyvpMLA2oz7txP1D6uMd6OY02+6UnPl7LzNz1yUAYhSXqe1hYsiQITz88MNOr5PMMpr5OCGRFtuPMvVyGrlmC3XcXPiuYU32tW/EyPDAMgccVdHPi56ZxIAfdrPuZBoKmYSPBzbly8eblznguElmZiap773P5UcfRbtvHxKFAv9xY6mzaSP+w4aVGnDcEf/o8uDv12BWd1vA4eID/b6CCdtuCjicrc/vp5cxbtM4cvQ5NPJvxLKHl5U54HAm7tQ8VGWksfLzD/j7u6kUqPLwC4vgiSmf0efZicUCDlX2CbbM7cj+A71JS1uNEBYCArrSpvXvtGq1sMwBx7/xHn0vy3EWqpo+VR0JCQkcPHiQoUOHAiCXyxkyZAhz5sy55XeUSiXNmze3/13WNeczZ84gl8tp3769/b2AgAAaNGjAmTNn7O+5u7vbAw6A0NBQMjIyAFuJXGpqajEZcrmcNm3alEmH2+kXExNT7L2YmJhiugHFbPfw8MDb29uu3/Hjx9m+fTuenp72fw0bNgTg4g2t+lu3rtwFrf867np5ldVqZd68eYwaNQr5DZsPfXx8GDduHK+++ir+/v54e3vz0ksv0bFjR8c7VwFIpXhGREBVWdEuRZ/MxHyObU7kwpEMhNV2c/AL9aBVr0jqtw1B9s/N4c6y7Q7IWXMskQ/XnAYk3Ce/Rvfanjz22MgyddooD9IMJqYnZrAwJRud1QoKJQ3dXZgUHcIjNXyRObJ5tYr5eXNCFp/4dUeXVUCwtws/D2tN6yg/h2QpJBLUc+eRvHAh1gJbfb5X377UeO1VlGUtc6hM/wgBJ5bDpndBa+scR/Mh0Ov/wOsW/D1O0seMlb+bZ7Pl8CcA9IrqxccxH+OucK+QXIdRyfPQYjZz5O/VxP6xFLPRgEwup93AJ2g3cDDyG4LO/Px4Ll/5kczMjUiibe8FBvakVvQLeHs3p9z4F92jq+U4EVVEHzeFjPiP+ty1c5cVc+bMwWw2FyuLEkLg4uLCjz/+WLJ8N7dipVdBQUH4+vpy9uxZx5W+AYp/LEZJJJIyBzZ3AiXpZy3slqbRaHjkkUdK3C9ctCcFbMFKNRzHXQ86tmzZQmJiImPHjr3ps2+++QapVMqgQYOKkQNWBHIXFzp88EGFZDgT/9RHCEHi6RyObU4kOSHX/n5EQz9a9qpJzcb+t6zXdJZtlS1n/aGzTFpxHoGU+rJMJvZqyP333+9Ugr9EnYGfEjNYmpqDsfCm18LLjVejQ+gV4I20Ap1yqoqfLVbBN5vP8eP2C4CMdtH+/DisFTW8HKvP1m7cyLRatVHNmAGAa/PmNnK/++4rl5xK80/GWVt24+oe29+B9eGhaVCrS6XrozaqeXPPm+z1uQDA8y2e55kWzyCV3L0HpMqch6nnE9j8yw9kJl4BILJxM3pOeAH/sAj7MWr1CS5f+ZGsrKJstIQaQX2Jjn4BL69GTtXnbqKqXO9VVY6zUFX0kUgk5Spxuhswm80sXLiQadOm0bt372KfDRw4kKVLl9pX6UuDVCrlySef5Ndff2XKlCm33EjeqFEjzGYzBw4cKFZelZCQQOPGjcuks4+PD6GhoRw4cIAuXbrY7Thy5Aj3lfIbo1QqsdyGpb5Ro0bs3buXUaNG2d/bu3dvmXUDuO+++1ixYgXR0dHFFsCr4Vzc9SWO3r17I4Sgfv36N33m6urKTz/9RE5ODlqtlpUrVxISUjFCM1NBAX8PHoyp4OYuK3cDRfro1Rri96aw9KODrP3xOMkJuUikEuq3C+aJ/7VlwKRWRDUJKHWTmbNsqyw5VquV39bvYNKKs1iQUstFy8ynu9O1a1enBRyXCgxMOpNIpwNnWJCSjVEI2vt4sKxFbdY0isD83HgsFUzfVwU/5xUYGTP/UGHAAQ/kxTN/WDOHA46sWbPIee99AhUKZCEhhH31FdHLlpY74IBK8E9eFmyeAjNibAGH3A16vA/P7r1twOEMfa6qrzLs72HsTdmLwiJhasdPea7lc3c14IDKmYeGAi1b505nyXuvk5l4BVdPL/o8N4nB739qDzjyVEeIixvDocOPFgYcUoKDH6F185UkfpSOqyyqStjlLFSF670qy3EWqpo+VRlr164lNzeXcePG0bRp02L/Bg0aVGqJ1T/xySefEBkZSfv27Vm4cCHx8fGcP3+euXPn0qpVKzQaDfXq1WPAgAFMmDCBPXv2cPz4cYYPH054eLh9H25ZMHHiRD7//HNWr17N2bNnef75529LXhgdHc2uXbtITk4mKyurxGPeeOMN5s+fz/Tp0zl//jxff/01K1eu5PXXXy+zbi+88AI5OTkMHTqUQ4cOcfHiRTZu3MiYMWNuG/RUo+y458I5iUxGaMeOSGRVg3fBoLdiqT+ApR8fo0Bta+2pcJXRpHMYzbtH4uVf9odIZ9lWGXJUKhW//r6amRc9MeBKpLuVFZMewt/bOanKMxod319N58+MPIqopbr6eTEpOpiOvrYOHGaDocr6pzw4naLi2UVHSMrR4aqQ8kn/RtTanYBS6djG7txly8ic9jUAf2Zn8/yunXjXqOGQLHCufxq28UM+tyuobeSGNOgHfT8Hv7I/2FZEn9iUWF7b+Rr5xnyC3YJ5PrUdvaJ63/6LdwDO9HNIhw5cOHKQnYvnos3NAaBxl+50HTEOd29byWNu7gEuX/mB3NxY2/ckMkKCBxAd/Tzu7rWq3PXlLNzt672qy3EWqpo+VRlz5syhZ8+eJZYjDxo0iKlTp3LixIkyyfL392f//v18/vnnfPzxx1y9ehU/Pz+aNWvGl19+aT/HvHnzmDhxIg8//DBGo5EuXbqwbt26m0qWSsNrr71Gamoqo0aNQiqVMnbsWB599FFUKtUtv/PRRx/xzDPPUKdOHQwGQ4nlWgMHDuS7777jq6++YuLEidSqVYt58+bRrVu3MusWFhbG3r17mTx5Mr1798ZgMBAVFUXfvn2dWoVxr6NKdK+qTBR1v8hOS8M/OBizXg+A3NXVtmFNKkXu4oKpoACJTGZ7rdUiVSiQKZW210olMoUCo0aD3NUVqVxOTnIyPSMi2KVSoQAUHh5IZTIMajVKT0+QSDDm56P08gIhMGo0uHh7Y7VYMGm16A0Kjm+5ypl9aZhNtsdkDx8FLXpE0aBDEAqZFYWHBxajEavJhMLDA7PBgLBYULi7YzYYwGpF7ubmNJuM+fnI3dyQyuUY1Opy2+Ti7Y3VbMas06H08rK91uu5mJTEH6v/4k91NFnCk2APGasmtCMsxL9MNuWlp9MjJISdKhUucnkxm04ZzPyQnMO6rOs3rZ6+7kyKCqGNv3el2aT09MRiMmE1Gu/oOP15Mo23VpzEYLZS09+dHx5tQLPawQ7bpNuxk5Q33wQh8B4zhkfemszWlBT8QkPv7twzZiHd9D84Z2M7Fz6RmLt9gLzloDsyTkIIfr+yiqmHpmIRFpoHNeerDp8T5FGjwtdTzrVr9IiMZFdeHkqJ5K7PvfzcHHYumsOlo4cA8AsNo9vwcUS1uA+pXE5GyhaSUmejUh8GQCKRExryGGGBI/Dyb1Blrye9wcADPj5syczEJzDwjt/37tY94k7bpM7OpntYGDsyMnD38HCqTVkpKQSFh1fzdFSjGlUc/6ruVZWBn376icaNG9O2bVsAdhe2aNvzxhssbNgQk1bLjpde4vBnnwGwadQoTvz0EwBrH3uMMwsXArCyZ08uFbZyW96+PUmF3bRWtGtHEffy3IgIcgs3Ys3w8UGTkoIxP58ZPj4Y8/PRpKQwo3C14MKOk8we8h2L34/l5M4UzCYrckM6zZvrkP79Aq161yR541pW9uwJwJmFC1n72GMAnPjpJzYV1iwe/uwzdrz0EgD7/vc/9v3vf5i0WubXq8eBQnLE8tr0a6NGpB86hEmrZaa/P5mFbeFuZ1Pu2bPMjbCVXqQfOsSvjWz13OfXrOHr4cNZumw5m/LDyRKe+LjK+TAglQOjhpbJJoDYN96gaDtqkU0H8zT0WbqWB49fZl2WConVygOGfLa0qU+f4Y8SdCi2mE0AcyIi+L1LF0xarcM2JW3dyrK2bVnVpw/nli1zaJwAdrz0Egc+/JBVffqwcdiw247T4g6deH36Jl5ZfhyD2UrHGgrWvNiZfa0bknn0KKv69Cm3TWubNiXlrbdACNIl4P3sM9QE1hemyx2x6fBnn2HSaplXuzbHvvmm3HMPs4G4xyKQTO8A59ZjsQh0jUdjHLmFn+8bXK5xWl7YJeXcsmXMDg/HpNWWyaZd77zFS9Mf5bODn2ERFjrm12Run7kcGfcyi5s3x6TVls8mit8jfo2MxB0wOTD3imy6tHo1K7p3Z1WfPpyaNcuhcbJaLCwb9RQLXn/eFnAIQe1aDRg59UcOvTSR039/zuEjj3Mq4VlU6sNIJErUWy3UUX5Fo0afsaROh2L3vbwLF1jZs2eFbFrZsycmrZYlrVqxpnAelscmKH7fewC4sHSpQ+NUdD0VpKUxw8eHgrQ0h20CODVrFnOjojBptRWyac2AASxp1QqTVuuwTUX3iJU9e5J34YLDNp1ZuJCtw4cDED9rlsM2rX3sMU7NmsWqPn1Y0b273aaVt+BvqEY1qvHvxD2X6TCo1ZxdvJim48YhLJY7kukQFisXDiVzam8mqReur8hHNvajSQc/Co5voeGwpxBWa4VWxyRSKadmz6bRiBEovbwcXh0TVisnZ86kyfjxKNzcHFody9Fq+eP338nMyma/OYoESw1c5FKWTGhPy1DPcq34FWU6duTlcbjAxPcpOcSqbXW/MuDRYD+er+FNAx/PUlf8dFlZXFi5ksajR9tX7RxZ8TOo1VxcuZL6Q4ciKRx7R1YxrWYz55Yvp+7jjyN3c7vlOGXrLDy78BBHr6kBeKFzTV7p3RC5UoFBrUaqUJCweDF1Bg7E1d+/TDbl79lD8vMvIIxGvPv3J/DddzABXXx8KpzpkEgknJo1i0YjR9rmYVnnXtohpBvehOzzAIiozpzNu496z72DzMXF4ZVZo1bLmfnzaVpILlWaTfkSPa9sm8SRzKNIkDCx+YuMbDQShasr+rw8zi1dSpNx47CaTHc902HSaLiwYgX1n3wSiURSrnFKv3KJbfN/IeOKrRWkr28AD778BjXq1iVXvYtLl35Ao40HQCpxISxsCFHRzyA1etxyBV2mVHLm11+p++ijuAYEOLyCLlUoOD13LvWHDMHVz++uZzosJhOnfvmFpk8/bf+uI1kBo0bDmQULaDphAkIIhzMd+txczi1fTpOxY23z0MFMhz47mwurVtFoxAgsRuNdz3QIITi3bBl1Bw1C4elZnemoRjX+RSjrdXTPBB13gxzQbLRwdn8ax7cmkZdue0iWymybw1v2rElAuGeJ3/s3QwjBwYMH2bRpExaLhQRpFLEFNZBIYPqw++jbNPT2Qv6BfJWKdn0eJur7X4jT2kgRFRIJT4b682LNGkS5uTjbjCqDw1dyeG7xUTLzDXi5yPlmSEt6Nr5Fa9gyQnf8OFfHjEUUFODVqyfh33yDRC6/e2Rq+Wm2Frgnf7f97VED+nwCzQZDBbqMlRcXci/w4rYXSdYk46Hw4Iv7v6BrZFenn+duktYZdQXsWf4rcRv+RggrLh4edBk2lqbdepCZvYkrV35Co7GtikulbkREDKNm5HhcXILuqJ7OQDU54J3Bf40csBrVqEb5cc+XV90KJq2W5R07YtJqK+0cunwjB9deZsH/9rFzSQJ56QUo3eTc1yeKkZ90oseoxvaAw5n6OEuWo3K0Wi1Llixh/fr1WCwWtAGNiC2wbUh+/+HGDgUcx9QFDDiTTO5nPxCnNeAqlTA+IpD9HRrxZYPIcgUcd9s/5ZEjhGBh7BWe/GU/mfkG6gd78tdLnUsMOMqjjz4hgcSnn0EUFODRqRNh06YhcXJ7wDLrY7XAgZnwY9vCgEMCbSfAi4eg+ROYCgru2HjtTNrJsHXDSNYkE+EZwaIHF90UcNyJe0d5UF59zh+KZd6rz3Fs/RqEsNIwpiujp/1EQF0Vm39vzKlTL6HRnEUm8yQ66jliOu2iXt23yxxwVLXry1moanZVNTnOQlXTpxrVqIbzcc91r5Iqldz36qtIncx4DZCXXkDc1iTOxqZiKdwc7uXvSosekTSKCUXperO7namPs2Q5IufixYusWrUKjUaDTCYjrFU3Po/NBwTjOkUxJqZWuXSwCsGMpEw+vZSCWYBEV8CE6FBeqhtBkINdmu6mf8ojR2+y8L9VJ1l5NBmAh5qHMnVQczxcSr5cy6qP8coVEseNx6pS4daqFRE//lAp10GZ9Ll2BNZOgrTCDithreDhb2z/l0dOBfURQjDv9Dy+PfItAkHbkLZM6zoNP9ebyRUr897hCMqqT352FtvmzeDCof0A+ASH0GPs07gEJ3Li7BB0uivIa4Bc7k1kxGgiI0ehUPhWmj53So6zUNXsqmpynIWqpk81qlEN56O6vMpBFKWUd+XlockUHNucyOUTWVDozaCaXrTqXZM6rYKQyv67CSWz2cy2bdvYt28fYGM4bdm1H8/+fo58g5mHmofyw5OtkErLXiaTaTTx8plEtufkA9DH14O4bu3Ym3T1P18mkZRTwLOLjnA6RY1MKuGtvg0Zf3+tUvlZygJTaipXhg3DnJKKS8OGRC1cgOwfvrwj5Si6XNjyIRyZDwhw9YEeU6D1aJDe2VaZBouBD/d9yJpLawB4ov4TvNX+LRRSx4LasuJOlf1YrRbiNv7NnmW/YtLrkMpktH5kANGdFCQlz0GvTwJALvelZs2xREaMRC73qjR97jSqy6vuDKrLq6pRjWpUl1fdAkaNhl+bNMGo0VRIjtUqiK51P+t/OsvKr45y+bgt4IhuFsDAV1sx+O021GsTfNuAw1n6OFNWWeVkZ2czZ84ce8DRpk0bHhkygtfXXCLfYKZNpA+tPxuDuaDs6fIdOWoeOJjA9px8XKUSvmwQwY+1ayBV51XEJODO+6e8cnady+SRH/dwOkVNgIeSX8e1Y0KX2rcNOG6njzk7m8Sx4zCnpKKMjqbmnNk3BRzORIn6CAFxS+CHNnBkHiCgxVB48TC0HVdiwFGZ45Wly2LshrGsubQGmUTGO+3f4b2O75UacDjzWnUGStMn/fJFlrzzOtvn/4JJryO0YT36vvUA0ppzOX/xA/T6JBSKAOrWmUy7FuvZ89DPWPUVC2yr2vXlLFQ1u6qaHGehqulTjWpUw/m458qr5K6udPn6a+QVXNHYNu88PXt/QGaiFplcSoMOIbToEYl/aPnI7pyljzNl3U6OEIK4uDjWrVuHyWTCzc2N/v37E1GrLoNnxJKq0lMnyINfRtxHft2pZdLHaLXy+aU0fk7KAKChhyszmkTR0MMNjVpdIXvKatfdkiNzceGn7Rf4alMCQkCLCB+mD29NmK9bhfWxqNUkjp+A8fJl5GGh1Jw3F3lAQIX0Lrc+6fHw92uQaAtOCWoID02D6M7lk+MkfeKz43l528ukF6TjrfRmWrdpdAjtUH677jJK0seo17Hvt8UcXfcXQlhx9XKl9ZO1MLnuISXrLwCUyhpERT1NeNiTyGRuWM3mKnldVGU/V8txPqqaPtWoRjWcj3umvMrZ5IAH15xm94rztHuoAU071cAnxPeeIJRSZ2WxeedOTp06BUB0dDQDBwxAhoTnViSw50IWQR5KVr4QQ7i3skw2XdbqeOlSBnH5tg5fo8MDeSfcHzeZ9LbkgFWJJMuRcdIJKa8uPcrmhCwAhrQKZcrDjXD3cKuwTXKZjKTx49Edi0MWGEjNhQuQBAbe0iaj1eqUlrn2uWfRIY/9FrH/ZyRWMyjcsXR8BTq9gMzV466M0/oLf/P+/inoLQZqeUfzTacvqRPc8I5eT5VFDph49jRb5/xMfnYWUrmVhn29ca95AbMlFwAXZQhR0c8S7PcIUrlblSedqyYHrCYHrG6ZW41q/Dtwz5dX3YoccPfrr/NLYCDG/PwKkQPGPd+PLYuH0qpPOMsa1SozOeA/yZcWNmzInIgILq1Zc0vypbISfxnz85kZGMiBDz5wyKYiQiljfj4zfH3JOHKkmE2XEhL47uOPOXXqFBKJBNetWxk5ciTm5GSGjvmMPReycJPBgN/fJ9LfnUtr1jDTzw9jfv4tbfpuyR/0OpRAXH4BniYjE3eu4/P6ERx7791SyQHLaxPYyAFnh4XZx6Yi5IBzIiI4t3RphcgBV075gm6vLGRzQhZyrHz2WDM6zH2bS0sXl9mmuRERZBw5wpyIiGI2zfT1Jen559Edi8NksVBzzmy0Ot1tib+cQQ5oVKvZ3DEQ67QWsO97JFYzKtdm8MJB/nhnFZfWrLutTblnz9rHJvfcOYfGyU4OuHQp0/39+OHAN7y59y30FgMx4TG8eSWGsy++VyabADYMG8asGjUw5udXDXLABx5gTkQEh3/4njnDB7N66kdo1emEtsyi5fgUlOGHMFtycXWNRHaiBZZVbYmMGMGuia8Xu+8d+/pr5kREsKZ/f4dtKhqnOeHhFSYHNObnMys4mDX9+5d77hXZ5ExyQG2hHdqUlAqRA5785RdmBgRgzM+vGDlg//7MCg7GmJ9fYXLAOeHh5J47VyXIAU/+8gtzIiJY8cAD1eSATsCOHTuQSCTk5eXdbVWqUY3rEP9xqFQqAYjstDQhhBCG/HyRtH27sJhMwlRQIEx6vRBCCKNWe/21RiPMBsP110aj/bsWk0kIIUT2tWuiFYh8lUroVSphMZuFEELoVSphtViE1Wq1vbZahdViEXqVSgghhMVsvv7aZBK6nByRsm+fMOl0wpCfL4QQwmw0CqNGY3ttMNhfm/R6YdRq7a9NBQW21zqdMOl0wmIyicTt2+3Hl9cmg1otLCaTsJhM4urmzfbvFuTmih3bt4sPPvhATJkyRXzzzTci8epVux1frj8joiavFbXf/ltsPZ0iDGq1Xa+rW7YIi8l0k025KrV4Kf6KCN52TARvOyb6Hzknrqjyb7JJCCFy09LEfYW+dtQmIYTQZWeLa7t3C4vJVO5xKrLJYjIJXW6uSNm3TxgLChwaJyGEWHP4imj83noRNXmtaP/xJnH4QrpDNulVKmHS60XKvn1Cl50trBaLsBiN4sqzz4r4Bg3FmZatRN6ePbe1yZCfL/JVKtEKRE5KikM2mQoKhCn1rLD+OkiIKd62f980Fabjq8ptk8Vsts9Ds8Hg0DgVXU8qdbZ4Zvkw0XR+U9F0flPx+d5PhNliLrtNhfNNr1KJpB07hMVkcmiciu4R2UlJoiUIdV6ewzaZjUZRkJMjdkz/Xnw/6nHxzfC+YtHU9mLL5kZiy9baYsvW2mLv3gdE0pUlwmIx3tImo1YrjBqNSNm3T+jz8hy2Sa9SCbPBIJL37rXNQwdtMmo0wmIyiaSdO4U+L698c+8f9/J8lUq0AZGXmemwTVaLRZiNRts8NBodtqlIr8StW22/PQ7aJIQQ+rw8kbRz5/V56IBNVqtV6LKzRfLevcJsMDhsk9lgEDkpKaIliLyMDIdtMmo0wqjVXp+HhTZlJicLQKgKdaoM6HQ6ER8fL3SFOv7bsG/fPiGVSkW/fv2KvW8wGERqaqqwWq13STMhpkyZIlq0aHHLzz/99FMhlUrF1KlT75xS1SiGy5cvC0AcO3asQnLKeh3dM+VVd4Mc8L8AlUrFypUruXr1KgDNmjXjoYcesqfPlhxI5H+rTgLwxaBmDGlb87YyT+YX8Ozpq1zUGZACr0QH80pUCPJbdLj6L/nabLHy1aZzzNhpY4LuUNufH5+6j0BP5xAcCquV1P+9g2r1aiQKBZG/zMSjY8cyfbdCfjYbYO93sHsamPUgVUDMRLj/NVC6O2CJc5CqSeXl7S9zNucscqmc9zu8z6P1Hr1r+oBz5nPm1cts/uVHMq6dJqhZDjWaq5DKzQC4u9elVvQL1KjRD6n0ntu2Z8d/6b5RlVHdveruYvz48Xh6ejJnzhwSEhIICwsr0/csFgsSiQSp1PkFL0IILBYLH3/8MatXryYuLq7E4+rVq8fjjz/O6tWrOXPmjNP1qMbtceXKFWrVqsWxY8do2bKlw3Lu+fKqW8GgVjPd2xuDkzYnVxTO1MdZsorknDhyhOnTp3P16lWUSiUDBw7kscces0+obWfTee9P296Ol3vUuyng+Kc+Qgh+ScrgoSPnuagzEOaiYEWrurxRK/SWAYcz4Wz/lFdOjtbI6HmH7AHH2Pbh3P/Gg3hZDU7RR69Skf7pZ6hWrwaZjPBvvylzwFEhXNwGP3eE7Z+AWY+1ZmeWzjFiaDuxQgFHRccrLiOOoX8P5WzOWdzyLczo/EOFAo6qcO8wGfTsWjyPpR++AAG7aPzUBULuy0YqN+Pp2ZCmTX+gQ/v1hIT0L3PAcbevi8qS4yxUNbuqmhxnoarp82+ARqNh+fLlPPfcczz00EPMnz/f/tk/y6vmz5+Pr68vf/31F40bN8bFxYXExERGjx7NwIED+fDDDwkKCsLb25tnn30Wo9Fol2UwGHj55ZepUaMGrq6udO7cmUOF5Xs3nmv9+vW0bt0aFxcXFi1axIcffsjx48eRSCRIJJJi+u3cuROdTsdHH32EWq22d8EswgcffEDLli359ddfiY6OxsfHhyeffJL8/Hz7Md26dePll1/mzTffxN/fn5CQED4oLC8vQmJiIgMGDMDT0xNvb2+eeOIJ0tPT7Z8X2X8jJk2aRLdu3cp1nry8PJ555hmCg4NxdXWladOmrF271v75nj17uP/++3FzcyMyMpKXX34Z7Q1EmNHR0Xz88ceMHDkST09PoqKi+Ouvv8jMzLTr37x5cw4fPlzsvGWR++mnnzJ27Fi8vLyoWbMmv/zyi/3zWrVsHGqtWrVCIpHY7d6xYwft2rXDw8MDX19fYmJi7IvPFcE9F3QoPDx4IjYWhUf5ukxVFpypj9NkKZUE/vgjK9esQa/XExYWxjPPPEPLli3t7VtPXMvjhcXHsFgFj7eO4JWe9UrVJ8toZsTJy7x/IQWjEPQN9GZL2wZ09PWsmK7lgLP844ick9dUPPLDHvZcyMJdKeOHoa14t38znty312n6qOfOI3fRIgDCPvsUrx49KiT3tlCnwu9j4NdHIecieAbDoDkw8k96r7s7fi7Cnxf+ZOzGsWTrs2ngV595nX6mbc2KBWB3+95xOe4Iv74znpSsn2g05BzBLXOQKQSenk1o3mw67dquIbhGPySS8t3W7+Z1UZlynIWqZldVk+MsVBl9hACj9u78K2fhyW+//UbDhg1p0KABw4cPZ+7cuZRWvFJQUMAXX3zB7NmzOX36NDVq1ABg69atnDlzhh07drB06VJWrlzJhx9+aP/em2++yYoVK1iwYAFHjx6lbt269OnTh5ycnGLy33rrLT7//HPOnDlDr169eO2112jSpAmpqamkpqYyZMgQ+7Fz5sxh6NChKBQKhg4dypw5c27S9+LFi6xevZq1a9eydu1adu7cyeeff17smAULFuDh4cGBAweYOnUqH330EZs3bwbAarUyYMAAcnJy2LlzJ5s3b+bSpUvF9CgrbneeBx98kL1797Jo0SLi4+P5/PPPkclkdjv69u3LoEGDOHHiBMuXL2fPnj28+OKLxc7xzTffEBMTw7Fjx3jooYcYMWIEI0eOZPjw4Rw9epQ6deowcuRI+xiXVe60adNo06YNx44d4/nnn+e5554jISEBgIMHDwKwZcsWUlNTWblyJWazmYEDB9K1a1dOnDhBbGwsTz/9dIX5woB7Z0+Hs2tC81Uq0bJwn8F/CampqeKHH34QU6ZMEVOmTBGbNm0SpsLa4CIkZmtF6//bJKImrxXDZ+8XRrOlVJm7c9Si+Z6TInjbMVFzR5yYey2zXHWm/3Zf/3YoUdR7Z52ImrxWdJ26TZxNVTv9HFmz54j4Bg1FfIOGInvxYodklNnPZpMQsT8L8Um4bd/GB75CrHtTCF2eQ+d1JswWs5h2aJp9/8bEbROF1qi922oVQ3nnsyY3R6z98V2x9PvWYtPGOvY9GwcPPSYyM7fd1Zrtqox/+33j34LK9HNl/X7fiJtq0Q2a63vS7vQ/g6Zcunfq1El8++23QgghTCaTCAwMFNu3bxdCCLF9+3YBiNzcXCGEEPPmzROAiIuLKyZj1KhRwt/fX2i11++T06dPF56ensJisQiNRiMUCoVYfMPvitFoFGFhYfa9GEXnWr16dTHZt9rToVKphJubm12XY8eOCU9PT5FfuG+o6Lvu7u5Crb7+e/nGG2+I9u3b2//u2rWr6Ny5czHZbdu2FZMnTxZCCLFp0yYhk8lEYmKi/fPTp08LQBw8eNBu/4ABA4rJmDhxoujatWuZz7Nx40YhlUpFQkLCTbYKIcS4cePE008/Xey93bt3C6lUap93UVFRYvjw4fbPU1NTBSDee+89+3uxsbECEKmpqQ7LtVqtokaNGmL69OlCiJL3dGRnZwtA7Nixo0R7SkJZ93Tcc5kOg1rNdxJJlUnhOlOfisgSQrB//35mzZpFVlYWkvx8hj7+OL169UIuv16mkas1MmreQbI0RhqFevPzsPtQ3IIAUaNS8ej4lxgcd5F0o5l67i6sb12fMeGBzomYywln+bqscoxmK++uPskbf5zAaLbSs1EN/nyxMw1CvJyqT+bChWR8+SUAQa++iv9TT1VIXqlIOgSzusGGt8CYD+Ft4Okd8OAXNnZx7ryfi6Axanh5+8vMOz0PgGeaP8PX3b5GpjPfFX0qCmG1cmzLItYv74uy/hKCmuQilQu8vVvTsuUCmtWby+Kg7hhvKDdwBHdrvCpbjrNQ1eyqanKchaqmT1VHQkICBw8eZOjQoQDI5XKGDBlSYsagCEqlkubNm9/0fosWLXB3v14K27FjRzQaDUlJSVy8eBGTyURMTIz9c4VCQbt27W7ah9GmTZsy6b506VLq1KlDixYtAGjZsiVRUVEsX7682HHR0dF4eXnZ/w4NDSUjI6PYMf+058Zjzpw5Q2RkJJGRkfbPGzdujK+vb7n3kJR2nri4OCIiIqhfv36J3z1+/Djz58/H09PT/q9Pnz5YrVYuX75c4jmCg4MB2z7af75XdF5H5EokEkJCQm7y443w9/dn9OjR9OnTh0ceeYTvvvuO1NTU0h1URtxzuwyVnp6MTUqy9SqvAnCmPo7K0mg0/Pnnn5w/fx6A+vXr06NtW2rUqVPsOL3JwoSFh7mUqSXMx5X5Y9ri5Voyg3OizsBz59M5MmwcAMNDA/ioXjjut2For0w4y9dlkZOm0vPc4iMcS8xDIoFXetbnxQfqIr1h74oz9FH9/TdZn9nSzf7jxxP49ASHZZWKghzY8gEcXWD729UXen4A942Cf2xEvJN+LkKSOomXtr3ERdVFXGQu/F/M//FgrQfvmj4VRfKF3Rw78D6uwYn4FVYueri2pEGjN/Hzs7UuFVZrlbKrqslxFqqaXVVNjrNQZfRRuMP/Uu7eucuIOXPmYDabi20cF0Lg4uLCjz/+WOJ33NzcKnXBz6OMpXFz5szh9OnTxRY0rVYrc+fOZdy4cfb3FIrizxcSiQSr1VrsvbIcUxqkUulNJWkmk+mm40o7j5tb6US+Go2GZ555hpdffvmmz2rWvL4X9sZzFI1TSe8VndcRuf/U/VaYN28eL7/8Mhs2bGD58uW8++67bN68mQ4dbk+kWxrumaDDrNOBtzdmgwGpUgkSSYXJl4ou3YqQL5kKClAWvm8pKKgQoZTMxQWpQoHZaETh6lomm86eOsXaDRvQaDTIZDJ69+pF23bt0KakYLVakUmlGNRq5O4eTFoex+GruXi5ypk3ug2+GAHXm2xalZzJ24mZqM1WvKQSpjWsyUP+nlj1OnCQJKvosbZCJFn5+cg9PKBwNc1RkiyTTofS2xuL2YwotONGm/YlpPHybyfJ0hrxdpXz9WON6dk8ErNej/UGm4REgtLbG5NOh1QuL7dN2j17SHlzMgiB96BBeI8fh7BaHSb+ApAAJq0WvL1tNhkNKM6tRmx+H4nOVr9rbfYk1m7vIg+ILJH4S6ZUIpHLr89DB8nMJIXBjBDCZsctbIq9sovJh95DZVAR5BrIDz1+pJFvA4waje16MpuRyGQgkVSMoE2nQ+biAhJJhQjajDc0VjCo1cVs0lmTOLb3f1hcTuEWapvzMlM9mrf9CF/v++y6WUwmLAaDbR6aTAiz2WHSOaRS2zwsKECmVDpMOqfw8EDh5YUhPx8Xb2+HSefk7u7ICu9fSk9Ph4n0wPYDZyncEOsokV7R44gAsFodJ9IzmezzsELkgAUFyFxdr89DB8kBDfn5KLy8EEJgVKsdJgc0FW5atRgMmAoKHCYHlMjl1+ehi4vdpjsOiQSUVWOfy61gNptZuHAh06ZNo3fv3sU+GzhwIEuXLqVhw4Zllnf8+HF0Op394Xn//v14enoSGRlJYGAgSqWSvXv3EhUVBdgeyg8dOsSkSZNKlatUKrFYLMXeO3nyJIcPH2bHjh34+/vb38/JyaFbt26cPXu2XLqXhkaNGpGUlERSUpI92xEfH09eXh6NGzcGICgoyE52XIS4uLibHtRLQ/Pmzbl27Rrnzp0rMdtx3333ER8fT926dStgzc1whlylUglw0ziBbXN5q1atePvtt+nYsSNLliypcNDxny2vuhU54J433mB2IbFSRcgBV7RrR2DhuUojXyoLSdYMHx8uO4kccHZICAcKN4CVZtP5lSvZtGkTy/74A41GQ1BQEIG//UZNITBpNMyNjCxGDjjl98NsOJWGzGzip0GNCLPk32ST1mLhhX1xvHApHbXZSlOznuFDHqSPm8xhm8B55IBzIyP5xd+/wuSAy9u1Y4aPz03kgGsee4y5ey4zfN5hsrRGGoZ48ZH1KHz/4U027XjpJQ58+CEzfHzYOGxYuW269uuvJE+cBBYLio4d+ePTT/jFz89xm0ogB7w0+3PU7zeCv15EostBrfeEMes5eDKUHZNLtunwZ59hzM9nTmgox77+2rFxuoEccG5kZKnkgPN3/cDzO19CZVDRwCWaAR9coElgk5vIAecUkkI6SngIsLESyQEzLu9i7Y9NOXykP1a3U0ikYM6LIMT8JhfHncLfv93NBG3duzPDx4dTv/zisE1F5IAzfHxYM2BAhckBZ/r6MtPXt+LkgEFBrCmch1WBHHBuZGSFyQFP/fKLfR5WiBxwwABmBQVVmBywaKyqCjngqV9+YYaPDyu7d68mB7wN1q5dS25uLuPGjaNp06bF/g0aNKjUEquSYDQaGTduHPHx8axbt44pU6bw4osvIpVK8fDw4LnnnuONN95gw4YNxMfHM2HCBAoKCoplJUpCdHQ0ly9fJi4ujqysLAwGA3PmzKFdu3Z06dKlmN5dunShbdu25da9NPTs2ZNmzZoxbNgwjh49ysGDBxk5ciRdu3a1l4J1796dw4cPs3DhQs6fP8+UKVNuCkJuh65du9KlSxcGDRrE5s2buXz5MuvXr2fDhg0ATJ48mX379vHiiy8SFxfH+fPn+fPPP2/a8F1eOENujRo1cHNzY8OGDaSnp6NSqbh8+TJvv/02sbGxXL16lU2bNnH+/HkaFd4PKoQy7xL5l+Kf5IDGggKhSU8XVqu1SpAD6gu/bzYaK0wOaLVahSYtTRgLN/LcyqbUxEQxY/p0+2bxNX/9JYxGo51Qymq1CnVSkjAX2jpjc7yImrxWRE1eK1bsO1+iTcdSM0Tn/fEieNsxEbLtmPjsYorQ6Q0iPzlZWK1Wh20SwonkgHl5oiAn5/rYOEgOqFerbaR8N9iRn18gXvz1oN1PL/56SGgNplJJsow6ndCrVMKg0ZTLJlXsfnGm1X0ivkFDcWXC08JUUCD0KpXQ5eU5bFMxcsAr54TY8D9h/cDPtrnx41Bh3vm1MKqvk7WVRvxltVpFfmrq9XnoIJFe0Twsen2jTZrcbPF/sf9n3zD+5s43hVaXXyKZmclgEPkpKbZ56AjhYeHYGDQaoc3IEFar1WnkgFkpseLI4TH2zeFbttYWqxe0FXHb5t5ynIQQ9vtFETmkozYZtdrr8zA/v0LkgBazWejy8mzzsALkgFarVWgzM6+P310mB7RYLLZ5aLFUiBzQpNfb52FFyAEN+flCm5l5fR46Sg5YOFbF7LiL5IAmvf76PKwmBywVDz/88E1kgEU4cOCAAMR3331300ZyHx+fm44v2kj9/vvvi4CAAOHp6SkmTJgg9IVjI4TNRy+99JIIDAwULi4uIiYmxr4RW4ibN60XQa/Xi0GDBglfX18BiJkzZ4qAgIBbkgF+8cUXokaNGsJoNJa4Cf2bb74RUVFR9r+7du0qJk6cWOyYAQMGiFGjRtn/vnr1qujfv7/w8PAQXl5eYvDgwSKt8HmwCO+//74IDg4WPj4+4pVXXhEvvvjiTRvJb3ee7OxsMWbMGBEQECBcXV1F06ZNxdq1a+2fHzx4UPTq1Ut4enoKDw8P0bx5c/HJJ5/YP4+KihLffPNNsXMAYtWqVfa/S9r07YjcFi1aiClTptj/njVrloiMjBRSqVR07dpVpKWliYEDB4rQ0FChVCpFVFSUeP/994XFcuumQdXkgIX4J7mQsFrRpKTgGRZmL99wBM4iRHKWPmWRJYQgLi6OdevWYTKZcHNzo3///jdFrzfKWX86nReWHEUIePvBhjzTtc5NMuclZ/HhxRQMVkGwUs5PjaPo7Of1n/X1P+VczdbyzK9HOJuWj0wq4Z1+jRgTE33b2llH9NGfO0fiiJFYVCrcO3QgcuYMJAqFc/ysUvFhx0C+GFsbqSbN9maj/tD3M/CJKLOcyvJzEVQGFa/teI0DaQcAmHjfRMY1HXdLf1e2PuWFRq1mWIcavLdwCCr1HptsAXmXvPFzG0Tnx17Fxf32td1Vza6qJqeq3zf+K3Iq08/V5ICVj9GjR5OXl8fqwuxSNarhCKrJAW8BY2Hp0F2pFS0BztSnNFk6nY4VK1bw559/YjKZiI6O5tlnny0xXVYkZ9+ZZCYtj0MIGNkxiqe71C52XI7JzJhTl/nf+WQMVkGvAG+2tW1IZz8vp9vmDDhLnxvlbE/I4JEf9nA2LZ9ATyVLxrdnbOdaZdqsV159jImJJI4bh0WlwrVFcyJ/+hGpi4tz7NLl4bpqFF8+4W4LOPyiYdgfMOTXcgUcUDl+LsKlvEs89fdTHEg7gJvcje8e+I7xzcaX6u/K1Ke80OkSOXvuRV7+MRyVeg/CCjnnfMjY25WYB5bRY/i7ZQo4nKXPf1mOs1DV7KpqcpyFqqZPNapRDefjnst0OAvOWt25E0hMTGTFihWoVCokEgndu3cnJiYGaSmrWxcyNAyavg+VzkSvxsHMGN4a2Q2dl/blanjxzFVSDCaUEgnv1QljfETltMKtir62WgU/br/AN1vOIQS0qunL9GGtCfGpnJUyU3o6V58ahik5GZf69YlauACZr69zhOtybQR/KccwmgV0fgVlj7dAUXpHjjuN3dd28+auN9GYNIR7hvN99++p71dyi8KqBqvVTNK1+Vy69A1Wqx5hgZzzPmSfDqNt37Hc128A0sLNz9VwDqrifeO/iMr0c3Wmo/JRnemohjNQnem4BawWC9mnT2MtYaf+3YAz9fmnLKvVys6dO5k3bx4qlQpfX1/GjRvH/fffX2rAkZ5XwMiZe1HpTLSM9OX7J1vZAw6zVTD1ciqPx10gxWCijpsLf7eux4TIoJsCjv+qr/M0ekb/vJ2vN9sCjuEdarLs6Q7lDjjKqo85J4fEseMwJSejiKpJzTmziwUcFbJLlwsLB0LKMYSbPyNmazF2eq1CAYez/Fwkx2I2s+D0Al7c9iIak4b7atzHkoeWlDngcLY+5ZWTnx/P4SODuHDhM6xWPfnJ7pz5rQ6SnH48NWUObR55zKGA427bVdXlOAtVza6qJsdZqGr63CuYP39+dcBRjTuGey7oMGm1/Naxo73N392GM/W5UVZeXh7z589n+/btCCFo1qwZzz77LBERpZfKaA1mxs4/RIrWTJSfK3NGtcFNaXsguqY3MijuAl9fSccKPBniz6Y29WnmVXI5yH/R1wlp+Qz8eR+7rulQyiRMfbw5Hw9shou8/A+NZdHHkp9P0vgJGC9eRB4SQtTcuciDgsotp0QU5MDCAZAaB+4B6B5fxrn0svc3vxWcNe4mrZal93fkvd3v8NXhr7AKK4PqDWJ279n4u/rfXkAl6FMeORaLngsXv+TQ4YHk55/CYpCRuCOUa9sasXXjKfq+9AY+NYLvmD73mhxnoarZVdXkOAtVTZ9qVKMazkd1eZWDqMqp+/j4eP766y/0ej1KpZKHHnrIzvxZGswWK+MXHmZHQib+HkpWPteJ6EBbv/J1mXm8ejaJPLMFT5mULxtE8miwX2WbAlQdX689kcKbf5ygwGgh3NeNGcNb0yzCp9LOZ9XpSBw/Ad2RI8j8/YlatAiX2rWcI7wo4Eg7Ae6BMGoNGreIKuHnImTrspm0fRJxmXFIJVLebPsmTzV86q6w2ZcXObmxnD37DjrdVQByL3qRvDeEsLpt6DJiPH2ja1UZP/9XUVXuG/91VJdXVaMa1agur/oHzDodYNusdm3HDjvxkdlgAGykc/bXWm0xQilLITulUaPBajbbXv+DHLAoJWxQqxFWq534SwiBsFoxFBKCWS2W66/NZvS5uaTGxmLW6+0b6Cwm03XCpRvIl8yF5EtFr4tsMuv1mPV69AUFLJ05k99++w29Xk9oSAjjx4yhRYsWt7VJCMHbvx9jR0ImrgopnzYWRHjJ0VmsvH7qEmNPXSHPbKGFuwub29RnYJDPLW0y5ufb9UrcuhWr2eywTUVjdyM5YHnHqei1PieH5D17sJrN5Rono8HIR6uO8+KSYxQYLXSM8mF2BxcaBigrZJNJqyU1NhaDWn2TTcJoJOmFF9EdOYLUy4vQH75HUTPyJpuKvpsaG4s+J6dsNhXkIBb0twcc1uGrMXrY2Evt5IAO2mQ2GLCazSRt327/bnnHyaBWcyYrnqFrnyQuMw5PhSc/9/iZx8MfASj1eiqae1az2X49mXQ6krZts81DB20q0uvazp02gshb2KTNSyE+/i2OHRuOTncVU4GCSxsiuLajFjGPP8vj//sIhczGyVrWe0RJNllMJgwqFamxsZgKChy2qei7qbGxGFSqco/Tjfc9i9FIyr59tnnooE0mrRar2cy1XbswqFQO21T0+p/kgOW1SVitWEwmErdssZEwOmhTkV5F87AiNhlUKq7t2nV9HjpgkxACfU4OKfv2YTEaHbapJHJAR2wyabWYCgquz8MbbKpGNarx38F/Nui4FTng3rfe4q+HH8as01UJcsBFTZuybvBgrqxfXyFywI3vvsus2bNJSE0FIejcuTNh27ZxrZAY63Y2/bjtAr/HpSEFvhnYiITBfdl/7AR9j5xjUabtR+jZYB/6dG5OmNlYJpKsK+vX82ffvph1uqpBDhgdzd+DBmHW6co8TlkaA0N/2M7cA9cAeKqmhN4/PMO+4UO48PvvDtu046WXOPjxx6wbPPhmm+bPJ/nNyRTs2wcKBZEzZ7B65MhbEn9lHT/OusGDmRkQcFubltSNgAX9kaSfRKeTwOi1JJ1MKZEc0FEiPbNOx5/9+hH3/fcOjdO7/eoxcv1IUgvS8E4zML3Rx7TxauYw4eGF339ndeE8rAg54KZRo1jTvz9mne4mmy6uXkVGxgb2br+f1LTfAcg67cuZ5bVwkbRAsT2WWrXqIZFKSyQHdIR0blWvXqwbPJjTc+dWyKa4779n3eDB/F0BwsMZPj6oLl1i3eOPMzMgoELkgGadjrUDBvB3BWxyJjmgLiODVb16ocvIqBA54Om5c/mzXz/MOl2FbPr7scdYO2AAZp2uYuSAAQGse/xxVJcuVQlywNNz57Ju8GBW9epVTQ5YjWr8R3HPlFdlp6XhHxxsX3GRu7raVmKkUuQuLpgKCpDIZLbXWi1ShQKZ0raSLVUqkSkUGDUa5K6uSOVycpKT6RkRwS6VCgWg8PBAKpNhUKtRenqCRIIxPx+llxcIgVGjwcXbG6vFgkmrtb0uzLYovbxsr/V6lJ6eWEwmrEYjCg8PLEYjVpMJhYcHZoMBYbGgcHe3rRBZrchcXYnds4etO3ZgsVjw9PRkwCOPUK9BgzLb9Gd8Nm+stDFwfvhII0Z2qsW8S8l8dC0bvVUQJJfxfaOadAvwviM2yd3cio1TXno6PUJC2KlS4SKXl2ucjPn5yN3ckMrlGNTqco3TkfNpvLzqLKkqPR5KGV8NbkGfRkFOselWc8+Yn0/mp5+iXrUaFArCf/wB765dnWNTfgYs6I806wzCowamwctQRre2j5PRaqWLjw9bU1LwCw11mk1lHSeZqyuz4+fyY9yPAHQM7cgn971PoH/YHbueHLFJk3uJi4lfkJW9BQCj2p2r24PQpnvQ5uFH6fzkCMwFOvs45Vy7Ro/ISHbl5aGUSKqkTZVxPd1pm/QGAw/4+LAlMxOfwMD/hE1VcZzU2dl0DwtjR0YG7h4eTrUpKyWFoPDw6vKqalSjiqOs19E9E3QU3bSsZjNJW7cS2aMHUrncYbnOqmOtiD4ajYbVq1dz4cIFAOrXq0drHx/q9e1bZlm7z2cyZt4hzFbBs13r8GzPurx2JpG/s23ZjQf8vfi+UU2ClIryGUbFbLsRd8PXyw4m8v6fpzFarNQO8uCXEa2pW8Or3HLKo48QgozPPydnwUKQSgn/9hu8e/d2jl3aLFjQHzJOg0cNGL0WghoUO+RuzmmdWceUvVNYf2U9AMMaDePVlpNI3b7T6X52lhwhrCSnLOPChS+wWDQgpKQdDSD9mD9e/iE8+PyrRDRuepOcqnDvuBfkVPv5zsipTD9X7+moRjX+Haje03ELmPV6dr36qn315W7DUX0uXLjA9OnTuXDhAjKZjH79+jGof38OTp5cZlnxKWqeW3QUs1XQv0UY3TqE0+NQAn9nq5GZzbwbGcDi5rUdCjjg3+lrg9nC2ytP8NbKkxgtVno3DubPF2LsAUdZ5TiiT9ZPP9sCDiD0k0/KFHCUSR9NJix4xBZweAbD6L9vCjicifL6J12bzugNo1l/ZT1yiZwpHafwVru3wGiuFD87Q45We4mjR58iIeE9LBYNxjxfzv4eRdrhQBp37sXIqT+UGHA4E5U1D/8rcpyFqmZXVZPjLFQ1fe4VfPDBB7Rs2bLUY0aPHs3AgQNLPaZbt25MmjTJaXpV47+Jci1vdl7H7wABAABJREFUFPE+7N69m6tXr1JQUEBQUBCtWrWiZ8+eREZGVpaeToPS05MRp0/fbTXsKK8+ZrOZrVu3EhsbC0BQUBCPP/44wcG21ptllZWSp2PM/INoDGba1/Ynol0wj8VdxApEuymZ0bg+Lb3Lxox8K/zbfJ2Sp+O5xUc5npSHRAKv927Ac13rIJUW75bkLLtulJOzYAFZP9rKioLfeQffRwc6JOcmFAUcmWfAM8SW4QisV1HVHdfnHziZeZKJ2yeSqcvEz8WPr7t9TZuQNuWW4yx9bidn2MljXE2cxeXLPyKEEYSSlP2BZJz0xtXDm0defZH67WMqfK6y6lPV/FOV5DgLVc2uqibHWahq+vwbMHr0aBYsWGD/29/fn7Zt2zJ16lSaN29eyjerUY27gzJlOnQ6HR9//DGRkZH069eP9evXk5eXh0wm48KFC0yZMoVatWrRr18/9u/fXy4FkpOTGT58OAEBAbi5udGsWTMOHz5s/1wIwfvvv09oaChubm707NmT8+fPl8/KG2AxmTj/++/27hh3G+XRJysrizlz5tgDjjZt2vD000/bA46yylLpTIyed5B0tYHaNTzQtfDn68QMrMDjwX5sbFEbj41/V9hH/yZf77uYxSM/7OF4Uh6+7grmj2nHCw/UvSnguJ0cR/TJ+e030j/7HICgiS/jP2K4Q3Ju0keTAQsetgUcXqG2DEclBxyl6vMP/H3pb0ZvGE2mLpO6vnVZ8tASe8BRHjnO0ud2yM0+zJ4t3bh06WuEMGLKDeX0kppknPAhunlrRn354x0LOKDq+aeqyXEWqppdVU2Os1DV9Pm3oG/fvqSmppKamsrWrVuRy+U8/PDDd1utalSjRJQp6Khfvz4nTpxg1qxZqNVqYmNjWbFiBYsWLWLdunUkJiZy8eJF7r//fp588klmzZpVppPn5uYSExODQqFg/fr1xMfHM23aNPz8rvM/TJ06le+//54ZM2Zw4MABPDw86NOnD3oHU7BWo5GjX3+NtbCN4t1GWfQRQnDs2DFmzpxJamoqbm5uPPnkkzz88MMoFIpyyTKYLTzz62HOpWvw9VSS3NSHgwU63GVSfmhUkx8bR+FutTjFR/8GXwshmLXrEiPmHCRba6RxqDdrXuxM1/pB5ZLjqD4XP/+c9A8+BMB/7FgCnn3WITk36ZOfDvMfhsyzNwQcdSukb4X0ufFzYeW7o9/x1u63MFqNdIvoxqJ+i4jwiiiXHGfpczuYzVrOnfs/jh5/EpM8HSmeJO+pw+nffBAGD7qPeYbH3v4QT/+ACulZXlQV/1RVOc5CVbOrqslxFqqaPv8WuLi4EBISQkhICC1btuStt94iKSmJzMxMACZPnkz9+vVxd3endu3avPfee5hKCOxmzpxJZGQk7u7uPPHEE6gKW1bfiA8//JCgoCC8vb159tlnMZb2rGEw8PrrrxMeHo6Hhwft27dnx44dTrO7Gv9OlKm8atOmTTQqbJ13K0RFRfH222/z+uuvk5iYWKaTf/HFF0RGRjJv3jz7e7VqXSc/E0Lw7bff8u677zKgsI3nwoULCQ4OZvXq1Tz55JNlOs+NUHh4MKQwU1AVcDt9dDoda9eu5XRh2jk6OprHHnusxE11t5NltQre+P0E+y/lIFdISW/mi1BIaO7pxowm0dR2dymTnLKiqvtaazDz5ooT/H0iFYDHWoXz6WPNcFWUzi7uLLsMR44QZTSB1YrvE09Q443XHSK+u0mf/HRbhiPrHHiF2UqqAupUWF+H9bkBWpOWt3e/zfak7QCMbzael1q9hFRy8/pHVZiH2dk7OZvwHnp9MgCWvAac/NOKRS+nRq069HvxdQIi7k5ZaVXwT1WW4yxUNbuqmhxnoaroI4RAZ9bdlXO7yd0qRH6q0WhYtGgRdevWJSDAtgji5eXF/PnzCQsL4+TJk0yYMAEvLy/efPNN+/cuXLjAb7/9xpo1a1Cr1YwbN47nn3+exYsX24/ZunUrrq6u7NixgytXrjBmzBgCAgL45JNPStTlxRdfJD4+nmXLlhEWFsaqVavo27cvJ0+epF69ys+4V6NqokxBx+0CjhuhUCioU6dsDzh//fUXffr0YfDgwezcuZPw8HCef/55JkyYAMDly5dJS0ujZ2FPcAAfHx/at29PbGxsiUGHwWDAUEg4BLbuF2DrsCHFRmZ0bulS6g8dikypLLNd/4S2UG7R/46iNH2Sk5P5e/161Go1EomEzjExtG3TBik2e8ojC+Cb7Zf563gKSKCguR/CW8HYGj68Fu6Pi9mARm0okxxn2FYeVIavr2ksTPwjngtZBcilEib3rM2TrUMx67RobvN74wy7DMeOkfnyRDCZcOvRA89XJqEtJOIqL27UR27Mxe2PJ5HmXMDqGYru8WUIRRCUwXeVPadTtCm8sX8yl9SXUEqV/O++t+gT2YeC/JIJwO7mPDSZcriaNI3snHUAyCRBJO6sQeYZKxKJjFb9+tP6kUHI5PISr8XScCfuHdVyqv18p+RUpp/Le205AzqzjvZL2t/x8wIceOoA7ory7aVcu3Ytnp6eAGi1WkJDQ1m7di1SqW0h591337UfGx0dzeuvv86yZcuKBR16vZ6FCxcSHh4OwA8//MBDDz3EtGnTCAkJAUCpVDJ37lzc3d1p0qQJH330EW+88Qb/93//Zz9XERITE5k3bx6JiYmEhYUB8Prrr7NhwwbmzZvHp59+Wk7PVOO/Aodb5prNZmbOnMmOQn6ImJgYXnjhhXK1nCs69tVXX2Xw4MEcOnSIiRMnMmPGDEaNGsW+ffuIiYkhJSWF0NBQ+/eeeOIJJBIJy5cvv0nmBx98wIcffnjT+82A0tevqxAkEurffz8Nu3ZFIpWizcnhyMqV5CYnOyxS36ofut7PA2Bs6gvuBnymTsH1wB4nKf3vgbFOO7SPvAYuHkjys/H883PkyWfu2PlrubjwTmRN3GUyjmo0fJN87f/Zu86oqK4uuqfSQewi1Yhg7+0z9hp7iSU2sBt7STRRE1sssfcYK5bYW+wNxY4VKwgCKiC9Te9zvh9TBAVlCjCa2WvNWo+ZN/udfe95j3fn3Xs2VGbgLe3IwJYAe/iUZiGJp8boXSIkZFlGRWyqYg/VBE/AmQ1kK8BaFwdGbPH8mvg51GvniB7jSsHBhQW1ihB5nQV5TGWQigWBUIzbdx8jLSOruMO0woqvHioAz4AiLZkrVoi/mEFHYGAg3r17h7/++guAZsr6pk2bcPbsWdy7dw9eXl44ePAg1q1bh5iYGAiFQiiVSjg7OyM1NRWA5p5p9+7diI2N1fPyeDyUKFECISEhaNmyJQIDAxEXF4crV67o93ny5Anq1KmDN2/ewMvLC61atUKdOnWwZs0anDlzBl27doWDg0OueGUyGXr37p3nvZsVXzYKWjLX6OLckyZNQlRUFHr37g2FQoHdu3fjwYMH2K91fy0I1Go1GjRooB/11q1bF8+fP9cPOozBr7/+imnTpun/5vP58PDwwPn4eLNetER8PjppeR3MyMvn83H23DkkaAcY1apWRds2bWDzxx9Gc559mYYZx18CBCgqO6Gpf2ks9ymDsu3OmCvsQoW52lpNhE034rD5pmb6X113Z6zq3RhllvQ0U6SfhyI2FqljxkLN48Gmfj10W70aPcxQG54hTIbd4f5gZsVC7VQRzsMPYv98L4M4CiunT745ieWPVwKkhH8JP/zZaSnKDitrNn5zQSZLxOu3i8Dj3wYAcNneiL9ZAbKobACAX7NW+F//wfjJzrSqboXVzlbkhrWdiwaF2c58Ph8Vi7gqph3bDncH3i3SY+Y8tqFwcHBA5crv1+tt27YNLi4u2Lp1K7p06YJBgwZh/vz56NixI1xcXHDgwAGsXLnSnGF/BKFQCBaLhYcPH4LFyv1zr+6pjBX/TRR40HH8+HH06tVL//fFixcRGRmpT6iOHTuiSZMmBh28QoUKqFatWq73qlatiqNHjwKA/rFeSkpKricdKSkp+daVtrGxgY2NzUfvOzo7w9HZGUqZDE83bkSt8ePBzmM/Q+Gg5TUWOeOJjI7GqVOnIJVKweVy0aVLF9SuXdsoLp22A+FJ+OXfSIAAtbs9Zrarggle5cD8xLxRc7WRJbU1T6zA5P0PEfIqAwAQ+D9vzOpcFVy24VY1xuqSJyQgadJkqHk82NasiYrr1+N5UJDp7Zz+BsptHcFUZwIuHmAGnoaDq7fRfObK6Wo/jsHaZxuwN2IvAKCTdycsaLagwP9YiyoPiVSIT9iNmJiVUKslYDK44Mrb4f7OeKjk2bB1ckaH0RPgU7u+xeQzYHnnqaXx6GBt58Ll0aEw2lltclSGg8FgGDzFyZLAYDDAZDIhkUhw+/ZteHl5Yfbs2frP3759+9F34uLikJiYqJ8KFRoaCiaTCT+/935OT548gUQigZ2dnX4fR0fHPK0S6tatC5VKhdTUVDRv3tzcEq34glHgO64dO3agZ8+eSExMBADUq1cPY8eOxfnz53Hq1CnMmDEDDRs2NOjgzZo1Q2RkZK73oqKi4OWl+YXWx8cH5cuXR3BwsP5zPp+Pu3fvomnTpgYdSwdSqZB05w5IZY4JLaaDVCokhIbi9JkzOHz4MKRSKSpWrIixY8caNODQcem0qYmw4OlbzNz/GFARuGXtcGRQA0zyLv/JAceHPKbAUto6IomPbhtuIuRVBjhqJZb3rIp53asbNeAAjNOlSElF3LDhUKamwsa3Mjy2/A2Gra3p7cN7B9benrBVZ4Kc3TWLxk0YcJgDpFIh5sFNTLw2ST/gmFBnApa1WGbQL3lFkYcC4Us8ePA9Xr36A2q1BE4O9ZD5oB1Cd7yGSq6ETx1NKVzfRv+zmHzWwdLOU0vjMRcsTZel8ZgLlhbPlwKZTIbk5GQkJycjIiICEydOhFAoRLdu3eDr64u4uDgcOHAAMTExWLduHY4fP/4Rh62tLQICAvDkyRPcuHEDkyZNQr9+/fQ//AKAXC7HiBEjEB4ejrNnz2Lu3LmYMGHCR+s5AE3F00GDBmHo0KE4duwYXr9+jXv37mHJkiU4c+bLmGFhRSGBDMCBAwfI19eX1q1bR1lZWTRt2jSqV68e1a5dm8aNG0epqamG0NG9e/eIzWbTokWL6NWrV/TPP/+Qvb097d27V7/P0qVLqUSJEvTvv//S06dPqUePHuTj40MSiaRAx+DxeASAeDyeQbF9DgIej+oAJDCRNzExkdavX09z586luXPn0qVLl0ipVJrEmSyVU487EeQx/xx5zTxNNf+8TElCqUmcxQlT2vpEWAL5zTlLXjNPU7OlwfQsIbsQIvw0FJmZFNO1K4X7+dOrdu1JnpJiHuLsBKI1tYnmOhOtrkGU+cYkOnPl9Ovs19T1WFeqEVSDGu5tSJfeXDKJrzCgVEopOnoFBV+pQpeDK1HItdr04NoCWj+sL63o14XWDO5NYRfOkFqtNvuxzdXOVnwa1nYuGhRmOxfW/++ckEgkFB4eXuB7CktCQEAAAdC/nJycqGHDhnTkyBH9Pj///DOVKlWKHB0dqX///rR69WpycXHRfz537lyqXbs2bdq0idzc3MjW1pa+//57yszMzHWcHj160O+//67nGjVqFEml7+8rWrZsSZMnT9b/LZfL6ffffydvb2/icDhUoUIF6tWrFz19+rRQ28SK4kFBzyODBh1ERFlZWTRq1Chq1KgRPXr0yOgAdTh16hTVqFGDbGxsyN/fn7Zs2ZLrc7VaTb/99huVK1eObGxsqG3bthQZGVlg/g8vWgqplO7MnUsKqWk34aZeaNVqNd2+fZsWLFhAc+fOpeXLl1NMTIxJMSmkUtqwdiNVvfqYPBZfIK+Zp6nOokuUwjPsYmquNirOtpYrVTTv5HPymnmavGaepiHb71JapqDIdSkFAort8z2F+/lTVIuWJIuPN4rnI2TH6wcc6lU16OHcqcWe00REtxJuUdN/mlKNoBrU7lBbisiIMJqrsPIwM/Mu3b7Tli4HV6LLwZUo7NEoOrNpHq3o14VW9OtCe36ZQhnv4j/LYyzMdZNmaeeppfFY27loeAqzna2DDius+DJQ0PPI4IXkJUqUwJYtW3D9+nUMHToUnTp1wsKFCw2qWpUTXbt2/aR7JoPBwIIFC7BgwQKj+D+CWg1hQgKgLo7ZohoIhUKcOHEC0dHRAICSEgkCJ06EcynjzcVkajX+iE3G1hpNwXmUDhZPASdbNg6PbIKyzgb2jbnaqJjaOlUgxYR9Ybj3OhMAMKF1ZUxtXwUkkxapLrVUioQfx0H6/DlYrq7w3LEdXPccBnjGtk92vMaHI+sNUMILqh+OInP2n8Wa00SEfS/3Ydn9ZVCTGt48R2zrHoRyru6f/3J+MHMeKuU8RL9eh3eJmmIXXG5ZlLILxM2toRBk3AeDwUTj3v3QpPcAsNh5XBot4NqRC5Z2nloaj7lgabosjcdcsLR4rLDCCrOjwCVz4+Li8NNPPyEiIgK1atXCihUr9MYwBw4cwJo1a/Ddd98VdrwGg8/nw8XFxewl94R8Ppq7uOAGj2fQ4rno6GgcP34cIpEILBYLHTt2RMOGDU0yBIoRS/Hji7d4KhCDHcEDO14ELpuJf0Y2RkPvkkbzWgoMaeuHb7Mw7p+HSOHL4GjDxqp+tdGhevlPfqcwQHI5EiZOgvDaNTAdHeG5Kwh21aubTpwdp3Eaz36rWbsRcBooYZ7qLsbmtEKlwKK7i3D0laYARM/KPfFbk9/AZRlf+9/cSE27gMjIeZDLNWUiK5Tvh9QwDzw8dQ4gQolyFfDdhGlwq1JwTyJjYWw7W2EYrO1cNCjMdi6s/985UdBSn1ZYYUX+KOh5VOCVtEOHDgWTycTy5ctRtmxZjBkzBlwuF/Pnz8eJEyewZMkS9OvXzyzBFwaUEo0ngDQ7GyGTJkEplUIpkUCpNRJUiMXvt0UiqOTy99sKBQBALhRCrVRqtgUC6IYJMj4fau3iNxmfD1KrQUSabSKQWg1RZiYuXLiAvXv3QiQSoUyZMhg1YgRq+PjgxvTpkAuFkAs1JmkqhQIKkUizLZfrt5UyGRRisX5bKZHgUHIm2t+PxFOhBI5xYrDjRWAAWNO/DuqUtTVYk1qphFIqxdXx4yHXHjc/TTKtcZNapXq/rVRCrjW5kwuFuDphApRSqUGaAGj6RyrV950uUfPrJ7lQiD23YjFgyx2k8GWoXMYB/05ohlaeDnp94tRUXJsyBUqp1GhNaqUS4vR0XJ82DTKBIE9NCrEYCT/9DOG1a2DY2sJt7RrYVa/+kSYZj4fr06ZBkplZsH5KjwWCugDZb0GuPkDgGciYLpCLRLg+bRrEqalGa9LlHkN73IL2UxovGSMvjMDRV0fBZDAxrc4U/F5vFm5PmQ4Zj2dw7unyTa1S6fNQIRYbrUkmS8XjsNF49mwc5PJU2Nl5w6v0UjzYKcDDk2cBItRs0wE/LFyOsh7eeeaerm8kmZn6a4exmgBAro3XlH5SKRSQZGRo8pDPN/h8ynnd0+dhRobRmmR8PhRiMa5NnarJQyM1KUQiKKVShEyeDElGhtGadNtswCRNpFZDIZFo8lAiMVqTju/qxImauE3QJMnIQMjkye/z0AhNRKS5Hk6dqskBIzXlvEaoTNCkEIkg4/Pf52EOTVZYYcXXgwIPOh48eIBFixahU6dOWLVqFZ4+far/rGrVqrh+/Xou5/DixsaNG1GtWjV9Ra0bP/8MAAj9/Xck3roFAAiZOBEPliwBAFwMCMDTjRsBAKd790bE7t0AgGPt2iH2xAkAwMHGjRGvraR1tFEjlNYea4e7O7JevgQAbHZxgTAxEXKBAJtdXCAXCBAXHo5Vv/6KO3fuAADsHj/G6NGjQW/fYp+29G/C1as42FhjSBR74gSOadsyYvdunO7dGwDwdONGXNT6l9xYthz99/+LSRFxEKsJnlGJUL7MBgAMYr5B55oVDNa0p2pVpNy/DwB4vm0bsrSVxfLSJExMxGYXFwBA1suX2KGdNpRy/z72aB3sE65eRZTWt6Ugmh4sWYKQiRMBALdnzcLtWbMAAHd+/hm1tG2dlyapQoWB49fit1MRUKgI1ROfYr2/FN+UccylKahyZUgzM03SFB8cjCMtWgAAXp88+ZEmIsLLgQMhvHgR4HAgbNwId3fu/EhTyMSJeLh8OQAgeOTIz/bT6db1od7aAciOA5/HQGqtBYCLuyb3tP20tVw5ozXpcs8TwLkePQrUT1FZUeh7sBsepYXBkeOIkc98UfV4PBgMBt5euIBnmzcblXs5z6enmzZBZISmuODLODWlPkLvdkBGVjBISfCoOAqZ5+vh3z+CkBb3Bhw2BxXVXHQYMwlPV6/JM/dyXiOCR45E+pMnJmva4+EBewAKE/op9sQJ/Nu5MwAg8p9/DDqfPrzu6frp3IABRmva7OICUWIi1HI5tpYrZ7Qm3fmUGR6OcwMGGK1Jdz61BhCtvQYZo0mYmAiFQICnmzZBYaKmyH/+wetTp0zWdG7AAGSGh5ukSS4QYGu5clDL5RCZoCli924EDx4MAAjfutVoTad790bkP/8AAP7t3Fmv6VibNrDCCiu+HhR4elXLli3h7u6OgIAAXL58GRERETilvYBaMnSPZzOSk1GyXDn9Ly5sW1vNLzFMJtg2NlCIxWCwWJptkQhMDgcsLlezzeWCxeFALhSCbWsLJpuNzHfv0M7dHdd5PHAAcBwcwGSxIOPzwXV0BBgMyPh8vIiOxvnz56FQKGBnZ4fu3bqhkrs7bJydNU8VJBJwnZz0Txi4jo5QKRRQy+XgODhAJZdDrVCA4+AApUwGUqnwQgmMefEab6UKsBhAf5YtTp2PhUJFCGzsgTmd/YzSJBcIwLazA5PNhozPz1OTXCAA18kJIIJcKNToUKmgEIlM0sSxt9f86qVWg21nl6ufslNS0LZ8eVzj8WDDZufSlCRSYvzBZ3j2jgcmA5jZyR+B9cqCo9VRlJpUcjmyNm5C5s6dAJOJiqtWwb51qzw1GZR7wnegnV3A4CcAJb+B/PsDYJetZHZNcrUaLVxcEJyYCNcKFT7ZTyHxIZh993eIlWJ4OLpjQ9uN8LSpYPT5ZM5+UrLSERExC9m8ewAAJ8eaqFhyEm7tu4z4F5ofSyrVa4g2w8bC3tHpk7lnyjUiP02ZCQlo6+GB69nZ4DIYRX4+FYam4r5G5KVJKpOhtYsLLqelwaV06a9CkyX2Ez8jA23c3BCSmgp7BwezakpPTESZihWt06ussMLCUeDzqKAr09+8eUN9+vShatWq0cCBA+ndu3cGrWwvLnxUvUospksjRpBCLDaJ93MVO8RiMR06dEhfCnfnzp15VuAwJB6VWk2b3qaQ+9XHVO5KGNW79ZyORCVTzbnnyWvmaRoddJcumEGbudqosNv6RlQa1ZmvrdI1/wLdfJVWJPHkx5O2aROF+/lTuJ8/ZeUoWWhSPBmxRKuqa8rirq1LxPv4vCuqnCbSVF3b+nQr1QyqSTWCatCI8yMoW5q7DHFx5Y9KJafXrzfRlav+dDm4El25Wp3exu2gp8HnaFW/rppSuEN605NL54wqhVuU7VyU8XytPNZ2Lhqewmxna/UqK6z4MmD26lVeXl44cuSIKQMhywCTCUd3dyAPQxtzIS4uDkePHgWPxwOTyUTr1q3RrFmzPE10ChpPmlyBSRFxuJqpmWPbpYwLZlYog8Atd8GXKtHAyxUr+9TA89dm0GauNiqktiYibL4Wi+UXXkJNQM2KLvhrcD24u37GRbYQdWXu3oO0tesAAOV+/QUl+vQxiicXMl9rFo3zE4BSlTWLxp0rGM5jJshUMsy9PRdnYjXmTgP8BmBGoxngMDmFE48BPHz+U0S8nAWhMAIAULJkc/h4/Iqbe/9F5G3NAvfy3/ii88Sf4FqhYqHHUySwtPPU0njMBUvTZWk85oKlxWOFFVaYHQWaXiUSieDg4FBgUkP3L0wUZfUqlUqFGzdu4Nq1ayAiuLq6ok+fPnDPWSbVCIRk8jExIg5pciVsmQws9K2IHq7O6L/lLiKS+KhUxgFHx/4Prg6WUy3InMjZ1rCxx8+Hn+Dc82QAQN/67ljYswZsOaxiiy/72HEkaecsl54wAWUmjDedNDNWO+B4B5Ty1TiNOxVuFa5PVaFJE6dh8tXJeJb+DCwGC782+hX9/fsXajwFgUolRmzsGsTF7wSgBofjCl/fOZCleuHC5rUQZqSDwWSiSe8BaNK7P5is4ssTHaxVlYoG1nYuGlirV1lhhRVmrV5VuXJlLF26FElJSfnuQ0S4dOkSvvvuO6xbt87wiIsICrEYZ/r21VfZMBeys7Oxa9cuhISEgIhQq1YtjBkz5rMDjk/FI1ersTAmEQOexCJNroS/gy3ON6iCAeVKYvy+MEQk8VHakYtdwxrB1YFrNm2WxqNDbLoYPTfewrnnyeCwGFjUqwaWfV+rwAOOwtDFv3gRSXPmAABKBgSg9PhxRvHkQkbM+wFH6SqfHXAUVk7r8CLjBQacGYBn6c/gYuOCLe23fHLAUVT5k5FxA6F3v0Nc/HYAapQv1wMN6p1G5MU0HF30G4QZ6XCt4Ia+sxYi69BxqLSVcgornqKGpZ2nlsZjLliaLkvjMRcsLR4rrLDC/CjQ9KqQkBDMmjUL8+bNQ+3atdGgQQO4ubnB1tYWWVlZCA8Px507d8Bms/Hrr79izJgxhR230WCwWKjQtCkYZvzF88WLFzh16hSkUim4XC66dOmC2rVrmxTPW4kMY1+8RZhAcwEOcCuFeZUrwpbJwM9HnuLGq3TYcVjYEdgQHiXtzarN0ngAQO7bBD8EPYZIrkJ5Z1tsGlwP9TxdiyUeHY/47l0kTv8JUKvh8n0flP1lpkF+K3nGoxtwCBKB0n5AwCnAqZzhPGbC+dfn8dut3yBVSVHJpRI2tNkAD+dP+4IUdv4oFFmIerUIycnHAQC2Nm7w818ItcATh+cuRHr8WwBArXad0GrISDAYDKRZWD6bA5Z2nloaj7lgabosjcdcsLR4rLBcvHnzBj4+PggLC0MdbQXQDxEUFIQpU6YgOzu7SGOz4tMocPUqQLNW4fDhw7hx4wbevn0LiUSC0qVLo27duujYsSO+++47sCzsglGY06talS6NX/ftw7PnzwEAFStWRJ8+fVCypGmGfMdTsvBzZDyEKjVc2Cys8vdAlzIlAACrLkVhXfArMBnAtoAGaOP/6RvSLx0qNWHp6WfYejseANDIpyQ2DqyHMk42xRqX+NEjxA0fAZJK4dSpEyquXGH6P8uMGI0PhyAJKOOvGXA4ljVPwAVAzmkS9k6O2PR4E/5++jcAoHnF5ljWYhkcuY5FFs+HICKkpJxC1KuFUCgyATDg4R4Ab+/JeHL+Em4d3AOVUgl7lxLoMGYSvqnfqNhi/RSs036KBtZ2LhpYp1cVL5KTk7Fo0SKcOXMG7969Q9myZVGnTh1MmTIFbdu2LZIYQkJC0Lp1a5QoUQJJSUm52vH+/fto1EhzLTbgdvOTKMigQyKRQCAQoGzZovsf+l+G2c0BAcDT0xPTp0/HiRMnEBYWhpcvX+LmzZtYv349unbtanEDjpzQGRVJMjJwrF07jQmVCeaACa9fo+Xo0foBR7NmzTB8+HA4sNkGGbSJkpNxvGNHyHg8ZPH4mBwRhx/D30KoUqOxiwMu1amEDvaahbr7bsdiXfArAMCCrv5o4aW5COvMlxQiEY62a6f3ojDG8FCtVGp42rbVx2mskZ6Mx8PRtm31xzPUHFAhkWDOifcDjqGNKiJoYE24apeuGGrQJkpKwrEOHfRGVMYa6WXfuInYQYNBUinsm/0PFZf9qS81+TlNOU2ypJmZON6xI8RpaVAmhgM7OwOCJJD2CYeC4VAg4y8Zn4/jHTtClJRkFnNAPi8d00Om6wccgdUDsbrZCtgomZ/VpJTJPs5DI430dHkoFwggkbxD2KNAvAifCoUiE/Z2ldGg/hGUdR6JowsX4Po/O6FSKuFTpz4Clm+AT+16ek3S7Oz3eWiEMaXuHBKnpeFY+/ZQiEQWYQ4oTk3F8Y4dIc3KMskcUJ+HqakmGenJBQIc69BBk4cmmAMqRCIca98e4tRUozWZ0xxQLhRq8lAoNMkcUJqVpc9DUzSJU1Nz56GR5oC666FcILAIc0BpVtb7PLSaAxYIb968Qf369XHlyhUsX74cz549w/nz59G6dWuMH2+GtYUGwsnJCcePH8/13vbt2+Hp6VnksdjZ2VkHHBaIr7ZMRH7mgHcXLAAYDDA5HKPNAYkIxzZtglPp0nB0cIDr4cOo5+YGFotlsOnc/gYN4Nu3L67cCkWLczdxMDkTTCJ0Cj6No3Uqg39wP0737o2rkamYc1JjCDWhdWVUvrTnI/MlJocDtUyGR6tXG6wJeG8oxeRwkHT7NnixsQCMN9J7d+MGsiIiwORwDDYHvDVrFib/vhP778WDQWpUPb0SM9pVwtXhw4w2PNzl5we3Zs3A5HCM1vR23z7EjRoFFhHg6Ym7L16AweUabHgYMnEiHq1eDd++fXF30hCot7YHhMngi+3wkvMD4Fi2wMZfvNhY+Pbti21ubiabA1YoxcGQQz1xOe4y2MRCrzslML3BdLz4a3OBjb+YHA7k2dl4vm2bUf2kMzNjcjhICLmCNzFbEXq3I7J4N8FgcFCx1Ajca3ER755kYveMCUiMegmOjS0at+uCzI3bYe9SIpemt+fOgf/mDZgcjlH9pLtGXBk7FraurmByOBZhDniye3f49u2LqIMHTTIHfL5tG3z79sX5QYNMMgeUpKWhUrdu2ObmZpI5IJPDgYObG84PGmS0JnOaA6qkUiRcuQKVVGqSOWDUwYMQJyeDyeGYpOn8oEFwcHMDk8MxyRxwm5sbKnXrBklamkWYA0YdPAjfvn1xsnt3qzlgATFu3DgwGAzcu3cPffr0QZUqVVC9enVMmzYNoaGhADQzVHr06AFHR0c4OzujX79+SElJ0XPMmzcPderUwd9//w0PDw/Y29ujX79+4PF4AIDr16+Dw+EgOTk517GnTJmC5s2b53ovICAAO3bs0P8tkUhw4MABBGjzQoeMjAz88MMPqFixIuzt7VGzZk3s156nOqjVaixbtgyVK1eGjY0NPD09sWjRolz7xMbGonXr1rC3t0ft2rX1BsyAZnpViRIlPtK5Z88eeHt7w8XFBQMGDIBAO7DWHXPJkiXw8fGBnZ0dateu/XVUbbUkmLtWr6VBV+c7IzmZiIgUEgkptHWEFWIxKaRSIiKSi0Tvt4VCUspk77flciIikgkEpFIoiIgoNjycRvTqRSnJySTl8UilVBIRkZTHI7VKRWq1WrOtVpNapSKpts64Sql8v61QkJTHoy1xqeSh9d6oc+s53UjLIrlQSERESpmMwl4lUdXfzpHXzNM05Z8HpFarSSGV6uuZm0uTjM/Xb5uiScbnv98WCDQ65PJcmnTbCqmU5CKRflunad3FCPKaeZq8Zp6mnZefUz1tHfji1CRPSKCoFi0p3M+fYnv3IVlmpkGa8uyn1EhSL6us8eHY2JTkqW+LrZ9uxd6kGmv9qUZQDWpxoAU9fHffOE1myj2BIJLuhvagy8GV6HJwJbp3tw8JBK9IxMumE38uoBX9utCKfl1o769TKCsp0Wy5V9jnU0Z8PNUBiJ+dXWTn09d4jficJgGPRw0Ayk5L+2o0WWI/ZSYmUh2AslNTza4p7d27IvfpUKvVpBKJiuVliH9QRkYGMRgMWrx4cb77qFQqqlOnDn377bf04MEDCg0Npfr161PLli31+8ydO5ccHByoTZs2FBYWRteuXaPKlSvTwIED9ftUqVKFli1bpv9bLpdT6dKlaceOHUREdPXqVQJAkZGRZGNjQ2/fviUioj179lDt2rXp+PHjlPN2MyEhgZYvX05hYWEUExND69atIxaLRXfv3tXvM2PGDHJ1daWgoCCKjo6mGzdu0NatW4mI6PXr1wSA/P396fTp0xQZGUnff/89eXl5kUKb9zt37iQXF5dcOh0dHal379707Nkzun79OpUvX55mzZql3+ePP/4gf39/On/+PMXExNDOnTvJxsaGQkJCCtwv/1UU1KfjPzPo0F205EIhHWjSRH/RNBbmMERKkylo4MNIKncljMpdCaOApzGUIVfk2icuQ0T1F14ir5mnadDWUJIpVPnymUtbcfPsvv1aP+DYej3GbOZTpuhSpKbSqw4dKNzPn151+o4ON2pkevu8DSPxL676AQcJP21umC+PGfrrevx1qru7LtUIqkG9jveiREGi0VymxqNSSSkmZjUFX6lCl4Mr0dWrNSk+4R9Sq1X0+skj2jxmCK3o14VWDuhGd47s199QFVY85uaxhHz+L/BY27loeAqznYvDHFAlEulNXov6pdIO2gqCu3fvEgA6duxYvvtcvHiRWCwWxcXF6d978eIFAaB79+4RkeZmnMViUUJCgn6fc+fOEZPJpKSkJCIi+vPPP6lq1ar6z48ePUqOjo4k1PaVbtCRlZVFPXv2pPnz5xMRUevWrWnt2rUfDTryQpcuXWj69OlERMTn88nGxkY/yPgQukHHtm3bPtIVERFBRHkPOuzt7YmvHUgTEf3888/UuHFjIiKSSqVkb29Pt2/fznWsESNG0A8//PDJ2K0o+KDjq51elR+YXC7qTZsGJrd4PS1uZgnQ9v5LBPPE4JIaiyqVx84aPijJeV9QLFssR+DOe0gXyuBf3gmbBtcDl51/l5lLW3HynAh7h9/+fQEAmNSmMkY2r2RSDKbGAwCq7GzEDR8Bxds4cNzd4b51C2r/9JNp7ZP6EuyDfWFnowKVra5ZNO5Q2igqU/srNCkUU0OmQqFWgPGIj79b/IUKjnmYEBZBPNnZD3D3Xje8frMeRErYyauhUYOzKFemD67u2qophZuVCVc3dwxcuAJN+gz4rPeGpZ0X5oKl6bI0HnPB0nRZGo+5YGnxWDqoAIuyIyIi4OHhAQ+P9xUHq1WrhhIlSiAiIkL/nqenJypWfG+a2rRpU6jVakRGRgIAAgMDER0drZ+yFRQUhH79+uXpxzZ8+HAEBQUhNjYWd+7cwSDtNMmcUKlUWLhwIWrWrImSJUvC0dERFy5cQFxcnD5umUz22YXwtWrV0m9XqKD5n5WqXQuWF7y9veHk5JTrO7r9o6OjIRaL0b59ezg6Oupfu3fvRkxMzCfjsKLgKLAj+dcCFocD3759i+34CjVhxZtkrHubAgLga2+Dv6t7o5qjXa79pAoVRu1+gJg0ESq42CJoWCM423LyJtXCXNqKi+dyeAqmH34CAAj8nzemtq9icgymxAMAKqEIcaPHQPbqFdhlysBz5w5w3d1Na5/UCGBXNzBEaUC5mmAEnATsja94Zkp/PUx5iElXJkGmkqFFhea4tfEv2C20+/wXzRyPUilAdMwKvHu3FwDA5ZZGlSrzULZMJ6S+icW5DVORkaD5h1S7Qxe0HDwMHJuCVZqxtPPCXLA0XZbGYy5Ymi5L4zEXLCUehp0d/B49LLZjFxS+vr5gMBh4qV2vU5goW7YsunXrhp07d8LHxwfnzp1DSEhInvt+9913GD16NEaMGIFu3bqhVKlSH+2zfPlyrF27FmvWrEHNmjXh4OCAKVOmQK4t+mBXwHbgcN7fE+nK1avV6gLtr/uObn+htmjBmTNncg3AAMDGpnirZX5NMPhJh7e3NxYsWKAfkX5pkAuF2FO9erFUxYiTyNAr7BXWagccgyuUwin/injYuEGueNRqwvRDT3D/TRacbNkIGtYI5V0+f4NlLm3FwXM7Jh3j9j2CSk3oXa8ifu9azSDPC3PHAwBqmQwJEyZA+vQpWC4u8NyxHVwPD9PaJyVc48MhSoO6bHUc3JIOudq0X/aMjedp2lOMDx4PiVKCZhWbYWHDBWCoTArFqHjS0i4j9G4n/YDDrUI/NGl8ES62zfB3q2bYN3saMhLi4FDCFb1/mYd2I34s8IDDmHgKm8dcsDRdlsZjLliaLkvjMRcsJR4GgwGmvX2xvAz5n1eyZEl07NgRGzduhEhbQSwnsrOzUbVqVcTHxyM+Pl7/fnh4OLKzs1GtWjX9e3FxcUhMTNT/HRoaCiaTCT8/P/17I0eOxMGDB7FlyxZ88803aNasWZ5xsdlsDB06FCEhIRg+fHie+9y6dQs9evTA4MGDUbt2bVSqVAlRUVH6z319fWFnZ4dgbWGEokC1atVgY2ODuLg4VK5cOdcr55MiK0yDwYOOKVOm4NixY6hUqRLat2+PAwcOQGai029Rgm1rixarVoFdxPW4T6Zmo92DSDzgi+HMZuLv6l5Y4e8BZwf7j+JZfDYCZ54lgcNi4O8h9eFX3ukTzO9hLm1FzfMkPhujdj2AXKlGh2rlsKxPLTCZ5h1wGBIPAJBCgXdTpkIcGgqmgwM8tm2Fja+vwTy5kBIO7OoGiNOB8rWAIf+iydK1xdJfERkRGHt5LEQKERqVb4Q1rdaAyzLPtIaCxiOTpeHZ84l4+mwMZLJk2Nl5oW7dvahadQnEWRIcX7EQovIloVapULlhUwxdvgE+dRsUWjxFxWMuWJouS+MxFyxNl6XxmAuWFs+XgI0bN0KlUqFRo0Y4evQoXr16hYiICKxbtw5NmzZFu3btULNmTQwaNAiPHj3CvXv3MHToULRs2RINGry/ltra2iIgIABPnjzBjRs3MGnSJPTr1w/ly5fX79OxY0c4Ozvjjz/+wLBhwz4Z18KFC5GWloaOHTvm+bmvry8uXbqE27dvIyIiAmPGjMlVUcvW1hYzZ87EjBkz9NObQkNDsX37dhNbLH84OTnhp59+wtSpU7Fr1y7ExMTg0aNHWL9+PXbt2lVox/3PwdhFIw8fPqSJEydS6dKlydXVlcaPH08PHz40lq7QUFgL0Qq6eE6kVNG0iLf6xeKdH0TSW7E03/2334jVL6I+EZaQ735fCyKT+VR7/gXymnmaBm69QxL5x4uCzbVQsaBQq1SUMP0nCvfzp4hatUmYo6KG0Uh+TvSnj2bR+ObmRKIM0zmNRFRmFH27/1uqEVSDhpwdQiK5ZvFiUbWzWq2md+8OUci1OnQ5uBIFX/GlV9HLSKmUkFqtpuchl2ldwPe0ol8XWjv0e3p29ZJBVV0sHUWdz/9VWNu5aFCY7VwcC8m/NCQmJtL48ePJy8uLuFwuVaxYkbp3705Xr14lIqK3b99S9+7dycHBgZycnKhv376UrK3mSaRZYF27dm3atGkTubm5ka2tLX3//feUmZn50bF+++03YrFYlJiYu9BIzoXkeeHDheQZGRnUo0cPcnR0pLJly9KcOXNo6NCh1KNHD/0+KpWK/vjjD/Ly8iIOh0Oenp76Sl26heRhYWH6/bOysgiAXndeC8lr166dK67Vq1eTl5eX/m+1Wk1r1qwhPz8/4nA4VKZMGerYsSNdu3YtT11WvEeRVa+Sy+W0Zs0asrGxISaTSbVr16bt27dbzE3ChyVzRamptNXNjWR8vkklCTMSEqiu9kKbX0nCsKRU+jY0nMpdCaPyV8JocUwiSeWKXCUJBe/e0baKFUmSmUkn78WS9y+aAcf6Cy+IyLAyizI+n7a6uZFYVyLSyDKLMj6ftlaoQBLtBcTYMouSzEzaWqECyfj8PEtHvk0XUcM/LpLXzNPUY8NNyuYJ8yyzmJWcbJaSuYKEBH3f56dJkp1NiXPnaqqJVKtOgpCQj0pHChMTaVvFiiTOyChYOcw3D4iWehPNdSb1X82JxJmkEItJnJZG2ypWJGFysknlMCVZWbStYkUSJCR8tp9eJjyllgdaUo2gGtT/374kkAn05TAFPB7VBShT+w/F2BKfuvwR5yxVqtXESw+nBw8G6svght7tRnz+C5Lx+STMzKB/Vy7Sl8L9Z9Y0+tvHi6TZ2SaV+BRnZLzPQxPKlgqTk/X5Ywklc4VJSZo8TE83qRSrPg+TkkwqxSrNzqatbm6aPDShFKvuOibUVs4p7pK5Uh6PtlaokOtvQzUREYnT0/V5aErJXGFSUu48NLJkru56KNXmoTGazFkyV5ye/j4Pi7Fk7n8Ned2M54fhw4dTt27dCjcgK75IFHr1KoVCgUOHDqF79+6YPn06GjRogG3btqFPnz6YNWtWnhULihL5mQPeX7QIFZs3B9vOzmhzQAA42qgRdLWGPjRfErx7h60xCejyJBavxDKUZTExYPpo/FqpAoRRkbnMlw40aoTOhw/j0vnbmHroCYiAbmUUKD13BICCGenpzJfYdnYoW78+Hq9bZ5QmnaEU284OMh4Pgrdv9ZqMMZ1LunMHLFtbsO3sPjKU+qffYAzefhepAjncZFkIGtYQEauW52kodefnn6GrUWGsJgDYXbUqvl22DGw7u3w1Xansi+wDBwEGAy/S0uDYsuVHJlnH2rVD58OHEXfx4mcND8OXTIN6WydAkgmBqjTuRNUE7FwRMnEiHq9bh86HDyNk/HijNe1wd4fg7Vt0PnwY293dP9lPL55cQ8DhfsiQZuAbGw80n3YHjlzHXMZfngDO9ehhcO4B742/2HZ2cPX3R/jOnXpN4buD8Pbt37j3oCuyeaFgMm3BO85GuayxcHKqhh1NG2HX9HF4dfc2oFajXuuO6Dd3MSSv30KWlWWS4WHcxYuwLVkSbDs7k8wBQ8aPR+U+fcC2s7MIc8DTPXui8+HDiD5yxCRzwPCdO9H58GFcHDrUJHNAWVYWOuzahe3u7iaZA7Lt7FB16FBcHDrUaE3mNAckpVLjsq5UmmQOGH3kCBw9PMC2szNJ08WhQ1F16FCw7exMMgfc7u6ODrt2QZaVZRHmgNFHjqDz4cM43bOn1RzQwsDj8XDz5k3s27cPE7X9aoUVRsHQ0czDhw9pwoQJVKpUKSpTpgxNnz5dXxdZh2fPnpGtra2h1IWCwjIHzO9JR3JGJgU8idFPpxr0OJpSJbJP/pIUnSqg2vM0U4xGBN0jqUT6VRtKpWUJqN2KK+Q18zQ1/zOYEpIzP6nJXE86Pqcp7a/N+nrpGfsPmG78lfiE1Eu8NFOq/m5FiqzkYuunREEidTjcnmoE1aAex3tQmiDlI03metLxoaaMlHsUGtpF/3Tj4cPBJBa/JZlAQFKhkC5v36R/urFj6liKe/r4qzZos5oDWs0Bv6Z++trMAf9rKMiTjpYtW5KdnR1NmTKlaIKy4otDoU2vYjKZ1LFjRzp06BDJtReGDyEUCikwMNBQ6kLBh3NCpTwebXJy0l9YjUVe81hvZwmo7q3nVO5KGHlcfUxb4lI/O80s4V0a1Rq7nbxmnqbu62+QSKb45P6fgrm0FSaPQKqg7htuktfM09Ro0SWKy/i8GZK55gx/SlfG3r36AUf69h1G8+iR+JhoqZdmwLGlNZE4yzieAuBzPCmiFOp8tDPVCKpBXY91pTRx3iaE5m5nUWYyRb1aQsFXfOlycCUKuVaXEhOP6M+J5JhXtGPKGP2AI3jHZpLLpB/xWHI+G4OiyGcrj7Wdi4qnMNvZuqbDCiu+DBT0PDLYpyM2NhZeXl6f3MfBwQE7tVMrLA0cBwf0u3MHnDxMbYyFUk1Y/TYZq9+kQA3gGzsb/FXdC7Wc7D/5PbFcibFHI8BzKQfPknbYHtgQ9lzjrVPMpa2weKQKFUbvfoAn8dlwtedg74jG8Cj56TYyJ/LTxfv3X6Qs/AMAUHrcjyg1/NOVOT7bPomPgd09AGk2ULEBMOQYYOtiOE8B8SmeDEkGRl4ciThBHCo6VsTWDltR2s44E0JD4vkuZDPCIvpDKtWUaixXtit8q/wGG25pqFUq3P33CO4c2Qe1SgUH15LoNHYyvOvUL7AuQ+OxJB5zwdJ0WRqPuWBpuiyNx1ywtHissMIK88PgO9zU1FQkJyejsXZ+pw53794Fi8XKVYbNEsFksVCqenWz8SXKlZjxOBqhPE2d7P7lS2Kxb0U4sD/tkqxUqTFhXxievePD1Z6DXcMbo7SjaQY05tJWGDxKlRoT94fhdkwGHG3Y2DW8EXzLFawUsLmQly7B5ctInDUbAOA6ZAhKF2C+6ifbJzEM2N1TM+BwbwgMPgbYOhvOYwDy48mWZmPUpVF4zXuNcvblsL3jdpR3KJ8Hg/mgUGTjVfQSJGUfAQDY2JSHv99ClC6tmZudnZKMcxtWIjFK44ZbpXEztBs1HnZOH7eRJeezJcDSdFkaj7lgabosjcdcsLR4rLDCCvPD4IXk48ePz2U0o8O7d+8wfvx4swRVmJDx+VjLYEDG55vMJf22NbqFJyCUJ4Iji4lN1bywtqrnZwccRITf/n2BKy9TYcNmosPfk+HGNd2VzVzazM0j4fEw48hTXApPAZfNxNahDVDLvYRJ3KbEo9Mlun0b76ZOA1QquPTqhXK//lIgc6Z82+fdo/dPONwbfXLA8UkeA5EXD1/Ox5jLY/Aq6xVK25XG9o7bUdGx4idYTAMRISXlDO6EdkBS0hGQmlChbH80aXwBpUu3ARHh2dWL2D1jIhKjIsC1s0OncVPRdeoveQ448tNlDCyNx1ywNF2WxmMuWJouS+MxFywtHiussML8MPhJR3h4OOrVq/fR+3Xr1kV4eLhZgipMcB0dMTw+HlxHR6M5iAgL4tKRtWAVoFKjjpM9Nlf3grddwZ5UbAqJwf57cWAwgLX9a6PZ2EsmxaODObSZm2dYXByWXI3HsbB3YDMZ+GtQPTT9ppRJvKbEo9MlDgtD/PgJIIUCTh06oMLCBWAwCzYGz7N93j0EdvcCZDzAozEw+Chg8+knOYXVXyKFCOMuj0N4RjhcbVyxrcM2eDl/ekqkKZBKkxAZNRfp6ZrKOfb238Cr1DRU+KYDGEwmxHweLm1Zj+j7oQCAiv7V8d34aXApW84gXcbC0njMBUvTZWk85oKl6bI0HnPB0uKxwgorzA+DBx02NjZISUlBpUqVcr2flJQENtv49QhFBgYDXGdnoAC/aOdPwYCr9mnGqHIu+M3fC9wC3rAee5SA5RciAQDzulVHxxoVIBcITIonR2AmazM3z+bHWdgdGg8GA1jZrzbaVv30jWahQqtLGhmJ+DFjQRIJHJo1g9uK5WAYkrsftk/CQ2CPbsDRBBh85LMDjjx5jEUOHolSggnBE/Ak7Qmcuc7Y2mErvinxjWn8+YBIjXfv9iE6ZjlUKiEYDA68vcfBy3M0lCI5wGAgNuw+Lvy1FmJeNpgsNpr1H4wG3XqByfz008APdZkES+MxFyxNl6XxmAuWpsvSeMwFS4vHCiusMDsMnl7VoUMH/Prrr+DxePr3srOzMWvWLLRv396swZkTSokEACBOS9PXxldKJFDKZAAAhVj8flskgkouf7+tUAAA5EIh1EolAGCkIwulJwZipnspkFAItUozPUrG54PUahCRZpsIpFZDxufjVnQ6Zhx5CgAY3aIShjRy19d9l2ZlQS4UAgBUCgUUIs0aEZVcrt9WymRQiMX6bZ0mpVQKpVSq9zKQpKcbpUkuEECtVOp5pNnZn9UEAGqV6v229vsAsPniC2y6pZmKN79rVXT2LWGwJl3f6RLVWE0AIHz3DrtLl0b8iBFQ8/mwq1cXFdethUIqLbAmtbZm/2YXF0gyM6F8dQPY0xOQ8aCu2AgYfARKcAukSZKejs0uLhClpBitScbnQ5qdjc0uLsiIe43JVybhQcoDOLAd8He7v1GlhG+BNOlyj6E97uf6iZfxHA8f9Udk1FyoVEK4ONdF/VpH4Ok2BkqRHH+VLInzG1bh+NL5EPOyUaqiBwYtXoW67b4DqdSf1aRWqfR5KOPxDM69nJokmZn6c96Y3NP1jSglRc9jTD/prhFybbymaFIpFBAlJ2vyMCPDaE0Ksfh9HiYnG61JxudDxuNpfCDevTNak0Ik0ve7KDnZaE26bTZgkiadhs0uLrn+NlQTAEgyMt7/7zFBk67f9XlohCYigvDdO/35ZaymnOeTygRNCpFI3z6i5ORcmqywwoqvBwYPOlasWIH4+Hh4eXmhdevWaN26NXx8fJCcnIyVK1cWRoxGIT9zwAdLlqDW+PHgOjmZZA54onFjuL14AiB/86Wcxl8LK9fG2D0PoVQT/F/dxi+d/JFy/z4ONm6MsTweUu7dy9d8qaDGX1wnJ/gPGYInGzYYpUlnKMV1cgLHyQmid+8+qelThlIH78fhz6sac8GfO1ZB08SHRmkCzGcOeKhmTTRv0BCqzCzwpVK4/v47lCqVwQZtx9u3x1geD+mntkAd1B2Q8SHiVsLpYwTYOBXY+OvJhg0Yy+Ph2sSJJpkDit69w4isdAxd0xp3kkJhx7JDm3lP4WvjabCZ2efMAdVqGW7/MwD3H/UEj/cIULLAfFYT9esfwv2Za/BgyRJkpiaB2asTwm9eBQA4S1Wo61cHZb0rGWRmxnXSPC2SCwQmmQMmBAejXMOG4Do5mWQOeG3iRDRdtAhcJyeLMAc807s3xvJ4iDl+3CRzwIjduzGWx8OlwECTzAHlAgGGx8djh4eHSeaAXCcntFy3DpcCA43WZE5zwJwwxRww5vhxuLdpA65Twa8ReWm6FBiIluvWgevkZJI54A4PDwyPj9efW8ZoMqc5YMzx4xjL4+FM795Wc8AvFIGBgejZs+cn9/H29saaNWuKJB4rLBDG1OMVCoX0999/07hx42j69Om0a9eufD07ihsfmgPKRSLKfPWK1CpVoZgD5mW+9C5TSI3+uEheM09T379uET8ji4g0hkvS7Gzix8eTUiYz2VBKrVJRZlQUybXvG2sopVapKD08XL+PoYZSJ+7GkM8vp8lr5mn6fc9NUimVJplkmcMcUJGWRlHt2lO4nz9Fd/qORK9fG22SJeXxSPjgFKkXuWl8OHZ8R0pBhsHGX3KxmPjx8SQTCEwy/pJKxTThzBiqEVSD6u+pT3cT7xpl/PU5c8D05Ft0J7Sj3uTv8eORJMiO1WuSCQR088AeWjmgG63o14X+GjOE3jwJM9rMTJeHKoXCJDMzhVRKGZGRpFapTDJokwkElBUdTWqVyiLMAWV8PvHj40khkZhkOqfPQz7fJNM5lUJBvLg4kmRlmWQ6p1apKCsmRr9PcZsDqpRKTR5qc9JYIz2FRKLPQ1PMAWV8PmXFxLzPQyPNASVZWcSLi9Nf04zRZE5zQIVE8j4PreaABUJAQAABoDFjxnz02bhx4wgABQQEFGk8PXr0+OQ+qampJBJ93p/Lii8LhWYO+KUhL3PANUCRGSLxJHLqsOoaec08TW1XhlC2KPfgzFzxmJPLFJ6rL1Oo8qwz5DXzNM3Y/4BWF2Fb5wdldjbFdO9B4X7+9LDSNySMijIpHllEMEl/cdIMOHZ2IZIJjeIxR38pVUr66fJUqhFUg+rurku3Em4ZzZVfOysUAnoZOY8uB39Dl4Mr0bXrDSk5+VQu48vMpHf0z+xpeqO/lU3qUnbiO6NjIbKMfC4MHnOaqVmSLkvjsbZz0fAUZjtbzQE/jYCAAPLw8CAXFxcSawd5RBpNJUqUIE9PT4sbdFjxdaKg55HB06t0CA8Px/nz53Hy5MlcL0uHjbMzJhPBxjn/UqbmglypxpjdDxGZIkAZJxsEDWsIF3tOocVjLi5jee6/ycTYvQ+hUBG61qqAxf3qYUoRtXV+UItEiB8zFrLISLBKl0aNK8Fw8PU1njAuFNxjQ2BjwwC8mwMDDwJc48ysTO0vNakx/858nE+4BDaDjVWtVuF/Ff9nFFd+SE+/itC7nZCQsBsAoUKF79G0yUWUK9cVDAYDRISnweexZ8YkJL2KhI29AzpPmI6ptx/CpYKbSccu7nwuLB5zwdJ0WRqPuWBpuiyNx1ywtHi+FNSrVw8eHh44duyY/r1jx47B09MTdevW1b+X17SmOnXqYN68efq/GQwGtm3bhl69esHe3h6+vr4f3de9ePECXbt2hbOzM5ycnNC8eXPExMTk2mfFihWoUKECSpUqhfHjx0OhXaOTVxwFOebJkyfh6+sLW1tbtG7dGrt27QKDwUC2dt2pFV8ODB50xMbGonbt2qhRowa6dOmCnj17omfPnujVqxd69epVGDGaFWqVChkvXugX1hUWiAgzjjzBndgMOHBZ2BnYEO6uH7tvmzMec3EZw/MikYfhQfchVajRyq8MVvWrAwapi6St84NaJkPCxImQPH4MposLPLZugSDHon+D8fYOsLcPIBdCUbY+1AP2Gz3gAEzrLyLC4ruLcTz6OJgMJub4TEALt+ZGx/Ih5PJ0PH8+GU+ejoRMlgQ7W0/UrbMb1ar+CQ6nBABAzMvGvyv+wKUtG6CQSeFRrSaGLl8Pv/+1QGZ4eLHk4ZfAYy5Ymi5L4zEXLE2XpfGYC5YSDxFBIVMVy4uIjIp5+PDh2Llzp/7vHTt2YNiwYUZxzZ8/H/369cPTp0/RuXNnDBo0CJmZmQA0fmwtWrSAjY0Nrly5gocPH2L48OFQaosWAMDVq1cRExODq1evYteuXQgKCkJQUJDRx3z9+jW+//579OzZE0+ePMGYMWMwe/Zso7RZUfwwuMbt5MmT4ePjg+DgYPj4+ODevXvIyMjA9OnTsWLFCoO45s2bh/nz5+d6z8/PDy+1i96kUimmT5+OAwcOQCaToWPHjti0aRPKlTO+7KpCJMKhpk0xPCGhUH9RWX4hEiceJ4LFZGDT4PqoUdGl0OMxF5ehPLFpQgzdfg8CqRKNvEvir0H1wWUzIePzi6St8wIplXg3fTpEt++AYW8Pzy1/g1mxIg65uxsXz9vbwN7vAYUIas9vEfTTDQwdTLCxNT5GY/uLiLD8wXIcjDwIBhiYX38OkpqOgCKhr1naOS39JOISVkOpzAbAhKfnCFTymQwWy06/T8zDu7j493qIedlgsdloNmAoGnTpCQbTfP1eXPlc2DzmgqXpsjQec8HSdFkaj7lgKfEo5WpsmXytWI49em1LcGwKUE78AwwePBi//vor3r7VFG+5desWDhw4gJCQEIO5AgMD8cMPPwAAFi9ejHXr1uHevXvo1KkTNm7cCBcXFxw4cAAcjmbWRpUqVXJ939XVFRs2bACLxYK/vz+6dOmC4OBgjBo1yqhj/v333/Dz88Py5csBaO4Rnz9/jkWLFhmszYrih8GDjjt37uDKlSsoXbo0mEwmmEwmvv32WyxZsgSTJk1CWFiYQXzVq1fH5cuX3weUwy9h6tSpOHPmDA4fPgwXFxdMmDABvXv3xq1btwwNWw8bZ2f8WMiOp3tD32JTiOZx45LeNdGySpkiicdcXIbwvMuWYPC2u8gQyVGjojO2BTaAHZdl1ngMBanVSJo9G8LLwWBwufDYtAl2tWsDgHHxvLkF/NMXUIiASq3A/OEARg23+/z3PgNj22d92HrsCd8DAJj3v3no6dsb4Pc1OR6pLAGjl5VH7Ju5AABHx2qo6r8Yzs419fvIpRJc270dT4PPAwBKe3ih88SfUMbLR79PceThl8RjLliaLkvjMRcsTZel8ZgLlhbPl4QyZcqgS5cuCAoKAhGhS5cuKF26tFFctWrV0m87ODjA2dkZqampAIDHjx+jefPm+gFHXqhevTpYrPcDpwoVKuDZs2dGHzMyMlJfhVSHRo0aFVyQFRYFgwcdKpUKTtpSlqVLl0ZiYiL8/Pzg5eWFyMhIwwNgs1G+fPmP3ufxeNi+fTv27duHNtqyeTt37kTVqlURGhqKJk2aGHwsQFNvPOX+fZRr2BDMQjAzvByegt//fQ4AmNLOF/0aeBRZPObiKihPulCGIdvuIpEnxTdlHLBrWCM423IM5jEniAgpfywC79+TAIuFimvWwKFJY+PjeXNTO+AQA5VaAz/sh5rBQcqdO0XWzjnx95O/sfXZVgDArMaz0Nu3t1naOSPjBp69+BFV6tuDwbDBN5Umw8NjOJjM9/2Z9CoSZzesQHZyEgCgfpee+HbAULC5XJN15YWvlcdcsDRdlsZjLliaLkvjMRcsJR42l4nRa1sW27GNxfDhwzFhwgQAGsuAD8FkMj+avpVzrYUOHw4oGAwG1GqNt5Kd3ed/bPvU9835HSu+TBh8ZteoUQNPnjyBj48PGjdujGXLloHL5WLLli0fuZQXBK9evYKbmxtsbW3RtGlTLFmyBJ6ennj48CEUCgXaaeuBA4C/vz88PT1x586dfAcdMpkMMq3hEADwtb+cCPl8MKGp+X+iTx/01/pRGAuRlleU45eZZ4kCTNz/FGoCetUuhxENy0H4mV9uzBWPObkKwsOXKjH8n6eITRehgrMNNvevDhu1DEK+zCCegiCvts4P2Zv+gmDfPoDBQMm5c8FoUF/fB4bGw4q/A9vjAWAoJVB6tYS0y9+ARAG5ILPI2jkn/nm1Dxuea/6ZTKwxAd3cukDI55vczplZVxEdOxNECsQ+laBj939Q0rUaxEIJAAlUSiXCzp7AozMnQGo1HEuWQqvAsahYtTqkUimgNf4yVld++Fp5DMnnoojna+WxtnPR8BRmO3/u/2dhgMFgGDXFqbjRqVMnyOVyMBgMdOzY8aPPy5Qpg6SkJP3ffD4fr1+/NugYtWrVwq5du6BQKD75tMOc8PPzw9mzZ3O9d1/rQWPFlweDBx1z5syBSOtAumDBAnTt2hXNmzdHqVKlcPDgQYO4GjdujKCgIPj5+SEpKQnz589H8+bN8fz5cyQnJ4PL5aJEiRK5vlOuXDkka51q88KSJUs+WicCAJ08PJDzMrJFa4BkKjp5aJ5kqEqUh2DwCpBDCbBjH+Lq8gVooS74gjhzxWNOrvx4iG0DQf8FULlXB0OYBdGWmeg3OzHPfc0Zj66t80PXkiUxsExZAMC2pCRc6d/P6HgaerOwdqA9GBwGbr1SYtofpyAfnvuJXGG3c06o25aEeoimGhTzaAr+ChyLvzDW5HjqtnXEgJllwGIx8OSaEPsWp2LT1Kb6z50cHdCscW2ULuUKAHj99h3uHb+AzZt3f5a7KNvnS+T5XD4XFJamy9J4rO1cNDyF0c6WscT9ywCLxUJERIR++0O0adMGQUFB6NatG0qUKIHff/89z/0+hQkTJmD9+vUYMGAAfv31V7i4uCA0NBSNGjWCn5+fWXR8iDFjxmDVqlWYOXMmRowYgcePH+sXpjMYjEI5phWFB4MHHTlH0JUrV8bLly+RmZkJV1dXgxPgu+++02/XqlULjRs3hpeXFw4dOlSgx3h54ddff8W0adP0f/P5fHh4eOB8fDycnZ2hVirxLiQEFVu1MukRrojPRyctr5xth8G7n4CfKUHVcg4Imj4BDtumFIjHXPGYk+tTPAqVGhMPh+NmbBacbdnYMaIN/BdHFGo8OdvaIZ8FhsKjx5D1558AAJcJEzB/6BB8OPQsaDysuJuwPTEMDKUUSu/WqD1pC4L/sjWY53MoKM/JNyexJEyjLdAvAGP2jjaK50OkpB3Bm7eLARBKl+qGgSOnYM8CH5yPj4e9kxMirgXjzuF/oJTLwLW3R/NBw1G50edL8hZ1+3xpPAXJ56KM52vlsbZz0fAUZjvz+XxUNNNg5r8A50+0/6+//orXr1+ja9eucHFxwcKFCw1+0lGqVClcuXIFP//8M1q2bAkWi4U6deqgWbNmpoaeL3x8fHDkyBFMnz4da9euRdOmTTF79mz8+OOPsLGxKbTjWlFIMMT8Qy6XE4vFomfPnhnyNYPQoEED+uWXXyg4OJgAUFZWVq7PPT09adWqVQXm+9BcSCYQ0O5q1fTuqsZCZ4iUlp5JvTbeJK+Zp+l/S4IphWeYwZC54jEnV348SpWaxu19SF4zT5P/nHP04E1GkcTzOfOp7JOnKNy/KoX7+VPKqtWmxRN9hWhhWY3x397vieQf92dht3NOnIw+STWDalKNoBq07N6yXIZ8psTz5u1WvbP4y5dzSa1W6ds5JT6Oji2dpzf6O7TgV+KlpZpV13+Zx1xmapamy9J4rO1cNDyF2c5Wc0Ar8sIff/xB7u7uxR2GFTlQ0POIQWRYYehKlSrh+PHjqK2tBmROCIVCeHp6Yt68eQgICECZMmWwf/9+9OnTB4CmioG/v/8n13R8CD6fDxcXF/B4vE/+CmBwrHw+vi3hivrbbiE4KgPOtmwcG/c/VC5r2roMSwUR4Zejz3DwQTw4LAZ2BDZEc9/8q3KZE0I+H81dXHCDx4PjB30ouHIVCRMnAioVXAcORLnf5hj/yDXmCrD/B0ApBXw7Av33AOzi+yXlwpsLmHF9BtSkRn+//pjdeLbJj5OJCK9fr8PrN+sAAF5eY/FNpZ/AYDAg5PPxQ9Uq6NSpNaRCAVgcDpr/EIB633UHg2n8AkcrcuNT+WyF+WBt56JBYbZzYf3/zgmpVIrXr1/Dx8cHtrYm1EC3otCwadMmNGzYEKVKlcKtW7cwceJETJgwAX/88Udxh2aFFgU9jwy+k5g9ezZmzZqlN24xBT/99BOuXbuGN2/e4Pbt2+jVqxdYLBZ++OEHuLi4YMSIEZg2bRquXr2Khw8fYtiwYWjatKnRlasAQKVQ4NXhw1DlUbXBEBARJG1GIjgqA1wWE1uHNjBqwGGueMzJ9SEPEWHx2QgcfBAPJgNYN6BugQYc5tSWF0ShoXg3ZQqgUsGlR3eUm/Ppm/JPxhMd/H7AUeW7Tw44Cqudc+Jq3FX8cv0XqEmN3r69MavxrHy1FTQeIkJ09BL9gOObStNR+ZufwWAwIBEKcG3XFrT6tgGkQgHKeHpj8OLVqK/13jCXLiuP+WBpuiyNx1ywNF2WxmMuWFo8VlgOXr16hR49eqBatWpYuHAhpk+fnstJ3YovBwYPOjZs2IDr16/Dzc0Nfn5+qFevXq6XIUhISMAPP/wAPz8/9OvXD6VKlUJoaCjKlNHc0K5evRpdu3ZFnz590KJFC5QvXx7Hjh0zNORcUMvleLRqFdRyuUk8u+69g6xBdwDAyn610bhSqWKNx5xcH/JsvBqNrTc0cz+X9qmF72pWKNJ48oLkyRPEjxsPksvh2K4tKixa9Nmb43zjib78fsDh1xnot+uTTzgKq511uPXuFqZfmw4lKdGlUhf83uR3MBn5aytIPEQqvIycjbj47QCAKr6/wdt7HNQqFcIunMaOyaPx8mYIiAi1O3bFwMWrUdrT26y6rDzmhaXpsjQec8HSdFkaj7lgafFYYTlYvXo1EhMTIZVKERUVhd9++y2Xp5sVXw4Mnl6VV2WonJg7d65JAZkbhfF4logw/cBDHHuSgp/a+mBC+2pm4bVE7L7zBr//+wIA8FvXahjxrc9nvmF+fPj4XhoZhbdDh0LN48Hhf03hvnkzmB94RRQYry4DBwYCKhng1wXoGwSwjeQyA+4l3cO44HGQqWRo79Uey1osA5tpYoEBtQLhETOQknISABNV/RfDza0v4p4/wdWgLUiP17jYlqzogQN7DuFozGvrdJRChHXaT9HA2s5FA+v0KiussKLQplfNnTv3ky9Lh0oux/Nt26Ay4dcUBoOB+Z194Xh4LgIaVSz2eMzNpeM5ev+tfsAxua2vwQMOc2rTQf72LeJGjICax4NdnTpwX7++wAOOj+J5dQk48INmwOHftcADDnO3s44nLDUME65MgEwlQyv3Vviz+Z8FGnB8Kh61WoZnzycgJeUkGAw2alRfAwd2c5xcuRiHF85Gevxb2Do6oe2Icejz22Kkpps+bbKw2udr4TEXLE2XpfGYC5amy9J4zAVLi8cKK6wwP/4zq0OVEgkAjQFR1IEDUCsUUEokUGqNBBVi8fttkUh/4VOIRPo5pnKhEGqlUvO+UAhu7EMwGAzI+HyoVZqK4jI+H6RWg4g020QgtRoyrcmRWqV6v61UQpqZiVeHD0MpkUAuFALQzG1VaL1QVHK5flspk0EhFuu3dZqUUimUUinUCgUiDxyAQstjqCa5QAC1Ugm1QoGj5+5hxjGNs/qQBm6Y3OabAmuSCwT6No/cvx9qhcJoTToeJgBlSgreBg6DKj0dNv7+KL96FUhrUPQ5TQAgzchA1KFDUCsUUDw+ATowEFDJoarcCfT9ThCT/VlNaqUSsqwsvDp8GAqx2CRNCqEQrw4fhozHw5PER/jx8o+QKCVoWr4JVrRaAUjln9Uk4/OhlErx6vBhSDMycuWeUinC4yejkJ5+GUwmF1V9V+Pl+STsnPYjXt27DQaTiTodu2LYyk2o9r8WYLJYYGjb0lhNSpns4zw0IPd0mtQqlYZn/36oZDKDc0+tVOrPJ4VY/D4PjdQEADIeD1EHD2ryx0hNACDXxmuKJpVCAVl2tiYPRSKjNSnE4vd5mJ1ttCYZnw+VTIaoQ4c0eWikJoVIBLVCgaiDByHLzjZak26bDZikidRqqORyTR7K5UZr0h1fl4emaJJlZ+fOQyM0EZH+eqiSyYzWlPN8UpmgSZfD+jzMockKK6z4emDwoIPJZILFYuX7shRs3LgR1apVQ8OGDQEAN37+GQBwf9EilK5VCxwHB4RMnIgHS5YAAC4GBODpRo3b8+nevRGxW2N+dqxdO8SeOAEAONi4MeKDgwEARxs1QmntsXa4uyPr5UsAwGYXFwgTEyEXCLDZxQVygQDCxERsdnEBAGS9fIkdWvOjlPv3caBBA/S6cAHJoaE42LgxACD2xAkc0zqxR+zejdO9ewMAnm7ciIsBAQCAB0uWIGTiRADA7VmzcHvWLHAcHODi7Y3H69YZpWlP1apIuX8f95Mk2O3zHVQE9KnnjlJ960OUlFRgTXuqVgUAJIeGQpycDI6Dg9GaAODOzz+jCYuFtAkToUxKgtrFBZ7btuJcYGCBNQHAbj8/tFy9GpyEG2AcGQqGSg6Vb2dsCjgEuVhaIE3xwcE42qYNel24gPhLl4zWFDJxIh6vW4deFy7gn1+GY8yFURApRPBO4WJMfD3YsGwKpGmHuzuE8fHodeECtrm56XNvi1sJhD0aiqysW1BJ1HBlTMSJeXvx4OwJqBQKlPPwhuPDcLQdPhZpd+/pc88TwLkePYzW9GDJEnAcHGDr6opwrYGTIbmn05T18iU4Dg5IuHIFMh7P4NyLDw7Wa4q/dAlKsRgcBwejNQHA1XHj4P3dd+A4OBitCQD2eHjAHoDCBE2xJ07gVI8e6HXhAqKPHjVa08WAAIQHBaHXhQu4MGSI0Zo2u7hAxuOhy5Ej2ObmZrSmY+3agePggCr9++PCkCFGa9Jd91oDiN6/32hNwsREkFqNhCtXQGq10ZoAIProUTDZbHAcHEzSdGHIEFTp3x8cBwejNckFAmxzc0OXI0cg4/GM1hSxezeCBw8GAIRv3Wq0ptO9eyP66FH0unABp3r00Gs61qYNrLDCiq8IhtbiPXHiRK7X4cOHadasWVSxYkXatm2boXSFDl2d74zkZCIikmRn0/2lS0khlZJCLCaFVEpERHKR6P22UEhKmez9tlxORJo64iqFgoiIMhISqK62NrmUxyOVUklERFIej9QqFanVas22Wk1qlYqk2jrjKqXy/bZCQaK0NHq4ciXJhEJ9fXKlXE5yoVCzLZPptxVSKclFIv22QizWbEskmpdUSveWLtXzG6pJxufTo9dpVPW3c+Q18zSN3BlKCqXKYE0yPl/DJxTSvcWLSSGVGq2JiCjj1Ss66+VN4X7+FNWyJYlfvzZIk25blJpKr5aMIvX8UkRznUl9YAipFTKDNKkUChKlp9PDlStJKhAYrUkhFpOUx6N/18yhb/c1oxpBNWjwmcGUnZ1qkCYpj0cykYgerlxJotRUjQZpOoXe6UKXgyvRlSu16OCSAL3nxpZxgRR19xYp5fJcmmQCAQl4PKoLUGZiotGaFFKpJg+XLHmfhwb2k+58UkildHfRIpKLxQbnnk4TEZFUIHifh0ZqIiISZ2bS/T//1HzPSE1ERBnx8VQHIH52ttGalHI5iTMyNHnI5xutSS4SkZTHo4crV5I4I8NoTVIej+RiMT1YsUKTh0ZqkguFpJBK6f6ff5I4I8NoTQqplAQ8HjUAKDstzWhNapWK5BKJJg8lEqM1ERFJ+Xx9HhqriYhInJGROw+N0KRWq0mUmkoPVqwgufZaZIwmpUxGmYmJVAeg7NRUozXJhUKS8vnv81CrKe3dO6tPhxVWfAEo6Hlk8ArVHtpfQXPi+++/R/Xq1XHw4EGMGDHC5IFQYYCtdThncThIefAApFKBY2+v/zzXtoNDnttcR8f3205O0K3At8mxwC3PbQZDv81ksd5vs9ng2Nsj6c4d1Bw7Vn8sFocDlnbaEIvLBUu7ZoGdw30z17Z20Y5CLEbqgwd6N1dDNb0WAcN2P4JYroK/OBGre7cEm8UE20BNXCcn7S4MpD56BFKpwLaxMUqTWixG1uzZ8La1BbOkKzx37oSNt3eBNeliAQBu4k1UEh8Cg0lAtZ5g9NkGsDiwceYWWBOTzQbHzu59n2nb2BBNgCYf3/LfYqntKQjkKlQvVR2b2m2CE/d9vAXRZOPsDIVYrI9HrkhH2OOhEIlfgZR2iPi3LCTp6WDb2KBJr/6o36Un2No4df3BZLPBdXSEnM8H5TiuMZoAbR4+fPg+Dw3sJ127q2QypIWFAURg5OibgvaTjp/JZL7PQ3t7ozTp9km5f19z7TBSEwBwtdumaGJxOGDb2n6Uh4Zq4tjb58ofXdsYqkmXh8mhoaj144+a8s5GaGJxOFCIxUi5fx+1J0wwWhMAQCaDEjBJEwBArdbkoVoNBpNplCbd/ro8zHltNkiTdp+88tAgTdr20PWXsZpYXO7764WNTd55WABNHAeH3Hmo5c+pyQorrPjyYXD1qvwQGxuLWrVqQWhhczAL0xzwa6qMEpchxvebbyNVIENdzxLYO6IxHGyKtySdWipF/I8/QnwnFCKVCpX270PJBg2MI3t5BjgUAKgVQPVeQO9tAKv49CUIEhB4PhAp4hRUca2CHR13wMXGxSROiSQBj8KGQCqNg0LEQfRpD8iybVD121ZoPigQTiVLf/L7X1tOWyqs7Vw0sLZz0cBaverLh7e3N6ZMmYIpU6YUaP83b97Ax8cHYWFhqFOnTp77BAUFYcqUKcjWrs36WjFv3jycOHECjx8/zvPz/0o7FFr1qrwgkUiwbt06VKxoWiWnooBSJkPovHn6BWzFDXPGYyxXCl+KQdtDkSqQwb+8E7b+UBvPlvxhckymaFPL5UiYPBniO6Fg2NtjWUI8uFWqGBdIxCng0FBArUA6/KDsutGkAYepfZYsSsbIiyORIk5BBbkT/mq5waQBh1Imw+0/p+JuaC9IpXGQ8Tl49a8nSpSsgQELlqPzxJ8+O+AwJ8yV018rj7lgabosjcdcsDRdlsZjLlhaPF8CAgMDwWAwsHTp0lzvnzhx4pNGuR/i/v37GD16tLnDK1QcP34cTZo0gYuLC5ycnFC9evUCD5qKEv3790dUVFRxh2ExMPjOy9XVNVcyExEEAgHs7e2xd+9eswZXKFCrIUxIANTq4o5EA3PGYwRXlkiOwdvuIj5TAq9S9tg9ohFKsMk8MRmpjRQKvJs2DaJr18GwtUXpVavwqnUr42IIPwkcGQaolVBX7YUnl5hoaepY24Q+SxOnYeTFkXgnfAcPRw+MuFwaJQeXMCmcxNfXIKhxFmxSQprFReL1Gmg9aDSqt2xrsJu4WWCunP5aecwFS9NlaTzmgqXpsjQec8HS4vlCYGtriz///BNjxoyBq6urURw6Q+YvAQqFAtevX0f//v2xaNEidO/eHQwGA+Hh4bh06VJxh/cR7OzsYJdjWuF/HoYuFtm5cycFBQXpX7t376Zz585RZmamcatPChm6heTmXogm4PGojnYh+ZcKgVRB3dffIK+Zp6nxossUlyEq7pBIrVBQ/JQpFO7nTxE1a5Hw1i3j2/rFCaL5JYnmOhMdGUGkVBRO0AVEhiSDehzvQTWCalCHwx0oUZBoEp9UJKQr++fT+bOV6XJwJTp1sBpd/WcdSUXG9ePXkNNfAqztXDSwtnPRoDDbubD+f+fEl7yQPCAggLp27Ur+/v70888/698/fvw45by9u3HjBn377bdka2tL7u7uNHHiRBJqiwEQEXl5edHq1av1f0dERFCzZs3IxsaGqlatSpcuXSIAdPz4cSIiev36NQGgo0ePUqtWrcjOzo5q1apFt2/f1nPs3LmTXFxc6Pjx41S5cmWysbGhDh06UFxcXC4NmzZtokqVKhGHw6EqVarQ7t27c30OgDZt2kTdunUje3t7mjt3Lk2ePJlatWr1ybaZO3cu1a5dmzZv3kzu7u5kZ2dHffv2pezs7Fz7bd26lfz9/cnGxob8/Pxo48aNuT6fMWMG+fr6kp2dHfn4+NCcOXNIri10kPM4OkRHR5OPjw+NHz+e1Gq1vh0+3H/37t3k5eVFzs7O1L9/f+JrizYQEfH5fBo4cCDZ29tT+fLladWqVdSyZUuaPHnyJzUXJwp6Hhn8M2hgYCACAgL0ryFDhqBTp05Gj7CLGkqpFNenTdPXDS9umDMeQ7ikChVG7XqAJwk8uNpzsHdkI3iUtDdrTIbykFqNpNmzITh3HuBw4L5+HRz+9z/jDv7iBHBY84QDtfoDvf6GUqEsFl0AwJPxMPriaMTwYlDWviy2ddyGMmxXo+IhtRrPrlzE/sUDoCixB2wbNaSpDmhQfz9aDZwImxwLNIsDxZU/XwqPuWBpuiyNx1ywNF2WxmMuWEo8RASFVFosLzJiiS2LxcLixYuxfv16JCQkfPR5TEwMOnXqhD59+uDp06c4ePAgbt68iQnaQg0fQqVSoWfPnrC3t8fdu3exZcsWzJ49O899Z8+ejZ9++gmPHz9GlSpV8MMPP0Cp9YcBALFYjEWLFmH37t24desWsrOzMWDAAP3nx48fx+TJkzF9+nQ8f/4cY8aMwbBhw3D16tVcx5k3bx569eqFZ8+eYfjw4ShfvjxevHiB58+ff7JtoqOjcejQIZw6dQrnz59HWFgYxo0bp//8n3/+we+//45FixYhIiICixcvxm+//YZdu3bp93FyckJQUBDCw8Oxdu1abN26FatXr87zeE+fPsW3336LgQMHYsOGDflOcYuJicGJEydw+vRpnD59GteuXcs1RW7atGm4desWTp48iUuXLuHGjRt49OjRJ7V+KTB4etXOnTvh6OiIvn375nr/8OHDEIvFCNDW6bY0KCUSwNlZY6KnPSmUEgnAZIJtYwOFWAwGi6XZFonA5HDA4nI121wuWBwO5EIh2La2YLLZkAsE0KWTjM8Hx8EBTBYLMj5fU3GDwYBcINBU/yCCXCiEjbMz1CoVFCKRZjsP8yWuoyNUCgXUcjk4Dg5QyeVQKxTgODhAKZPpK58oZTJArQbbzi7XRVqtVEIlk4Fta5uvJjFfgEnHInAnNgMOXBZ2BtRH5bJOkAsE+uoiKpksl6GUIZqUEgm4Tk6aWLTGXJ/TxLa1ReKcOeD/exJgsVDhzz9hq60LrzMHBFCgflI83A/26fFgkAqqan3A6LoeTCYLcr7GPM9UTTlNsnQVZD7VTwIpH+NuTEJkViRK2ZbE9g7bUYFdGqocJllgMAqUe0nRUbiy4y9I1M/g0yEBTDbBhlkN7Ic+cG5TXqPPCE26HNKbAzo7G5R7bFtb/fkEQGPEp8vDAp5PbDs7MNls/fmky0OdmZkxmnTnk85szFhNumuE3hzUSE1MFusjc0BjNeU0aNPloVGatG2jEInAYDKN0iTj88FkszX9xOeDZWNjlCa1XA4Gi6Xfn21ra5QmhtYz6kNzQEM1cR0dQUR6g0pSq43SpLtG6PLQWE26a4Tu2mysJjAYmmp1OUwcjdX0oTmgOTQxWCy9pqKGUibDuoDvi/y4ADBp1xFwjFjM3qtXL9SpUwdz587F9u3bc322ZMkSDBo0SL/ewdfXF+vWrUPLli3x119/fbTo99KlS4iJiUFISAjKly8PAFi0aBHat2//0XF/+ukndOnSBQAwf/58VK9eHdHR0fD39wegmQq1YcMGNNb+L9+1axeqVq2Ke/fuoVGjRlixYgUCAwP1A4Fp06YhNDQUK1asQOvWrfXHGThwIIYNG6b/e+LEibhx4wZq1qwJLy8vNGnSBB06dMCgQYNgk6NymlQqxe7du/XrjdevX48uXbpg5cqVKF++PObOnYuVK1eit9bnyMfHB+Hh4fj777/197Jz5szR83l7e+Onn37CgQMHMGPGjFxtcfv2bXTt2hWzZ8/G9OnT8+8sAGq1GkFBQXDSVocbMmQIgoODsWjRIggEAuzatQv79u1D27ZtAWjuu93c3D7J+aXA4CcdS5YsQenSHy9KLVu2LBYvXmyWoMyB/MwB7y1YACabDbatrUWYA+6vWxctVq1C0q1bJpsDsm1toRSLEaYdheelSa0mDJq8EZdfpsGGzUT/kI1wffkAwHtDKbatLV7u2QPBmzdGadIZSiXduoWEq1fBtrX9tKahQ5HyxyLwjx0HAai4fBmeXr6UyxywlratP9tPz4+C9e9YMEgF1P4Bu6ZfQMpDzS8EuypXRo1Ro8C2tTVaU3xwMI62bIkWq1Yh7vz5z/bTzaULMXRXdzzPeA5HJQdjH/vB28UbIRMnImz1arRYtQpXxoz5bO7ta/Y/HPltBg7MnQEZ8wl8OmoGHMJ7MviVXoCWy9dha7lyRmsypzkg29YWouRkvND+8zPWSI9ta4unmzZBmplpkqa48+eR+uAB2La2JpkDXhkzBs7e3mDb2lqEOeDJrl3RYtUqvDp0yCRzwBfbt6PFqlU4P3CgSeaA0sxMNJk/H1vLlTPJHJBta4vSNWvi/MCBRmsypzmgWqHA002boFYoTDIHfHXoELKjojR5bYKm8wMHonTNmmDb2ppkDri1XDk0mT8f0sxMizAHfHXoEFqsWoWTXbtazQGNwJ9//oldu3YhIiIi1/tPnjxBUFAQHB0d9a+OHTtCrVbj9evXH/FERkbCw8NDP+AAgEaNGuV5zFq1aum3K1SoAABITU3Vv8dms/X3YADg7++PEiVK6GOMiIhAs2bNcnE2a9bsIw0NPqha6eDggDNnziA6Ohpz5syBo6Mjpk+fjkaNGkEsFuv38/T0zFXgqGnTplCr1YiMjIRIJEJMTAxGjBiRq23++OMPxMTE6L9z8OBBNGvWDOXLl4ejoyPmzJmDuLi4XPHExcWhffv2+P333z874AA0gxenHGWtK1SooG+32NhYKBSKXG3u4uICPz+/z/J+ETB03paNjQ291pqz5cTr16/J1tbWULpCx0fmgJmZdCEgQGNSZAnmgCkpdGnECJLx+aabA4rFdCEggKRZWXlqUkil9NuJZ+Q18zR98+sZCo5IztNQSiEW0/khQ96bqxlrDsjn0/mhQ0khFuerSS6RUOLChRTu50/h/lUp49ChXJqIiLKSk6metq0/1U+qsANE81w1xn9HxxCplLnNAZOT6eKwYXpjPmM0qRQKEqWm0qURIzSGaJ/oJ7FCTIFnA6hGUA1quq8pPU98nNscMCuLLo0YQeL09Hw1SYUCunNkP60Z3JtW9OtC2+d8S5cuf0OXgyvR02cTSZyVTjKBgC6NGEGi5GSjNZnVHPDDPDTWHFCbh3Kh0DRzQB6PLujy0BRzwPR0uhAYSAqx2DLMAdPSNHmYnW2aOaAuD9PSTDMHFArp4vDhmjw0xRxQLKYLgYEk1pr6Fbs5oEikyUORyDRzwOxsfR6aZA6YlpY7D401B0xOpovDh2uuM5ZgDpid/T4Pi9EcUK1Wk1wiKZaXWq02KPaAgADq0aOH/u/OnTtTjx49cq3p8Pf3p4kTJ9KrV68+esm053vONR1r1qwhHx+fXMfR3Ud9uKYjLCxMv09WVhYBoKtXrxKRZk0Hm80mlUqVi6tEiRIUFBRERESurq76bR0+PH7O434KsbGxxGazaceOHUSkWTvxoY7s7GwCQCEhIZScnEwAaO/evR+1S2xsLBER3b59m1gsFv3xxx90//59ioqKogULFny0RqNKlSrUqlUratSo0Ue5mt+ajpxYvXo1eXl5ERHR48ePCQC9ffs21z5169b9KtZ0GDy9qmzZsnj69Cm8tQZtOjx58gSlSpUyZfxTqNBNG2Lb28PZ21v/iFeH4jIH5Lq4wNHdHUwuVx+PseaASpkMzt7eYGm1fqhpxYVI7L7zFgwGsLJfbbTxL5erjXRGUGqVCi6VKoGpjcFgTTpDKS4XLj4+AJOZr6aszZuRvfcfAED5+fPgqp2296GhlK6eSb79FHsO+HcsQGqgzmAwuq8DmKzc5oAlSsDJ0xPIYfBlsCY2G1xnZzi6u4NlY/O+zz7oJ7lKjilXJuJB6kM4cBzwd7u/Ub1MzVyawGTC0d0dHEdHPY9OExHh9fPHuLZnB/hpKQCAb1rbwKlKIgDArUI/+Pv/AQaDBaVMBkd3d3BLlNBXqzLGdM5c5oAf5aGRRnpqJhMulSqBwWabZqRnYwNnXR4aqQkAOI6OcPbyAphMcHK+X0zmgBwnJ00e2trq4zfGSE/JYmny0MnJJCM9pUwGJw8PTR6aYA6olMng7OUFjnaf4jYHZLBYmjxksUwyB2TZ2urz0GhNADhOTnnmoaHmgNwSJeDk4QEGmw0bbdsUpzmg7jrGcXIqVnNABoNh1BQnS8DSpUtRp06dXL+K16tXD+Hh4ahcuXKBOPz8/BAfH4+UlBSUK6e5R7ivfWpmKJRKJR48eKD/1T4yMhLZ2dmoqn2CVrVqVdy6dSvXtPxbt26hWrVqBh/L29sb9vb2EGmn+wGaJxCJiYn6qUmhoaFgMpnw8/NDuXLl4ObmhtjYWAwaNChPztu3b8PLyyvXmpa3b99+tJ+dnR1Onz6Nzp07o2PHjrh48WKuJxmGoFKlSuBwOLh//z48PT0BADweD1FRUWjRooVRnBYFQ0czM2bMIC8vL7py5QoplUpSKpUUHBxMXl5eNH36dGMHSYUGa/UqDf6+Fk1eM0+T18zTtOfOm+IOh4iI0jZt0jzh8POnjD17893vs2395BDRvBKaKlUnxhF98MtKUUOuktOE4AlUI6gGNdzbkB4mPzTo+6lvX9PB+b/Sin5daEW/LrR57FC6GzKDLgdXosvBlSgyaqHBv4gVBF9aTn+psLZz0cDazkUDa/Wq4sOHTzqIiIYMGUK2trb6Jx1PnjwhOzs7Gj9+PIWFhVFUVBSdOHGCxo8fr/9OzicdSqWS/Pz8qGPHjvTkyRO6efMmNWnShADQiRMniKjgTzo4HA41atSIQkND6cGDB9SkSRNq0qSJ/jvHjx8nDodDmzZtoqioKFq5ciWxWCw9B1HeTzrmzp1LP//8M129epViY2Pp0aNHFBgYSHZ2dvTy5Uv9Pg4ODtSuXTt6/PgxXb9+napUqUIDBgzQ82zdupXs7Oxo7dq1FBkZSU+fPqUdO3bQypUriYjo33//JTabTfv376fo6Ghau3YtlSxZMt8nFwKBgL799ltq1qwZCbRPBg190kFENHLkSPLx8aErV67Q8+fPqU+fPuTk5ERTpkwhS0WhVa9auHAhGjdujLZt2+rrD3fo0AFt2rSxqDUd+UEhFuNM376axbsWAHPGkx/XgXtxWHxWM6d3Ric/DG7iVSQxfYonY/t2pK1dBwAoO2MGSg7O+5eGz+LJQeD4aM0TjnpDgW7r9YuZDYnHEHyKR6lW4pfrvyAkPgQ2LBusb7Me9crVKxCPRMBH8I6/sGfGJMS/eAoWh4PGffqj9ZRqEKiOAAC8vSfAt/LsXFUxvtac/lp5zAVL02VpPOaCpemyNB5zwdLi+VKxYMECqHN4ndSqVQvXrl1DVFQUmjdvjrp16+L333/Pd2Eyi8XCiRMnIBQK0bBhQ4wcOVL/S7+hju329vaYOXMmBg4ciGbNmsHR0REHDx7Uf96zZ0+sXbsWK1asQPXq1fH3339j586daNWq1Sd5W7ZsidjYWAwdOhT+/v747rvvkJycjIsXL+Z6ylO5cmX07t0bnTt3RocOHVCrVi1s2rRJ//nIkSOxbds27Ny5EzVr1kTLli0RFBQEHx8fAED37t0xdepUTJgwAXXq1MHt27fx22+/5RuXo6Mjzp07ByJCly5dcj11MQSrVq1C06ZN0bVrV7Rr1w7NmjVD1apVDW5/i4Sxo5qoqCg6dOgQnTp1it68sYxfzvPCh7+UKKRSerhypX4uqbEw16875oonP65TT96R9y+aJxxLzkYUaUz58WTs3qN/wpH211+f5cm3rR/vf/+E49+Jn33CUdi6lCol/XL9F6oRVIPq7K5DNxJuFIhHJhLRo/OnaMPwAfqnG/+uXERZyYn0MnK+/gnHmzebC1WXpeX018pjbeei4bG2c9HwFGY7W590WAZu3rxJACg6Orq4Qykw8nqi8KVCKBSSi4sLbdu2rbhDyRcFPY8YREYUhv6CwOfz4eLiAh6PB+cc81lNhZDPR3MXF9zg8eBoRl5z4mpkKkbvfgCFijCwsScW9ayRb93ookLWwUNInjsXAFDqx7EoO3nyZ7+TZ1s/3gecGAeAgPrDgC6r8n3CURRQkxoL7izA0VdHwWawsbLVSrTx/HzllbjnT3A1aAvS4zXzREt7eqN1wGh4VK+OiJezkJSkecLhV2UB3N2NfBpUQHwJOf01wNrORQNrOxcNCrOdC+v/d05IpVK8fv0aPj4+X8cvyWbA8ePH4ejoCF9fX0RHR2Py5MlwdXXFzZs3izu0AmPevHk4ceIEHj9+XNyhGIywsDC8fPkSjRo1Ao/Hw4IFCxASEoLo6Og8q8daAgp6Hhl8l9anTx/8+eefH72/bNmyj7w7LBEKkQjHO3bU1xYvbpgznpxc915n4se9D6FQEbrVdsPCHgUfcJgrpg95so+fQPK8eQCAksOHo8ykScYRh/3zfsDRYHiBBxyFpYuIsOTuEhx9dRRMBhNLWiz57ICDl5qME8sW4PDC2UiPfwtbRye0HTEOQ5auhXs1fzx/MUU74GCiWtXlnxxwfK05/bXymAuWpsvSeMwFS9NlaTzmgqXF81+GQCDA+PHj4e/vj8DAQDRs2BD//vtvcYf1n8KKFStQu3ZttGvXDiKRCDdu3LDYAYchMHjQcf36dXTu3Pmj97/77jtcv37dLEEVBpQSCQBNZaZKPXuCyeFAKZFoTIygmU+q3xaJchlK6Qyd5EKh3hzsQ3PAnEZ6OjMz2QfmS7rj67e1hku+fftqzJpymM7lNP7SbSu15ku6bZ0mpVQKpVQKJoeDSj164Pk7HkYE3YdUoUYr31JY1a821BJxgTSplUowORz4dO2qv5E3VJPO8BAMBny6dQOTw0HWyZNImj0bIEKJHwbAddyPYDAYn9Wk6ztdoirv7gD9Ox4AQVUnAKr2SwEm87OadDyV+/QBk8MxWpNaqYRSJoNv374g7bFWPVyFA5EHwAADfzT7A+0qtM5Xk4SXjZsH9mDn1B8R8/AeGAwGarZqj4Bl61GnQ2fIxdl48mQsUlPPgsFgo3rV1ahQoXe+mmR8PsBkwrdvXyglEqM16XJPbw5oYO7p2lcpk2nysHt3vRFjQc+nnJrUKpU+DxkslkmaCECl7t3B5HCM1gRozstvtNcOYzUB+Mgc0BhNKoUCKrlck4dERmtSiMUgtRq+fftqzOuM1CTj88FgsVD5++81eWikJp3p4je9euljMUaTbvtDc0BDNZFaDQabrclDNttoTbr+1uWhKZpUcjm+6dXrfR4aoYmINNfD778HQ2saaIymvMwBjdGkEIlARO/zMIcmK4oeQ4cORVRUFKRSKRISEhAUFGTR1Unzwrx5877IpxwAULduXTx8+BBCoRCZmZm4dOkSatas+fkvfgEweNAhFArB1ZYgzAkOhwO+9mJlCcjPHPDuvHngvXoFFpdrEeaA+2rXRo2RI5F444bJ5oAsLhfPnkQhYMc9CGRKVJYkY0z2HXBYTIPMzFhcLu7Mng1+bKxRmnSGUok3buDZX39BdO0akn/5FVCrUaJvX2S4ueFMnz4F0gS8NwdkPz8A1tmpYICAhqNw8q+XiNizp0CaACCoUiW4NWsGFpdrkjngkebNUWPkSLw9exaTf22BoBdBAIBud53R7ZtueWoiIpyaMgFbxwbi7vGDUCkVcLF3wtBl66G4chNRu3ZDqRTh2pGWyMy6BibTBtk7HSC4Kfmkph3u7uDHxqLGyJHYUqaMRZgDsrhcJISE4PnWrQCMNwdkcbm4NmkSJOnpJml6e/YsXu7dCxaXa5I5YPCoUVBKJGBxuRZhDvhv586oMXIkog4cMMkc8PnWragxciTODRhgkjmgJD0dVfr3x5YyZUwyB2RxuWCy2Tg3YIDRmsxpDqiSyXBt0iSoZDKTzAGjDhxA7MmTYHG5Jmk6N2AAmGw2WFyuSeaAW8qUQZX+/SFJT7cIc8CoAwdQY+RI/Nu5s9Uc0AorvlYYulikYcOGNH/+/I/enzt3LtWrV89QukLHh+aA4vR02t+okd6EqrjNAYVJSXSgSROSZmebbA745l061Zr8D3nNPE1d1l2njEyeQZp0hlJyoZD2NWigj9NYIz1pdjadrlOXwqvXoHA/f4qfNo3UKpXBBm1Zycm0oC5Hs2B8rjOpTk4lUqsNNmgTJibS/saN9WZYRpsDJifTgSZNaNPdtVQjqAbVCKpBe57tyldTwotntG/OT/pF4lsnDKeXN0JInJ5OB5o0IVFqKomFKXTvfh+6HFyJrobUpMzMuwU2/pLyeHSgSRMSJiZahDmgXCik/Q0bkiQjw+Dc02lSKZX6PJTx+SaZA0qysmhfw4b6OIw10hOlpuqvHZZgDihKSaEDTZqQJDPTJHNASUaGJg9TUkwyB5Tx+bS/cWNNHppgDigXCml/o0YkSkkxWpM5zQFlAoEmDwUCk8wBJZmZ+jw0xRxQlJKSOw+NNAfUXQ9lfL5FmANKMjPf52ExmgNaYYUVhqOg55HBg46TJ08Sm82moUOHUlBQEAUFBdGQIUOIzWYXyDWyqPFh9QulXE5Rhw7pL2rGwlwVO8wVTypfSi2XXSGvmaepzfKrlC4wviKJuWLihVzTDzgSpk4ltfafoKGQ3PhLP+CgszOIjPSoMJcupVxOK/+Zph9w7Hi2I8/9hFmZdP6vNbSif1da0a8LrR3Sh0KPHSSF9sZOF49YmEShd7vS5eBKFHKtLvF4T4pFl6Xl9NfKY23nouGxtnPR8BRmO1urV1lhxZeBQq1edebMGSxevBiPHz+GnZ0datWqhblz56Jly5ZmewJjLvwXqlfxJAoM2BKKiCQ+Kpaww5Efm6KCi93nv1iIEN27h/jRY0BSKRzbtYX76tVgaF1mCwwi4NYa4PI8AIC87ghwu68EirkC14GXB7Do7iIAwLg64/Bj7R9zfa5SKvDo3CmEHt0PuXZec9XmrdF8YACcSuZeCCaVJiHscQDE4hhwuaVRt85uODr6oThgSTn9NcPazkUDazsXDazVq6ywwopCq14FAF26dMGtW7cgEomQnp6OK1euoGXLlnj+/LnRARcV5EIh9lSvbjEL1EyNRyxXYnjQfUQk8VHagYO+R+ehFEtVvDE9CkP82B9BUimyAZRdsMDwAYdCAhwbrR9w7Lkjg7zVXJMGHObo++OvjusHHMP8hmJsrbG5Po99dB+7fhqP63t3QC6RoFwlX/ywcDk6T5j+0YCDl/4S1041h1gcAxubCqhf74BRA46vLae/dh5zwdJ0WRqPuWBpuiyNx1ywtHissMIK84NtKoFAIMD+/fuxbds2PHz4ECqVaTe8hQ22rS1arFoFtoX8omFKPDKlCmP2PMTDt1lwtmVj17CGcGw022RtpsQkefYc8aNHg8Ri2DdpArvv+4Bj6C9U/CTgwEAg8RHAYEHaZgFWzZ+IXiY+4TC178/EnsHc2xqPkR72zTG5/hR9GeLMxASE7NqK148fAgDsXUqg+Q8BqN6yLRh5lPMViaLx9OUwsEsR7Gy9ULfuHtjZVSwWXeaGueL5WnnMBUvTZWk85oKl6bI0HnPB0uKxwgorzA+jzQGvX7+Obdu24dixY3Bzc0Pv3r3Rp08ffbUoS8HXOr1KpSZM3P8IZ58lw47Dwt6RjVHfy7XI48gJ6cuXeBsQCDWPB/sGDeCxdQuYdgZO83r3EDgwCBAkAXauQL/dEJaqU+zTJC69vYSfr/0MFanQr0o/zGkyBwwGAzKxCHeO7EfY+VOaMq8sNup17o4mvQfAxt4+Ty6B4AXCHgdCociEg4Mv6tbZDRubskWs6GMUd07/V2Bt56KBtZ2LBtbpVZYLBoOB48ePo2fPnkVyvC/ZkM8K01Ao06uSk5OxdOlS+Pr6om/fvnBxcYFMJsOJEyewdOlSixtw5AW5QIDt7u7vvSSKGcbEQ0T49dhTnH2WDC6LiS1D66O+l6vZtBnDI4uORtyw4VDzeLCrUwfumzdDqVQaxvP0MLCzs2bAUcYfGHUF8GlhpIqPYWz7XIu/hhnXZkBFKvT4pgd+rj4J2z08EHb2JHZMGYOHZ05o/F/qNUTAio1oOXh4vgOObN5DPAobBIUiE4721RAR8BwMuWnrb76GnP4v8ZgLlqbL0njMBUvTZWk85oKlxfMlIC0tDT/++CM8PT1hY2OD8uXLo2PHjrh165bZjjFv3jzUqVPno/cZDAZOaEsb6/DTTz8hWFu22Zzw9vYGg8EAg8GAnZ0dvL290a9fP1y5csXsx7KicFHgQUe3bt3g5+eHp0+fYs2aNUhMTMT69esLMzazQmdUBAYDHffuBdvOziLMAdVKJTofPgwmh1Mgc0C5SIRFZyJw6EECmAxg3Q910NTDCUqpFGw7O3TYu1c/nccYTWqlEmw7O7QPCgJT68fyOU3SmBi8DQiEKisLttWro9zqVWA5OoDJ4aD9rl1g29l92vBQJAQuzweOjQSUUqBKJygHn4bS3k3fd7pENVYTAKgVCnQ6cABsO7sC99Ptd7cxNWQqlKTEdz7fYW6j35AUFQlWr064smsLxLxsuLq5o8dPc9B1wk8o6VYxX+OvtOQQhIUFQKkUwMWpPmpV3YZOOw9rjLqM1CTj88HkctH58GGoFQqLMAdk29mhw5497/PQSCM9XR6ybGxM08Rmo8Pu3Zo8NMEckIjQ8Z9/wLazswhzQFKr0fnwYTBYLJPMARlMJjofPgxSq00y0mPZ2OC7Q4c0eWiCOSDbzg4d9+3Tm0sWtzkgy9ZWk4e2tiaZAzJYLH0emqKJ1Gp03LfvfR4aaQ6oVijw3aFDYNnYWIQ5IIPFep+HVnPAAqFPnz4ICwvDrl27EBUVhZMnT6JVq1bIyMgolngcHR0LzURwwYIFSEpKQmRkJHbv3o0SJUqgXbt2WLRoUaEcTwciglJ7LllhBhS0HBaLxaKpU6dSVFRUrvfZbDa9ePGioDRFhg0bNlDVqlWpSpUqBIBODBlCRETXpk6la1OnEhHRpREj6M7cuUREdPr77+nhypVERHSsQwd6tnUrEREdaNKEog4dIiKi3dWq0Zvz54mIaIubG7XXlgnc5ORE6c+fExHRGoD48fEk5fFoDUBSHo/48fG0RtvU6c+f0yYnJyIiSrx9m7ZVrEhERG/On6fd1aoREVHUoUN0oEkTIiJ6tnUrHevQgYiIHq5cSeNHLiCvmafJa+Zpmjduvlk1batYkRJv3yYiKrAmWVwcvWz6Pwr386eY7j0o4eJFgzSFrVhMSVO/0ZfEfT21IZFKmUvT2SFDKFDb1kWhSddPs+uWpgZ7GlCNoBrU4+cqlJGaSAd/mar321gzsCdtbd+KlAr5R/10+vvviYjozty5dGnECEpNu0yXL1amy8GV6FFYAF0aHVik/VSQ3BPweNQDoH8aNswz9z7UVNy5VxBNn8q94tT0P4AytDq+Fk2W1k8CHo9+BujBunVfjSZL7KfDbdpQHYBuL1pkdk1/+/lZS+bmg6ysLAJAISEh+e4DgLZu3Uo9e/YkOzs7qly5Mv3777/6z3fu3EkuLi65vnP8+HHS3Rru3LmTAOR67dy5k7y8vHK95+XlRUQav7batWvruQICAqhHjx60fPlyKl++PJUsWZLGjRtH8hxlkRMTE6lz585ka2tL3t7e9M8//5CXlxetXr1av8+Hf+vw+++/E5PJpJcvX+rfCwkJoYYNGxKXy6Xy5cvTzJkzSZGjXL9UKqWJEydSmTJlyMbGhpo1a0b37t3Tf3716lUCQGfPnqV69eoRh8Ohq1ev5tvGVmhgdp+OO3fu0MiRI8nJyYkaNWpE69evp7S0NIsddOjwoTmgMCWFNjo6kpTHswhzQH5CAm1yciJxRsZnzQG3h0TpBxxbr0Z9ZL4k5fFoo6MjiVJTjdKkM5TS8YgzMz+pSRgZSa/atKVwP3961ek7UmRk5DKUEmdk6Ns6T02Zr0m9obFmwLGgDCkf7M3XHLCetq2N1URExI+P18fzuX56mPSAGu5pSDWCatC4s2Po2j87aM2Q3poBR/+utLppPUp7HVsgE8d3cUco+EoVuhxciR6HjSaVSmOcJUpNpU1OTiRISjJak5THI3FmJm1yciJ+fLxFmAN+lIdGGunpeCRZWSaZA4rS09/noQnmgIKkJD2PJZgDChITaZOTE4nS0kwyB9TnYWKiSeaAkqws2ujoqMlDE8wBdf0u0OZhcZsDSrKzNXmYnW2SOaAoLe39/x4TzAEFiYm589BIc0Dd9VCSlWUR5oCitLT3eViM5oBqtZpUMmWxvNQGeFApFApydHSkKVOmkFSaty8XAHJ3d6d9+/bRq1evaNKkSeTo6EgZWuPWzw06xGIxTZ8+napXr05JSUmUlJREYrGYUlNT9QOQpKQkStVe6/MadDg7O9PYsWMpIiKCTp06Rfb29rRlyxb9Pu3ataM6depQaGgoPXz4kFq2bEl2dnYFGnRkZGQQg8GgP//8k4iIEhISyN7ensaNG0cRERF0/PhxKl26NM3VDnSJiCZNmkRubm509uxZevHiBQUEBJCrq6u+TXSDjlq1atHFixcpOjpa/5kV+aPQfDpEIhEOHjyIHTt24N69e1CpVFi1ahWGDx8OJycnQ6iKBB8uRFOrVMh6+RKu/v5gslhG85pr8VxB4zn6MAHTDz8BAExp54sp7aoYzWWOmBQpqXg7dAgUb+PA9fKC557d4JQtW3Ce1zeAQ0MBSSbgWB4YsA9wr5/nsYq6rV+kv8DIiyMhlAvRXlYb/s+4EKSlAgDc/Kqh1dCR4MoUBWrnxMRDiHg5CwChfLmeqFr1TzCZbIPiMZeuz6Go2/m/ymNt56LhsbZz0fAUZjsXx0JytVyFxN9vF8qxPge3Bf8Dk1vwvjh69ChGjRoFiUSCevXqoWXLlhgwYABq1aoFQLPuYs6cOVi4cCEAzf2bo6Mjzp07h06dOiEoKAhTpkxBdna2nvPEiRPo1asXdLeG+S0Oz2uR+of7BgYGIiQkBDExMWBp+7Rfv35gMpk4cOAAXr58iapVq+L+/fto0KABACA6Ohq+vr5YvXo1pkyZAkCzpmPKlCn6v3OifPny6N27NzZt2oTZs2fj6NGjiIiI0FeW3LRpE2bOnAkejweJRAJXV1cEBQVh4MCBAACFQqHn//nnnxESEoLWrVvjxIkT6NGjR4H74r+OQvPpcHBwwPDhw3Hz5k08e/YM06dPx9KlS1G2bFl0797dpKCLAkwWC6WqVzfpImtOFCSeiy+SMePoUwDAsGbemNzW12guc8SkzMhA3LBhULyNA8fdHZ67gj4acHyS58EOYE9PzYDDrS4w+mq+Aw5zoiDtE5kZidGXRoOdIcP3YZVR8Uo2BGmpcCxVGp0n/YwB8/9EhcpVCtTOcfE7EfHyVwCEihUHolq15foBR0HjMZeuooSl6bI0HnPB0nRZGo+5YGm6LI3HXLC0eL4E9OnTB4mJiTh58iQ6deqEkJAQ1KtXD0FBQfp9dAMQQHP/5uzsjNTU1CKLsXr16voBBwBUqFBBf/zIyEiw2WzUq1dP/3nlypXh6lrwSpxEpB9gREREoGnTpvq/AaBZs2YQCoVISEhATEwMFAoFmjVrpv+cw+GgUaNGiIiIyMWrGwRZYV6Y5NPh5+eHZcuWYcmSJTh16hR27NhhrrgKDTI+H5tdXDCWx4ONBZRR/Fw8t6LTMWFfGFRqwvf13fFbl2q5TihDuMwRkzIrC3HDhkMeGwt2hQrwDAoCp3z5gvGoFMD5X4H7WzU71Pge6LEB4BSNe/rn2ic2OxbjT49G1Wds+Me7gUEKsDlcNOjeG426fw+OdvT+OR4iwps3GxH7ejUAwNNzJCp/88tH/VYU/VUcsDRdlsZjLliaLkvjMRcsTZel8ZgLlhIPg8OE24L/FduxDYWtrS3at2+P9u3b47fffsPIkSMxd+5cBAYGAtDcVOc6BoMBtbZIA5PJxIeTXRTaRfzmwqeObyoyMjKQlpYGHx8fs/DlhIODg9k5rTDSkfxDsFgs9OzZEydPnjSaY+nSpWAwGLken0mlUowfPx6lSpWCo6Mj+vTpg5SUFJNi5To6Ynh8PLiOjibxmAufiicsLgujdj+AXKVGp+rlsbR3TTCZ+RvkmUtbfjwqPh/xI0ZCFhUFdpky8Nq5A1z3/A3tcvGIM4G9vd8PONr+DvTZVmQDjo/i+QBvsl5j4aaxaHPRHlXjnMAgoErjZghc9Rea9RusH3B8joeIEBOzTD/g8PGZkueA43M85tJVHLA0XZbGYy5Ymi5L4zEXLE2XpfGYC5YSD4PBAJPLKpZXfj8oGoJq1apBpK0o9jmUKVMGAoEg1/4fTqPicrl5mj5zOByTzaD9/PygVCoRFhamfy86OhpZWVkF+v7atWvBZDL1U7yqVq2KO3fu5BpI3bp1C05OTnB3d8c333wDLpebq6SwQqHA/fv3Ua1aNZO0WFEwmOxIbg7cv38ff//9d67HgAAwdepUnDlzBocPH4aLiwsmTJiA3r17m1aDmsEA19kZMMPJbRbkE8/LZD4Cd96HWK5Cc9/SWPtDHbBZnxkjmktbHjwqoQhxo0ZBGh4OVsmS8AzaCa63d8F40iOB/T8AWa8BriPQewvg38W0GI1BPu3z6H4wTm5ZiRp8TYlgV3cPtBv2Izxr1MqLJV8eIjUio+bj3bu9AADfyrPh6Tnc4HgMxheS01YeM8PSdFkaj7lgabosjcdcsLR4LBwZGRno27cvhg8fjlq1asHJyQkPHjzAsmXLCrwWoXHjxrC3t8esWbMwadIk3L17N9fULECznuL169d4/Pgx3N3d4eTkBBsbG3h7eyM4OBjNmjWDjY2NQVOidPD390e7du0wevRo/PXXX+BwOJg+fTrs7Ow+GoAJBAIkJydDoVDg9evX2Lt3L7Zt24YlS5agcuXKAIBx48ZhzZo1mDhxIiZMmIDIyEjMnTsX06ZNA5PJhIODA3788Uf8/PPPKFmyJDw9PbFs2TKIxWKMGDHC4PitMBxmedJhCoRCIQYNGoStW7fmSloej4ft27dj1apVaNOmDerXr4+dO3fi9u3bCA0NNfp4coEAm11cLMaAKK943maIMGT7PfAkCtT1LIHNg+vDhv35ea7m0vYhj1osRvzYMZA+eQqWiws8d+6AzTffFIjnfINSwLZ2mgFHCU9gxMXiGXDgY1281GQc+vM3XF2xGk58JhRcoPHQoQhctiH/AUcePACgVisRHjFDO+BgwN9v0acHHPnwmENXccPSdFkaj7lgabosjcdcsDRdlsZjLlhaPJYOR0dHNG7cGKtXr0aLFi1Qo0YN/Pbbbxg1ahQ2bNhQII6SJUti7969OHv2LGrWrIn9+/dj3rx5ufbp06cPOnXqhNatW6NMmTLYv38/AGDlypW4dOkSPDw8ULduXaN17N69G+XKlUOLFi3Qq1cvjBo1Ck5OTh8tRv79999RoUIFVK5cGUOGDAGPx0NwcDBmzpyp36dixYo4e/Ys7t27h9q1a2Ps2LEYMWIE5syZo99n6dKl6NOnD4YMGYJ69eohOjoaFy5cMGrQZIXhMLh6lbkREBCAkiVLYvXq1WjVqhXq1KmDNWvW4MqVK2jbti2ysrJQokQJ/f5eXl6YMmUKpk6dmiefTCaDTGs4BGiqX3h4eOBdfDycnZ1BRFAIBOA4OZn0KFPE56OThwfOx8fDwYT5px/GkyKQYejuJ3jHk8G3jD2CBteCix3n80R5cJkjJpLJkD5tOmQPHoDh6IiyGzeAW7VqQUjAuf8XuDeXggGCyr0JJN3+BuxKGhyPudsaHA4enz+JJxfPaAwaGYSEb9T4ccSfcC/tXWAeXTur1XJEx/6KrOwrAFj4xmchSpf6zmAeU3VZak5beXLD2s5Fw2Nt56LhKcx25vP5qOjhUaTVq6woXiQkJMDDwwOXL19G27ZtizscKwqIgp5HxTq96sCBA3j06BHu37//0WfJycngcrm5BhwAUK5cOSQnJ+fLuWTJEsyfP/+j9zt5eKAwamJ08vAwG5fazhmCgUugLu0FZmYiUjfMQNefss3GbyjYDAamuVVEHUdHSNQqLHnxHNFNmnz2e1wW8Fs3W3StrZmudOSBHH8uvAjlKNMWe5mjrb093VCvVlXY22tOisRSEtyrkArB2khcX1zbYD6ODQMB88rBv5E9lHLCnoXv8OL2AJPjLE6YM6etyB/Wdi4aWNu5aFAY7WzaigErvgRcuXIFQqEQNWvWRFJSEv7f3nmHRXG1UfzswlIXsEVBwV4Ae4+a2BPjF409pqhoNMUYY4klmsQaW2LUFI2JBcUSlURNNLErVmzYFSwICNKkbe/7fn8sLKKiMDMsI97f8/A4LLNn3vPOZeXuzN4zZcoU1KxZEx07dizt0hglQKlNOhITEzFu3DgcOHBA0HcXpk2bhokTJ9q/z7vSsTf3SodRqcSagACMTEy03T/KEaHe3cmrZ3BsPEbvisf1FDWqeLkg7NM+qLZ4MCctvt6MSiXWBgSgf8hwGCIjIXFzQ40flyG0CJdQJeo0uP3zIZxSL4IkTjj0rxpd/4rFGz4+nOsRotcP4u/ixKa1SI+/CwDQewKnGqRDW8MTqzpuhf84/yJr5fV5eHwM4tK+hkp9AVKpGxo1XIqVe549KXtUR4jzJcYxLRZfYtNhfXaMDuuzY3RKss95VzoYZReTyYTp06fj7t278PLyQvv27bFp06bHVr1ilA1K7faqvACah9dvtlgstpUjpFLs27cP3bt3L/btVY9SUuFCQgUiAYDeZEHI2rM4E5eFCp4u2Pbxy6hbufSCFslsxv1Jk6HauxcSFxcE/LYSnu3aPfuJ9y8AW94HVMmAWzng7fVA7c686+HTa01ONk5sCcO1iIMAEZxdXZEQDByufAs+nhUQ+kYoavvULnZNJlMOLl0aAaXqCpyc5GjWdA3KlXu+1/UWckwzCof12TGwPjuGkuxzaYQDMhiM4lNi4YBC0a1bN1y9ehWXLl2yf7Vq1Qrvv/++fVsmk+HQoUP259y8eRP37t1Du6L8AVwIVosFmdevw8pzqTehMBhN+HDlUZyJy4Lc1RnrR7ThPOEQwhtZLLj/5ZdQ7d0LODvD/5efizbhuPYXENrTNuGo1AD48DCsNV4ttV5bzCac27Uda8d/hGtHDgBEqNf+FVx4DTjgdwtyDx+sen0VpwmHXpeGs5H9oVRdgUxWHi2ab+Q04RBqLIptTIvNl9h0hEJsvsSmIxRi8yU2HaEQWz0MBkN4Sm3S4eXlhUaNGhX48vT0RMWKFdGoUSP4+Phg5MiRmDhxIo4cOYKoqCiMGDEC7dq1w8tF+FxBYZg0Gmxr1w6mIq5jXZJYrYQvtl7E8fs6uDpLsSakFRr7c78Nia83slqRMnMmVLv/hZUIVRbMh/xZ91VarcChucCfHwBmPVDvdWDUAaBinVLr9d0L57B+0hgc27gWRp0OVWrXw4BZ87CzXgwuWG9BLpPj99d+R/3y9YutrdcnI+rCO9CbE+Aiq4QWzTfD27sxpzqF6o+YxjQgPl9i0xEKsfkSm45QiM2X2HSEQmz1MBgM4RFFTkdhLF26FFKpFAMGDIDBYECPHj2wYsUKXpqu3t4YrVQKVCF3iAgz/rmG3dcfwFkqwa9DWqBt7Yq8NPl4IyKkffstFH/+BUilCPhhMbx7PmMFJoMa2PExELPb9n37z4HuswCpE+96uJCVnISI9asQdykKAODhUw6vvhuCeq+8ivFHJ+Dcgyh4OHtg5WsrEVyx+EFAWm08Ll4cCr0hGW5u1dC82QZ4eNTgXK9Q/RHLmM5DbL7EpiMUYvMlNh2hEJsvsekIhdjqYTAYwlPqOR0PExERgWXLltm/d3Nzw/Lly5GVlQWNRoPt27fD19eX1zGsZjNSIiNhNZt5VsuPxftvYuPpe5BIgBnNPdC5Lr8JB8DdGxEhfeEiZG/+A5BI4DvvW2jKlXu6TnYCsOZ124TDyQXouxJ4fa59wsGnnuJi0GoQEbYa6yeNQdylKEidnNGqd398sOx3NOjUGZOPT8GJ+yfg5uSGOb6fonH5hsU+hlp903aFw5AMd/eaCKApcHMpPI29KAjVH7GM6TzE5ktsOkIhNl9i0xEKsfkSm45QiK0eBoMhPKKadDgCs06H/wYNglmnK7Uafjsai+VHYgEAs9+oC9OEIYLUw8UbEeHB0mXIWr8eAOA7ZzY8u3d/uk78SWBVFyD9OiCvAgz/D2j2riD1FAer1YKrh/dj7fiPEfXvTlgtFtRu0Rohi5ej05AP4OzmiunHp+NI4hG4SF2wpN0iJIV8Vex6lMoriLrwHozGB5DLA9GkwRocGPwJb19C9UcMY/phxOZLbDpCITZfYtMRCrH5EpuOUIitHgaDITwvzKQj74VMKpMh5M4duHh5wazTwZwbJGjSavO3NRpYjMb8bZMJAGBUq+3vwhhVKuTFKRmUSvuH3wxKJchqBRHZtolAVisMuZeNN5+Ox4I9MQCAqT3q450WVTEyKQnO7u4wqtUAAIvJZL+v1WI02rfNBgNMWq19O8+TWa+HWa+Hi5cXQm7fhtTFpcie0n78EZm//w4AqDR5Mnz69YOLlxeG3LgBZw+PxzyZTqwEhb0FaDNhrdwY+PAIrFVb2P1ZzWZ7oqyzuzuGxsTAxcuLs6e8c5c3UPM83Y+5gY1fjsf+336CVpGD8r5V0XfyN+g3dSbk3j4wm4yYcWoG9sbvhbPUGUu7LEWbl1phREICXLy8nnmerBYLDEolsnPO4cLFITCbc+Dt3QzNGq+Hi0sljExKgpObGz9PLi4YmZQEiZNTscde3rZBqYSzhwdGJiXZPTzL06PnyWo228eeJPe4XD2ZDQa4eHlh2K1b+eOQgyerxWIfhzJPT16enNzcMOzmTds45OgJACROTgiJjYWLlxdnT4BtaVAAvDxZTCZIpFLbOHR15ezJpNXmj0OplLMng1IJmacnPkhMtPnh6Mmk0cDFywvD796FRCrl7Clv2xng5YmsVsjkcts4lMs5ewIAJ1dX+zjk40kilWL43bv545CDp7xz9EFiImSenpw9Pfz7ZOHhyaTRwMnVNX8cPuSJwWCUHcrspGP58uUIDg5G69atAQDHJ08GAJz88kvsfe89WM1mRIwdi/MLFgAA9oeE4Mry5QCA3f37IzosDACwvXt33N25EwCwtW1bJOaupvVXmzaolHustf7+yI6xTSRW+vhAnZwMo0qFlT4+MKpUUCcnY6WPD3ZdTsZXO68DAEZ3roO+bhkICwpCwr59SNi/H1vbtgUA3N25E9u7dwcARIeFYXf//gCAK8uXY39ICADg/IIFiBg7FgBwavp0nJo+HVazGbv79cO5efOK5Clz9Wpkr/wNAFB56lT8M3MG0s6dg9Vsxmo/P2Reu5bvKekerH+Ph+zgVEisZphq98Sv404CPtWQHRODtf62nIu0c+ewITexPGH/fmxs2BBWs5mzJwCInDwZTXJ7/W/IMPwx4VNsmTkFDxLi4OzsjE5DR8Lj7FVY4+4BALa0bYtpO8bgn9h/ILEQplf5EB39O2KNvz+ur14Nq9n81PMEANkxMdjSqxYuXRoOi0UD3Q0rmjdbj9RjUdjati0S9u3Dnb/+4uwpYuxYnJs3Dwn79mH/sGHFGnsbgoKQlhuoudbfH5nXriFh374ieXrSeUo8dMg+9qoD2NOnD2dP5xcsgNVsxs4ePXD5p584e8qOibGfJ9W9e7w83fnrL/zRqhWsZjNnTwCwf9gwHB071vZ7xtETAGwICIAHABMPT3d37sT2bt2QsG8fboSGcvcUEoLLP/2EhH37sLtfP86e8s5T7I4d/Dx17w6r2YwTU6Zgd79+nD3l/T51AXDnjz84e1InJ8OQnY2VPj4wZGdz9gQAN0JD8WfHjrCazbw87e7XDyemTIHVbObsKe/3KXbHDqju3ePsKTosDIeGDLH5W7WKu6f+/XEjNBQJ+/Zhe7dudk/bu3YFw/FERERAIpEgJyentEthlDWojKNQKAgAZaamEhGR5sEDWh8YSAaVikxaLZn0eiIiMmo0+dtqNZkNhvxto5GIiAwqFVlMJiIiykxKouYAqRQK0isUZDGbiYhIr1CQ1WIhq9Vq27ZayWqx0L6oOKoz7V+qMXU3Td1ynqxWK1lMJlIlJ1NYcDDpsrPJoFIREZHZaCSjWm3bNhjs2ya9nowajX3bpNXatnU6Mul0ZFCpaH1gIGkzMp7p6UFoKN1oEEg3GgRS+vIVNn9KJVlMJptOgwaky8mxeUqNJ+u63kQzvYlmepM14juyms2kVyiIiMjy8LbJRAalkoiIdNnZ9l5z9URElJ2aSq2dpHR00zpaNqQ/LX77TVo8uBft+eUHUqanFThPVquVvj0+hxqta0RN1jehf67/ZT9nqvv3aX1QEBlUqkLPU56P1NT/6NDhBnTwUG26cGE4aXPS7f7UKSkUFhxM2qwszp5MWi1pMzIoLDiY1GlpxRp7eecpb7zpcnIoLDiYVPfvP9VTYecp75yrFApqDlBWcjJnTya9/vFxyMGTxWy2j8M8L1w8ERFps7LyxyFHT0RE6rQ0uw5XT0REmYmJ1AwgZU4OZ09mo5HUqam2cZiZydmTUaPJH4epqZw96XNfB9cHBdnGIUdPRrXadt6Dgkid+5rNxZNJryeVQkGtAMp58ICzJ6vFQnql0jYOlUrOnoiItJmZ+f/3cPRERKROTbW/jnH1ZLVa7a+HeeeOiyezwUBZycnUDKCc9HTOnoxqNWkzM/PHYa6nB/fvEwBS5NZUEuh0Orpx4wbpcmt8HgDw1K+ZM2fy0jcYDJSSkkJWq1WYghllnqL+HpVaOKCjEEM44Nm4LAxdcwYGsxVvNa2KZYObQSqVPPU5JUn2lq1InTULAFDp09F46fPPC9/5wU3gj3eArLuAzBPo/xsQ1NsxhcL2uY1rRw9jx+IFkMttt3tVbRCMrsM/QpXadQvsS0RYemEpQq+FAgC+7fAt+tTtU+xjpqTuRHT0FBBZUPmlnmjYcAmkUhf+ZkQOC1NzDKzPjoH12TGwcEDHk5qaat/eunUrZsyYgZs3b9ofk8vlkMvlpVEa4wVF9OGApYXFZMLt8HD7PaMlzbX7Coxcdw4GsxVdAyvjh7ebFphwCFlPUbRyduy0TzgqjPwAlXIvgT9RJ/o/YHV324TDpzowcn+xJhxcvRER0u7eQcSGNVg15gMcWPkj5HIPeJavgP99PhnvzF702IQDAH69/Kt9wvHNy988NuEoSj1J9zfjxo1JILLAz3cAGjZc9tiEQ6hzJjYdoRCbL7HpCIXYfIlNRyjE5ktsOkIhtnrEjK+vr/3Lx8cHEokEvr6+8PLyQv369bF3794C++/cuROenp5QqVSIj4+HRCLBli1b0L59e7i5uaFRo0Y4evSoff9Hb69at24dypUrh3379iEoKAhyuRxvvPEGUlJS7M8xm834/PPPUa5cOVSsWBFTp05FSEgI+vbt64iWMJ4TXrhJh9VoxIUlS2DN/XBhSXInXY1ha89CZTCjba0KWPF+C8icCrZcyHqepaXY/S9SvvoKAFB+6FBUnjQJEsnjV1ysBgM026dDuvU9wKAEqrcHPjoC+DYStJ5HyU5NRuSffyB04mhsnDYeUbt3QJ2VCRd3D1y5fhuD5y5GUIdOT6x59dXV+PXyrwCAKa2n4O0Gbxe7noR7q3Dz5jcACP7+QxEUtBBS6eNRNkKdM7HpCIXYfIlNRyjE5ktsOkIhNl9i0xEKsdRDRDAajaXyxffGE09PT7zzzjsIDQ0t8HhoaCgGDhwILy8v+2OTJ0/GF198gYsXL6Jdu3bo3bs3MjMzC9XWarVYvHgxNmzYgGPHjuHevXuYNGmS/eeLFi3Cpk2bEBoaipMnT0KpVGJn7mdzGIw82O1VHHnWJeWkbC0GrYxEikKPxtV8sPnDtvBykwl2/OKi3L8f9ydMBCwWlBs8GL6zZj7xj3eY9MDuCcDlzbbvWwwD/vcD4FwytxdpcrJx89QxRJ88itQ7t+yPO8tcULtlGwS+0gmVa9dH50qVCu31hhsb8N257wAA41qMw6jGo4pVAxEhLu4nxMXbPvhco8YnqFP7yROysgy7HcUxsD47BtZnx1DWbq8yGo2YP39+iRzrWUyfPh0uLsX7v3bdunUYP368/arE2bNn0b59eyQmJsLPzw/p6emoVq0aDh48iE6dOiE+Ph61atXCwoULMXXqVAC2qxS1atXC2LFjMWXKFERERKBLly7Izs5GuXLlsG7dOowYMQJ37txBnTp1AAArVqzAnDlz7Ld6+fr6YtKkSfaJiMViQe3atdG8eXM2+XgBYLdXFYLFaMS11avtyyiWBA9UBgxZfQYpCj3qVpZj/QdtCp1wCFlPYVqqI0dw/4tJgMUCn3794DtzxpP/oFalAet7AZc3gyCF9bX5QO+fOE84CqvHoNXg2pEDCP/2a/z2SQiOrF+F1Du3IJFIUbNpC7zx6QR88vtG9J7wJeq1bgcnWeGTtW03t9knHKObjn7qhONJ9RAR7txZYJ9w1Kk9CXXrTH7qhEOocyY2HaEQmy+x6QiF2HyJTUcoxOZLbDpCIbZ6nlfatGmDhg0bYn1u9tbGjRtRo0YNdOzYscB+7dq1s287OzujVatWiI6OLlTXw8PDPuEAYJ/QAIBCoUBaWhratGlj/7mTkxNatmwpiCdG2eHxe0fKONbc+0YbvPsunIr5jkJRUGhNGLrmDOIztfAv746NI9uigmfhxxGynidpqU+cxP3PxwEmE7z/9z/4fTvXvv59AZIvAVveA5T3Qa4+OHnRD20nD4eUx7v9D9dDAOIunkf0yQjcvXCuwH27fvUaILBDZzRo9wo8y5Uvsv7OOzsx9/RcAMCIRiMwuunoItfj5OICIgtibn6D5OStAID69WYgICCkWL74nDOx6QiF2HyJTUcoxOZLbDpCITZfYtMRCrHUI5PJMD13id/SOLYQjBo1CsuXL8eXX36J0NBQjBgxgveV+0drk0gkvG8HY7x4vDBXOvKCiiROTuj999+QeXoKHg6oNZoxfE0kYlJVqCR3wdrBDVHF2/WpgVJktaLfvn1wcnXlHQ4o8/RE7507IXG2zSUVx44h6bPPQCYTPLt2QZW5cyBxcnrc05U/gbVv2CYcFetC8uFhtF59AE65l8iKGqSX5ykvUEoic0bjubNwKGwVfv1oCP5ZMh+3z5yCxWRCeb9q6DB4KIYvXo5B0+eiRc/ecHX3KHI44J64PZh5ciYA4P2g9/FZg4/yz00hIVlWiwV9/vsPMk9P6HIycf36F7kTDikCAxfCv9rQIoVkERH67dsHqYsLryA9ibMz+u3bB0gkvMIBndzc0G/fPlgtFlGEA8o8PdFrxw77OOQapCfz9MT/wsPh7O7Oy5PUxQW9tm+HzNOTVzggJBL0/ucfyDw9RREOCMA2DmUyXuGA9nEIfkF6zu7u6Lt3r20c8ggHlHl64q1du5BHaYcDOnt42MahhwevcECpTGYfh3w8AcBbu3blj0OO4YBWiwV99+6Fs7u7KMIBpTJZ/jgsxXBAiUQCFxeXUvkS6pbeIUOGICEhAT/99BNu3LiBkJDH30w7ffq0fdtsNiMqKgpBubksxcXHxwdVqlTBudxsGMB2e9WFCxc46THKLmV20lFYOOCJqVOxs0cPmA0GQcMB065H4+MNUbh4XwVvVyesfacR9tTyfWZIVlhQEC4sWYL4vXt5hwOaDQb82bkzzs6dC+2Fi0j6ZDRIr4e8UydE3bmDmEdDsqxWxHwQCOn2kYBZh8REJ6Q1XQSzVwBWVa6MB1euAHh64OGjnlLPnkVo6xY4su53rPxoKP7+YR6uRxyEUaeFk9mCVr37o93LXVAuOh4v9x+MhPC/ihUOuD8kBGtXTcG049NghRXdLI0wtfVU7HjttWeGZK3x98fJadNg1Cmx9+eGSEvfBYnEGffmpKCSvEeRg7+2tGmDC0uW4HZ4OK9wwLNz5+LCkiXYN3Qor3DAB1eu4MKSJaIJBzQbDNjWrh0u/fgjZ0/ZMTEwGwxY6eMDRVwcL0+3w8OxoWFDmA0GXuGA+4YOxX9vvw2zwSCKcMC/unXDhSVLcH3NGl7hgJd+/BEXlizBrr59eYUDKuLicG7BAt7hgGaDAfuGDMGu3FVvSjscUJeRgZU+PtBlZPAKB7y+Zg02t2gBs8HAy9Ouvn2xb8gQmA0G3uGA5xYsgCIuThThgNfXrMGFJUvwFwsH5E358uXRv39/TJ48Ga+//jr8c8/pwyxfvhw7duxATEwMxowZg+zsbHzwwQecjzl27FgsWLAAf//9N27evIlx48YhOzv7hftsJOMZCJ4QIjIeDQfUZmbSP/362YKJBAoHVGfn0Mdh56jG1N0U9PV/FBWXUeQwM3VqKu0eOJD0CgXvcECjRkP/9OtHOSdOUEzLVnSjQSDFhwwni17/uCd1FtEf79kD/2jvdDLkZJPFZLLp9OlD+txgqGcF6VnMZkq5GU0ntm6k1WNH2cL7cr+WDHqT9q5YSvFXLtqDpriEA7bI7fXhO/upWVgzarSuEX15ZAoZ9bqnnqeHQ7LUKSm0a3BfOn/+fTp4qDYdPhxI6emHih3QpklLo90DB5IuJ4dXOKAuK4t2DxxImgcPeIUD6pVK2j1wIKlTUkQRDmjUaOifvn1Jl5XF2ZPFbLaPQ4NKxSscUJeTQ//07UtGjYZXOKDmwQPalfvaIYZwQE16um0cZmfzCge0j8P0dF7hgAaVinYNGGAbhzzCAY0aDe3q35806emcPQkZDmhQq23jUK3mFQ6oy862j0M+4YCa9HTa1b9//jjkGA6oTkmhXQMG2MNSuXgSMhxQl52dPw5ZOGCRCQ0NJR8fn8ceP3ToEAGgbdu2FXg8Li6OANDmzZupTZs25OLiQsHBwXT48GH7PkeOHCEAlJ2dXegxduzYQQ//CWkymeizzz4jb29vKl++PE2dOpUGDRpE77zzjmBeGeKFhQPmUtKrVx3NycHc/fEIj0qCi5MUa4e3xiv1Kj1boITQR0cjYfgIWBUKeLRujYDff4PU3b3gTjn3gD/eBdKuAU4uQK9lQPP3i30sVVYGbp60rTyVHhdrf9zZxRV1W7+MwA6dULNpczg587tPNa/XP9w+iMmRU2C0GtGjZg8sfHUhnJ+wpG1hmM0qXLo8EgpFFJycPNCkye+oUL7ds5/4gsBW+3EMrM+OgfXZMZS11avKChs2bMCECROQnJxcYEWsvNWrLl68iGbNmpXY8a1WK4KCgvD2229j7ty5JXYchjhgq1cVgtlgwOlZswrcH8sVAvD9wbsIj0qCVAL89G7zYk84hKxHc/06Yt95F1aFAu7NmyNg5a+PTzgSIoHfu9gmHJ6VgZDdj004nlaTXq3GlUP7sG3OdPz+6Qgc3bgW6XGxkEilqNW8Ff732RcYvWoj3vx8Mmo0aopz384Tptf1PTDl9FQYrUZ0CeiCBa8uKNaEw2jMQlTUe1AoouDs5I3mzcI4TziEOmdi0xEKsfkSm45QiM2X2HSEQmy+xKYjFGKr53lFq9UiNjYWCxcuxMcff1zsJXi5kpCQgFWrVuHWrVu4evUqRo8ejbi4OLz33nsOOT7j+eCFW70KVivUSUmA1cpbSt/+HWw4lwwA+G5gU7zRyLfU6jHExeH+Rx9DajDANTjYdoXD07PgThfCgN0TAasJ8G0CvPsH4PP4vZ6P1mQyGnA36hyiT0Qg7uJ5WC1m+65VGwQj6JXOqP9yB3h4+5SIt2tZ12CZUAMWiwEdqnXA4k6LIZMW/eqJwZCOi5eGQaO5DdLL0LTNWvj4NOdekFBjSGw6QiE2X2LTEQqx+RKbjlCIzZfYdIRCbPU8p3z33XeYN28eOnbsiGnTpjnsuFKpFOvWrcOkSZNARGjUqBEOHjzI+cPpjLIJu72KIysPRWPhgbsAgJm9gzGiQy3BtIuLMTERCUOGwpyWBtfAQNRYFwqncuXyd7CYgf1fA2dsid0I7gv0XQG4eD5JDoBtFZN7Vy8h+uRR3D4bCZNeZ/9Zpeo1EdihEwLbd4RP5SolYyqXqLQofHboM6hNarR8qSVWvr4Sbs5FvwSu0yXh4qWh0OnuwdXVF82bhcHTs86zn/gCwm5HcQysz46B9dkxsNurGAwGu72qEMx6PY5NnGhfwo8LRISYNNsygWNerc5rwsG3HlNyMu6FDIc5LQ0utWvjfrWqoIdPuC4b2DQwf8LReTowaN0TJxxEhORb0Ti4ajl+HtIffy2YiRvHDsOk18H7pcpo03cQhn3/C0K+/wVt+w565oSDjzciwpaYLRi1bxTUJjVwU4PvX15UrAmHRnMXURcGQ6e7B3e36mjacD2ivlnO69wDwowhMeoIhdh8iU1HKMTmS2w6QiE2X2LTEQqx1cNgMITnxbu9SgAkEgnmvFkPB2Z9jk+m7Sm1Okxp6UgYPgKm5GS41KyJar//hvtLluTvkHEb2DwYyIoFZB5Av5VAcJ/HdDKT7iH6xFHEnIyAIj3N/ri7lzfqt3sVQR06oWr9wCeHCpYARosR887Mw/bb2wEAr/l3x+GPfoT7l+7PeGY+KnUMLl4cBpMpEx4eddG8+Xo4U7kSqpjBYDAYDAaD8TRemNurMlNTUaFKFfu7KM5ubrbwIqkUzq6utpAsJyfbdm5QkVNu+JvUxQVOMhmMajWc3dwgdXZG1v376O7vj2MKBWQAZJ6ekDo5waBUwkUuByQSGFUquHh5AUQwqtVw9faG1WKBSaOxbZvNMOt0cPHysm3r9XCRy2ExmWA1Gu1hZlaTyR4oRRYLZB4e0CcnI2nkSJji4uFcrRr8166Be40a+Z4Sj4PCR0BiUAI+ATD1WQOpf3O7J7VSgdtnTyH6+BFkJCbY+yVzdUPdNu1Qt3lr1GrVFjJXV4d5MhsMSNekYfLpabjy4AqkEinGtxiPvpV6orufH44qFHB1dn7mecpIPYXrt8bAbFbC0yMQzZqEws2jMgxKpcPPk9lgAKxWOLu7Czb2jCoVnN3dIXV2FtST0WpFRx8fHEpORnk/vzLhSYznKSspCd0CAnAsJwcuEkmZ8CTG86Q3GNDFxwcHHzyAT6VKZcKTGM+TMjMTXatWRUR6Ojw8PQX1lJGcjJeqVWO3VzEYIueFv72q0HDAKVOwpVUrmHU6QcMBCwtfemY4YGAgDo4ahfj//ityOKA5Oxt3+vW3TTj8/JBWry7O/fgjzDodNjVrisRv+wGbBkFiUELtFAB8eAS7R8/A5dWrcfnAHqx8rz/Wjv8IxzevQ0ZiAiQSKWq3bAOPm/HoN2osXh/5KfZ16Y6sa9c4ecoLlIr/7z+sDQiAWacrUuDh1iWTMPCvvrjy4Ao8zM749E4zjGg0AqenTCkQDvi085SdfRoXLwyF2ayEj08LRA+7jOzLtuV81/j728LddDpeQXpb2rTBwVGjcHvbNn7hgHPm4OCoUdg3ZAi/cMBLl3Bw1CjxhAPqdNjYsCEuLVvG2VN2TIz9PCliY/mFA27bhtBatWDW6fiFAw4Zgj87doRZpxNHOGDXrjg4ahSur17NLxxw2TIcHDWKfzhgbCz2h4TwDwfU6bC9WzfxhAOmp9vCAdPT+YUDrl6N9Q0awKzT8Q4H3N6tm61PPMMB94eEQBEbK45wwNWrcXDUKPzVtSsLB2QwyiolmhYiAh4NB9Tl5NDJr76yhxcJEQ5YWPhSUYK/NA8eUOTMmWRQq4sUDqhLSaHYfv3oRoNAutnhFTLEx9vDl0xqBaV908Ye+Gf582PSZqbRjRMR9Oe8b2jJu28VCO7bMnMqRe3eQeqsTJu/3EApk15Px7/8kgy5QU/F9ZQXKGVQq+nEtGlk0uufGXgYfjPcHvrXd2dfuvvg9hPDAZ92ntJSD9DhI0F08FBtiop6n0wmdYGQLE16Op365hsy6fWcPVlMJtJkZFDkzJmkV6l4hQPqFQqKnDmTtFlZvMIBDRoNRc6cSZr0dFGEA5r0ejoxfbr9WFyD9PLGoVGr5RUOqFep8schj3BAbVaW/bVDDOGA2sxM2zhUKnmFA9rHYWYmr3BAo1ZLp2bMsI1DHuGAJr2eTn79NWkzMzl7EjIc0KjT2cahTscrHFCvVNrHIZ9wQG1mJp38+uv8ccgxHFCTnk6nZswgY+5rERdPQoYD6pXK/HHIwgEZjOcKFg6YS0mHAzpyZRSLWo17H4yE/soVOFWsiBobwuBau3ZuQenA1iFA4hlY4ISE+p8jOsMTd86fLrDu+Us1ayOoQyc0aN8R3pVeckjdT8NkMWHB2QUIvxUOAHitxmv4tsO38JB52PcpSq/T0vfg+vUJIDKhUqVuaNTwZzg5uTrEQ1mBrfbjGFifHQPrs2Ngq1cxGIwX/vaqwjBptfh30CCYtNrSLgVA0euxajRI/Ohj24TDxwfV167Nn3CkXAb91gVJN6OxP7keVsZ3xY6/zyPm5FGYDQb4VPHFy/0HY/gPKzBs0U9o/daAp044hOrRs3QydBkYuX8kwm+FQwIJxrUYhx86/VBgwlEUUlL+wrVrn4PIhCqVe6Fxo+VPnHA4ytfzqiMUYvMlNh2hEJsvsekIhdh8iU1HKMRWD0PcrFu3DuUejgZgPBe8cKtXSZyc4NeuHSROTqVdCoCi1WPV65H46RjoLlyA1MsLAWvXwK1BfQDAg8NrEbN9OWJy/KA05S3dq4eHTzk0aPcqAjt0gl+9BpBIJILWxFfn6oOrGB8xHunadHjJvLCw40J09O9Y7GMkJm3ArVuzAABV/d5GYOC3kEieXLcjfD3POkIhNl9i0xEKsfkSm45QiM2X2HSEQmz1iJnevXvDZDJh7969j/3s+PHj6NixIy5fvowmTZo84dnPB0eOHMH333+PM2fOQKfToWbNmujZsycmTpyIatWqlXZ5DI6w26s44qhL91ajEUmfjoHmxAlIPTxQPXQtjH6+iDkRgZgDfyEjK/9dIRc3N9Rr2wGBHTqheqOmkIr0xXvH7R2Ye3ouTFYTavvUxk9df0IN7xqF7l9Yr+PjVyL27vcAgICAEahX96tiTa4YBWG3ozgG1mfHwPrsGNjtVY5n586dGDBgABISEuCf+8H/PD744ANcvXoV53IXEnge+e233/Dpp58iJCQEw4YNQ82aNXHv3j2EhYXB29sbS5Yswbp16zB+/Hjk5OSUdrnPxGQyQSaTlXYZJQq7vaoQTBoNdvToAZNGU9qlAHh6PWQ04v648dCcOAGj3BOKT0Zi558bsXrsSJzYugEZWVo4SayoW90bvcdNwahlq6D7ey+q1W3Aa8IhVI8e1TFZTZh/Zj5mnJoBk9WErgFdsel/m5464XgSRITY2MX2CUfNmp8VacJRUr7Kio5QiM2X2HSEQmy+xKYjFGLzJTYdoRBbPWKmV69eeOmll7Bu3boCj6vVaoSHh6Nv37549913Ua1aNXh4eKBx48b4I3cVtzysViu+++471K1bF66urqhevTrmzZsHAIiIiIBEIinwB/2lS5cgkUgQHx8PAJg1axaaNWtWQHPZsmWoWbOm/fvhw4ejb9++mD9/PqpUqYJy5cphzpw5MJvNmDx5MipUqAB/f3+Ehoban5OUlITPP/8cn3/+OdauXYvOnTujZs2a6NixI1avXo0ZM2YU2pe///4bLVq0gJubG2rXro3Zs2fDbDbbf75kyRI0btwYnp6eCAgIwKeffgq1Wm3/ed4tW/v27UNQUBDkcjneeOMNpKSkFDjO6tWrERQUBDc3NwQGBmLFihX2n8XHx0MikWDr1q3o1KkT3NzcsGnTpkJrftF44W6vkspkqDdoEKQimXUWVg+ZzYj/YhJiL55Dcp2qyPDyAB36L++nqO6hQGC5TNQbNAlu7UcCACxGoyDehOrRwzqZukx8cfQLRKVFAQA+bfYpPm7yMaSS4s17iay4dftbJCWtBwDUrTMVNWp8VOx6+FBWdYRCbL7EpiMUYvMlNh2hEJsvsekIhVjqISJYrbpSObZU6l6kq/XOzs4YNmwY1q1bh6++yn/DLTw8HBaLBUOGDEF4eDimTp0Kb29v/Pvvvxg6dCjq1KmDNm3aAACmTZuGVatWYenSpXjllVeQkpKCmNyllYXk8OHD8Pf3x7Fjx3Dy5EmMHDkSp06dQseOHXHmzBls3boVH3/8MV577TX4+/sjPDwcRqMRU6ZMeaJeYZ/jOH78OIYNG4affvoJr776KmJjY/HRR7a/DWbOnAkAkEql+Omnn1CrVi3cvXsXn376KaZMmVJg0qDVarF48WJs2LABUqkUQ4YMwaRJk+wTh02bNmHGjBn45Zdf0Lx5c1y8eBEffvghPD09EZK7ZDQAfPnll/jhhx/QvHnz5+YKmkMo8XW0SplHl8wt6vJ9jloy99ElCc0mI908eYy2DhtMSwb2LLDEbdiED+jcxFaknF6JrItqk+nWEUE9FWWZRS6ermVco+7bulOjdY2o7aa2dDB2f7GW+MxbMleZk0VXr0ykg4dq08FDtSk+dk2peSJ6+tLGfJaOLC1PQi2ZKyZPYjxPQi2ZKyZPYjxPQi2ZKyZPYjxPQi2Z+yRPpbFkrtmssf8f4+gvs1lT5Lqjo6MJAB05csT+2KuvvkpDhgx54v5vvvkmffHFF0REpFQqydXVlVatWvXEfY8cOUIAKDs72/7YxYsXCQDFxcUREdHMmTOpadOmBZ63dOlSqlGjhv37kJAQqlGjBlksFvtjDRo0oFdffdX+vdlsJk9PT/rjjz+IiGj06NHk7e39LPsUGhpKPj4+9u+7detG8+fPL7DPhg0byM/Pr1CN8PBwqlixYgFNAHTnzh37Y8uXL6cqVarYv69Tpw5t3ry5gM7cuXOpXbt2REQUFxdHAGjZsmXP9FCWKOqSuWX29qpCwwEnT0ZorVowaTSiCQfc0q4dzq1djVX9/odfPxqKXT8uQqJeDatUCg9nF5TTWzDiw//hfe/taOV1C17+DXBR2wcRizYCyA9fMmk0WFujBs7Mns3JU16glEmjwW8VKuDBhQucPOUFSsX9+y8m96qNkP9CkKpNRYUcCTa/uRlVDicUK8wscvJkNHMG7tydjrQHOwGSIDhoMS6M3lqsMLM1/v7Y3KIFTBoNv3DA1q2xtV073NqyhVc44JnZs7G1XTvse/99fuGAFy5ga7t2ogkHNGk0WBMQgItLl3L2lB0TYz9POXfu8PJ0a8sWrPL1hUmj4RcO+P77CGvQACaNRjThgFvbtcO1Vat4hQNeXLoUW9u1w64+fXiFA+bcuYMtbdrwDgc0aTQICwrCrtxxWNrhgNrUVKz08YE2NZVXOOC1Vauwulo1mDQafuGAffogLCgIJo2GdzjgljZtkHPnjijCAa+tWoWt7dqxcMAiEhgYiPbt22Pt2rUAgDt37uD48eMYOXIkLBYL5s6di8aNG6NChQqQy+XYt28f7t27BwCIjo6GwWBAt27dSrzOhg0bQirN/1OzSpUqaNy4sf17JycnVKxYEenp6QBsV5q4fDbz8uXLmDNnDuRyuf3rww8/REpKCrS5K6IdPHgQ3bp1Q7Vq1eDl5YWhQ4ciMzPT/nMA8PDwQJ06dezf+/n52WvTaDSIjY3FyJEjCxzn22+/RWxsbIF6WrVqVWwPLwSOmQOVHo9e6dArlRS9cSOZjcZSvdJhtVop5fZNOvj7L/RLyKACVzR+7teD/uz6Ct3ZsI5MWjWZ/5mUH/i36V0ig/qJ7ySZjUaK3rjR/o4U13fHzEYjXV+3joy5M1Yu746ZLCZacGoeNVrXiBqta0Sj939Cmdm2c1Dcd/wykxPo53lV6OCh2nTocH1Kvr+r2J6IiLQZGXRzyxYyG4283vHTZmXRrW3byKDR8HoX06BS0a1t20iXk8PrXUyjTke3tm0jbUaGKK50mI1Git6wIX8ccnxnNm8cmvR6Xu/MGjQauhEWRmajkde7zbqcHIretMn+Tm9pX+nQZWfbxqFazesddPs4zM7m9Q66Sa+nm1u32sYhj3fQzUYjxWzeTLrcd1lL+0qHyWCwjUODgddVAYNabR+HfK506LKzKWbz5gL9Kq4nq9Vqez3cutUelsrFk5BXOgxqdf44LMUrHVarlcxmTal8Wa3WYtW+Zs0a8vDwIKVSSdOnT6c6deqQ1WqlBQsWUMWKFWnDhg106dIlun37Nr355pvUp08fIiK6cuUKAaC7d+8+Uffo0aMEgLKysuyPnT17tsCVjtmzZ1OTJk0KPO+777577EpH3jHz6NSpE40bN67AYzVq1KClS5cSEdGSJUsIACXn/j9UGI9e6XBzc6NFixbR7du3H/uyWCwUFxdHrq6uNH78eIqMjKSbN2/SmjVrClzReVSTiGjHjh2U96dyamoqAaCNGzc+doy8XuZd6bh48eJT6y9rFPVKxwsz6RD6RUulUFCz3ElHcchOSabIP/+gteM/LjjRGP427fhkBB1r2ZyuBwZRzt9/E2mzicL62SccdHg+0UOXKcVKli6LRu4daZ9w/HThJ7JYudVtMqno7NnBuROOIMrIiBC4WkYeXMc0o3iwPjsG1mfHUJJ9Lqn/vx/meU4kV6lUJJfLaeXKleTv70/z5s0jIqJevXrRBx98YN/PYrFQvXr17BMAnU5H7u7uhd5edePGDQJA169ftz/2+++/F5h0rFixgipXrlxgovTee+/xnnTcu3ePXFxcaPz48U+srbAJQvv27Qt4fpQ///yTZDJZgVu95s6dW6xJBxFR1apVac6cOYUeh006XtDbqwrDqFZjQ8OGMD60YkFJo8nJxoU9/2DzV19gzbgPcXLbRmQlJ8FJJkPdlm3hk5CKvvWaosGRSFRS61D127nwaR8MrO4OxB4CnN2BQeuALtMAaeGnTChvfHRismLwzu53cCb1DNyd3NF3hxUf1xtR7A+MA4Ben4KoC+9AqToHvcaKwPrLUbFip2Lr5CGG/ohZRyjE5ktsOkIhNl9i0xEKsfkSm45QiK2e5wG5XI7Bgwdj2rRpSElJwfDhwwEA9erVw4EDB3Dq1ClER0fj448/Rlpamv15bm5umDp1KqZMmYKwsDDExsbi9OnTWLNmDQCgbt26CAgIwKxZs3D79m38+++/+OGHHwocu3Pnznjw4AG+++47xMbGYvny5dizZw9vTwEBAVi6dCl+/PFHjBw5EkePHkVCQgJOnjyJjz/+GHPnzn3i82bMmIGwsDDMnj0b169fR3R0NLZs2YKvv/7a7slkMuHnn3/G3bt3sWHDBqxcubLY9c2ePRsLFizATz/9hFu3buHq1asIDQ3FkiVLePl+UXjhVq9ydnNDxyVL4FzCqwkYtFrcOReJ6BMRuHf1MoisAACJRIrqjZsisEMn1GvTDjIXV9xNyYIqbAMAwHfmDJRrWg5Y1RUwKABvf+DdzYBf02ceUyhvXHX2xO3BjJMzoLfoEeAVgKUdl8DtpQRO9ShV13Dl8kcwGNMgc66IZZMu449zLYut8zCl3R+x6wiF2HyJTUcoxOZLbDpCITZfYtMRCrHV87wwcuRIrFmzBv/73/9QtWpVAMDXX3+Nu3fvokePHvDw8MBHH32Evn37QqFQ2J/3zTffwNnZGTNmzEBycjL8/PzwySefAABkMhn++OMPjB49Gk2aNEHr1q3x7bffYtCgQfbnBwUFYcWKFZg/fz7mzp2LAQMGYNKkSfj99995e/r0009Rv359LF68GP369bOHA/bq1QsTJ0584nN69OiB3bt3Y86cOVi0aBFkMhkCAwMxatQoAEDTpk2xZMkSLFq0CNOmTUPHjh2xYMECDBs2rFi1jRo1Ch4eHvj+++8xefJkeHp6onHjxhg/fjxf2y8EpRoO+Ouvv+LXX3+1r/vcsGFDzJgxAz179gRgCxv54osvsGXLFhgMBvTo0QMrVqxAlSpVinwMR4YDmo1GxF06j5gTRxF74SwsJpN9f9+69RH0Smc0aPcqPMuVtz+esWoVHvxgmyFXnjoVFYN0wL7pAFkB/zbAO5sAeWXB6i4JLFYLfrz4I0Kv2dba7lCtAxa9ugg+rj6c9B5kHML16+NhsWjh6VkP9WovQ/fKQSzkq4RhYWqOgfXZMbA+OwYWDshgMJ6LcEB/f38sXLgQUVFROH/+PLp27Yo+ffrg+vXrAIAJEyZg165dCA8Px9GjR5GcnIz+uau0cMWoUmGNvz+MKpUQFmC1WnHv2mXsW/kjVn48FP/8MB+3zpyExWRC+ar+aP/2+/jgx9/x/rwlaNHzrQITjqywMPuEo8Loj1Gxwnlg75e2CUez94Hhu4s14RDKW3F0FAYFPj30qX3CMbLRSCzvuhw+rj6c6klMXIcrVz6BxaJFhfKvoFXLcLi6VuXs5WFKoz/Pk45QiM2X2HSEQmy+xKYjFGLzJTYdoRBbPQwGQ3hK9faq3r17F/h+3rx5+PXXX3H69Gn4+/tjzZo12Lx5M7rmLpsXGhqKoKAgnD59Gi+//DKnYzq7u+N/4eFwdnfnVfuDhDi0bBqETVM+g1aRY39cXqEiAjt0QmCHTqhcs3ahS79lb9mCtPm2pQPd3nwdlT3/Ay6eASRS4LW5QLsxQDGXjRPKW1F1bmXfwrjD45CkToK7szvmdJiDN2q+wakeq9WM23e+RVKS7TazqlXfQYP6syCVygAoefnhUs+LqCMUYvMlNh2hEJsvsekIhdh8iU1HKMRWD4PBEJ5Svb3qYSwWC8LDwxESEoKLFy8iNTUV3bp1Q3Z2doEEyho1amD8+PGYMGHCE3UMBgMMBoP9e6VSiYCAANxPTBT08ux/Py5C4rXLAAAXDw/UbtkW9dp2gG+9wAJrUj8J9a5dyJ77LQDAe+D/4FvuPzipk0EuXtC/uRyWWl0Eq7OkOHz/CL6NmgedRQc/Dz8senkB6vnU46RlsWhx5+6XyFEcBwBU958A3ypD7RM2jVKJNwICsDcxEZ7sNokSg/XZMbA+OwbWZ8dQkn1WKpWoFhDAbq9iMEROUX+PSv2D5FevXkW7du2g1+shl8uxY8cOBAcH49KlS3BxcXks8r5KlSpITU0tVG/BggWYnRuO9zBvBATAScC6/atWQc3qVRF/7z6SUzNgXRdepOe19/LGp35+kEokuIYcvGlZBSe1BAmZFoz/IwXxX/UVsErhIQlg7V8Z1Nt225fkuhrpKw7jAw23IByfSk744FtfVKvnCpPBis0LHuDq8bEAxj627xsBAXxKZxQR1mfHwPrsGFifHUNJ9NkiuCKDwShNSn3S0aBBA1y6dAkKhQJ//vknQkJCcPToUc5606ZNK7C6Qd6Vjr25VzqsFgtybt1Cufr1IXXiPg3h8u6O9vBhZH71NWCxwKtDXQz0PwaJRAJdxeYo//E6bJhXgXM9AATzVpiOyqjCrPOzcSotEgDwbt138WmfT+D89ZOH0bPq0WhjcPP25zCZHsDZuQIaBi7DK7sbP76fQO+klXR/nncd1mfH6LA+O0aH9dkxOiXZ57wrHQwGo2wgmtur8ujevTvq1KmDwYMHc7q96lEcuXrV01AdPoKkzz8HzGb4NK8Ev/pXbB/ZaPsJ8Po8wKnU539PJTYnFuOOjEOCMgGuTq6Y1X4WetXuxVkvI+Mwrl0fZ1+hqmmT1XB393/ivmwVGsfA+uwYWJ8dA+uzY2CrVzEYjOdi9aonYbVaYTAY0LJlS8hkMhw6dMj+s5s3b+LevXto164dZ32DUokfJRIYlMJ8OLkoqE+cxP1x4wCzGd4NXOFX7wokTjKg908wdPgKPzrLBKlHKG+P6hy6dwjv/fseEpQJ8PP0Q1jPsCJNOAqrJzFxPS5f+Th3haoOaNliW6ETDiEpqf6UFR2hEJsvsekIhdh8iU1HKMTmS2w6QiG2ehgMhvCU6tvr06ZNQ8+ePVG9enWoVCps3rwZERER2LdvH3x8fDBy5EhMnDgRFSpUgLe3N8aOHYt27dpxXrkKAFzkcnyQmAgXuVxAJ4WjOXMWSWPGgEwmeNW0omrTOEjkFYHBG4Ea7eFitQpWj1De8nScPT2w4tIK/Hr5VwBAa9/WWNxpMSq4Fe02sEfrIbLg1u15SEpaDwCo6vc2GjSYk7tCVckjdH/Kmo5QiM2X2HSEQmy+xKYjFGLzJTYdoRBbPQwGQ3hKddKRnp6OYcOGISUlBT4+PmjSpAn27duH1157DQCwdOlSSKVSDBgwoEA4IC8kErh4exd7OVouaC9cQOLo0SCDAfJqRlRrnQGJXyPgnc1A+RrC1yOUlkQCo7sTpkdMQERSBABgSNAQTGw1EbLiTBAeqsds1uD69fHIyDwMAKhbZwqqV/+o0CWFSwQB+1MmdYRCbL7EpiMUYvMlNh2hEJsvsekIhdjqYTAYglOqt1etWbMG8fHxMBgMSE9Px8GDB+0TDgBwc3PD8uXLkZWVBY1Gg+3bt8PX15fXMY0qFVb6+JR4AJHuyhUkfvgRSKuFp68e1dpnQNKwF/DBvvwJh8D1CKV1K/ka+vzeERFJEXCRuuDbDt9iapupxZtwPFSPKjMWFy68i4zMw5BKXdGo0S+oUeNjx044IFx/yqqOUIjNl9h0hEJsvsSmIxRi8yU2HaEQWz0MGzVr1sSyZcsE1ezcuTPGjx8vqCbj+UB0n+koaVy8vPCJQgEXL68SO4Y+Ohr3Ro6CVaOBR2UD/F/JhrTLZODtDYBrwUvHQtYjhNaxpGMYfvQjKKq6obJHZazvuR596vbhXM+QlLO4cnMYVOrrkMkqokXzTahSuSfn+vggVK/Lqo5QiM2X2HSEQmy+xKYjFGLzJTYdoRBbPWJGIpE89WvWrFmlVpvFYsHChQsRGBgId3d3VKhQAW3btsXq1atLrSaGeHhhJh1mnc7+rzY9HSCCWaeDOTdI0KTV5m9rNLAYjfnbJhMAwKhWw2o227ZVKuS9T29QKmG12FYUV128iHvDQ2BVqeBeyQj/LlpIBq+GodXngFQKq8Vi/6Cc1WyGUamEUamE1WSCUa0GAFhMJpg0Gtu20WjfNhsMMGm19m27J70eZr0eIII2Lc22XUxPVrJixbmf8Nmhz6A2qdFYHog/emxCo0qNYFAqQVYriMi2TQSyWvN9POop952qB2kHcSV6BAyGNHi410Gz4A3w8WlePE+55yxvoHI5T3nbBoUC+uxsIM8HB09520alsoAPLp7Mej2MSiVMGg13T0qlfRwZFArunnLHniT3uJw9GQyPj0MuniwWgAjq+/dBFgsvTxajEZrUVICIu6fc2nUPHgBE3D0BMObWy8uTyQSTWm0bhwYDd09abf44VKs5ezIolSCLBQaFwjYOuXrSaAAi6DIyYMp9nJOn3G3n3PPP2ZPVCrJabeMwd5uTJwAWg8E+Dvl4MqnV0GVk5I9DLp6I8s/Vwz6K6+nh10A+njQaWAyG/HH4kCfG46SkpNi/li1bBm9v7wKPTZo0yb4vEcGcOxYcwezZs7F06VLMnTsXN27cwJEjR/DRRx8hJyfHYTUwxEuZnXQsX74cwcHBaN26NQDg+OTJAIATU6YgrF49GNVqRIwdi/MLFgAA9oeE4Mry5QCA3f37IzosDACwvXt33N25EwCwtW1bJOaupvVXmzaolHustf7+yI6JgeHuXcS/8zYsChXcKhhRvvkDWIb8CXX5l7HSxwcAkB0Tg7X+tpWa0s6dw4bgYKwNCEDc7t3Y2rYtAODuzp3Y3r07ACA6LAy7+/cHAFxZvhz7Q0IAAOcXLEDEWFuA3qnp03Fq+nQY1WqE1a+PM3PmFMvTzQP/4ouIL/DrjVUgEAbV6o9Wg/+CJToBALDSxwfq5OQCl7/VycmFewoKQmLSBly9PhpW0sHHqw0q3B+CPb2GF9sTAEROnowmub0u7nnaEBSEtHPnbOepenWsq1kTRrWakycASDx0CFvbtsXagADc2rKF03kCgIixY3FmzhysDQjAviFDuHvy90f6hQtYGxCA38qX5+UJAKoD2NOnD2dP5xcssI/Di0uXcvaUHRMDo1qNjcHByL59m5enW1u2YEODBjCq1Zw9AcC+IUOwvm5dGNVqzp4AYENAADwAmHh4urtzJ7Z364a1AQG4tmoVZ0/7Q0JwcelSrA0IwK6+fTl7Wunjg+zbtxFavTp+K1+eu6fu3WFUq7G+Th3s6tuXs6e836cuAO788QdnT+rkZGhSUrAxOBialBTOngDg2qpV9nHIx9Ouvn2xvk4dGNVqzp6MKhV+K18eodWrI/v2bc6eosPCcGjIEADAjVWrOHva3b8/rq1ahbUBAdjerZvd0/auXcF4HF9fX/uXj48PJBKJ/fuYmBh4eXlhz549aNmyJVxdXXHixAnExsaiT58+qFKlCuRyOVq3bo2DBw8W0E1PT0fv3r3h7u6OWrVqYdOmTY8dOycnB6NGjcJLL70Eb29vdO3aFZcvX7b//J9//sGnn36KQYMGoVatWmjatClGjhxZYCIE2FYqnTJlCipUqABfX9/Hrs7cu3cPffr0gVwuh7e3N95++22kpaUBABQKBZycnHD+/Hm7VoUKFQosMrRx40YEsIwX8UFlHIVCQQAoMzWViIhMOh2ZdDrbtlZLJr2eiIiMGk3+tlpNZoMhf9toJCIig0pFFpOJiIgyk5KoOUAqhYL0CgXpYu/SrbYt6UaDQIptW4dMP3Um/f1bZLVayWqxkF6hICIii9mcv20ykUGpzN9WqYiIyGw0klGttm0bDPZtk15PRo3Gvm3Sanl7upNyg/rs6EON1jWi5mHNKTx6KxER6RUKspjN9m2rxUJWq9W2/RRPZqOeblz7hg4eqk0HD9Wmq5cnksVi4OUpOzWVWuT2urjnyaBU2re5ehLDeXKEJ5VCQc0BykpOLjOexHieMhMTqRlAypycMuNJjOdJpVBQK4ByHjwoM57EeJ6ykpOpGUA56emCe3pw/z4BIEVuTSWBTqejGzdukC63RqvVSmqzuVS+rFZrsesPDQ0lHx8f+/dHjhwhANSkSRPav38/3blzhzIzM+nSpUu0cuVKunr1Kt26dYu+/vprcnNzo4SEBPtze/bsSU2bNqXIyEg6f/48tW/fntzd3Wnp0qX2fbp37069e/emc+fO0a1bt+iLL76gihUrUmZmJhER9ejRgzp27Ejp6emF1typUyfy9vamWbNm0a1bt2j9+vUkkUho//79RERksVioWbNm9Morr9D58+fp9OnT1LJlS+rUqZNdo0WLFvT9998TEdGlS5eoQoUK5OLiQqrccTpq1Ch6//33i91PBjce/T0qjBdm0qF46EU149o1+4swV1QKBTXL+0M4IY5utW1mm3C0qUOmsBFExqc3Pg+h6uGidTzpOLXb3I4arWtEXbZ2oYtpF3nVZDKp6dLlj+wTjrt3l9ODq1cF7TUfhOp1WdVhfXaMDuuzY3RYnx2jU5J9fvT/75Lg0T+W1GYzVTl8sVS+1BzORWGTjp07dz7zuQ0bNqSff/6ZiIhu3rxJAOjs2bP2n0dHRxMA+6Tj+PHj5O3tTfrcyWIederUod9++42IiK5fv05BQUEklUqpcePG9PHHH9N///1XYP9OnTrRK6+8UuCx1q1b09SpU4mIaP/+/eTk5ET37t2z//z69esF6ps4cSK9+eabRES0bNkyGjx4MDVt2pT27NlDRER169al33///Zk9YAhDUScdZfb2qsIwaTTY1q6d/T5UvpgTbiLh7d4w5+jh4mVG9Zmj4DxkDSArWrKpkPUUVYuIsObqGnx68FOojCo0fakptvTagmaVm3GuyWBIw4WL7yIj4yCkUhc0avgTqlYcgvD27QXrNV+E6nVZ1REKsfkSm45QiM2X2HSEQmy+xKYjFGKr53mnVatWBb5Xq9WYNGkSgoKCUK5cOcjlckRHR+PevXsAgOjoaDg7O6Nly5b25wQGBqJcuXL27y9fvgy1Wo2KFStCLpfbv+Li4hAbGwsACA4OxrVr13D69Gl88MEH9lu2Ro0aVaCeJk2aFPjez88P6enp9loCAgIK3B4VHByMcuXKITo6GgDQqVMnnDhxAhaLBUePHkXnzp3RuXNnREREIDk5GXfu3EHnzp35NZEhOKWa01EauHp7Y7RAiafNq8iQMWoYTApAJrei+k/z4Nzu7VKrpyhaWpMWM07NwL74fQCAAfUGYHrb6XBxcuFck0oVjctXRsFgSIVMVgFNm/wGH58WACCYNyEQqtdlVUcoxOZLbDpCITZfYtMRCrH5EpuOUIilHg+pFLEdG5fasYXC09OzwPeTJk3CgQMHsHjxYtStWxfu7u4YOHAgjLkLLRQFtVoNPz8/REREPPazhycnUqkUrVu3RuvWrTF+/Hhs3LgRQ4cOxVdffYVatWoBAGSygkvwSyQSWK3WItfSsWNHqFQqXLhwAceOHcP8+fPh6+uLhQsXomnTpqhatSrq1atXZD2GY3jhrnRYzWakREbaV/bgzIU/Mb16dZgUgLMcqBG6GrJiTjgEracIWkmqJAzdMxT74vfBWeKMb17+BrPazyow4ShuTRmZEYi6MBgGQyo8POqgdau/7BMOIb0JgVD1lFUdoRCbL7HpCIXYfIlNRyjE5ktsOkIhlnokEgk8nZxK5asks6tOnjyJ4cOHo1+/fmjcuDF8fX0RHx9v/3lgYCDMZjOioqLsj928ebPAqlMtWrRAamoqnJ2dUbdu3QJflSpVQmEEBwcDADRFvIoVFBSExMREJCYm2h+7ceMGcnJy7FrlypVDkyZN8Msvv0AmkyEwMBAdO3bExYsXsXv3bnTq1KlIx2I4lhdu0mHW6fDfoEH25fy4QFYrHsxbDpNSBie5E2ps3ApZ41dLrZ6iaEUmR+Kdf9/BrexbqOhWEWt6rMHbDZ48SSpqTUlJm3D58oewWDQoX74dWrUMh7t79WLrOAqh6imrOkIhNl9i0xEKsfkSm45QiM2X2HSEQmz1lDXq1auH7du349KlS7h8+TLee++9AlcWGjRogDfeeAMff/wxzpw5g6ioKIwaNQru7u72fbp374527dqhb9++2L9/P+Lj43Hq1Cl89dVX9pWkBg4ciKVLl+LMmTNISEhAREQExowZg/r16yMwMLBItXbv3h2NGzfG+++/jwsXLuDs2bMYNmwYOnXqVOC2sc6dO2PTpk32CUaFChUQFBSErVu3skmHWHHMR0xKj5L6IFrG4f10Lrg2ZV2IElRXaKxWK627to6arG9CjdY1ond2vUMp6hSemma6eetb+wfGr9+YQhaLQaCKH0eoDyoyng7rs2NgfXYMrM+OoST7XBofJH/eKOyD5NnZ2QX2i4uLoy5dupC7uzsFBATQL7/8Qp06daJx48bZ90lJSaE333yTXF1dqXr16hQWFkY1atQosHqVUqmksWPHUtWqVUkmk1FAQAC9//779g99//7779SlSxd66aWXyMXFhapXr07Dhw+n+Ph4u8ajxyUi6tOnD4WEhNi/T0hIoLfeeos8PT3Jy8uLBg0aRKm5q5DmsWPHDgJAv/76q/2xcePGEQCKiYkpXiMZvGCrV+Xy6JK5BpWKYv/5hywmE+8lc1s+tGQu1yUJdVlZFL93L5l0Ot7LLFpMJor9+2/7/gpFJk05MpkarWtEjdY1oulHp5HerH/mMosWk4lu//WXvR8Pe9JkpRZYoSoubjmZTaYnLrNo0unozo4dZDGZRLFkri4zk+L+/ZcsufVyXTpSl51N8Xv3klGr5bUcplGtpvi9e0mvUPBaDtOk11P83r2ky8wUxZK5FpOJ7uzcaX8u1yU+88ah2WDgtcSnUaulOzt32sYhj2VL9QqF/bVDDEvm6nNybONQo+G1FKt9HObk8FqK1WwwUNyePbZxyGMpVovJRHd37SJ9Tg5nT0IumWs2Gm3j0GjktbysUaOxj0M+S+bqc3Lo7q5d+eOQ45K5usxMituzh8wGgyiWzDVqNPnjsBSXzGUwGMXnhZ90/PLLLxQUFET169e3LR83dCgRER0eM4Z+rVCBDCoVHRg5kiJnziQiot0DB1LUDz8QEdH211+nq6tWERHRlpdfplvbthERUVhwMMXv3UtERL9XrUqv5f4hvMLLizKuXSMiomUAKRMTSa9Q0DKA9AoFKRMTaVnuRaWMa9dohZcXERElnzpFq6pWpbDgYLq9YweFBQcTEdGtbdtoy8svExHR1VWraPvrrxMRUdQPP9DugQOJiChy5kw6MHIkEREdnTCBjk6YQAaVin4tV45OTJtG91X36fUfW1KjdY2o6fqmNPWzDnRl1e9P9bS6WjVKPnWKDCoVLZNKKSV3abo8T8oHd2jXimp08FBtOnQ4kNZ29nyip9XVqhER0e0dO+hnV1cyqFScPRER/Td0KA3P7XVxz1OeJyKi5V5etLZ2bZu/Yp6nPE/xe/fS+sBACgsOphthYZw9HRg5kk5Mm0ZhwcH0T9++nD2t8PKilLNnKSw4mJensOBgUikU1AegTa1bc/YUOXMmGVQqWu7lRWfnz+fsKePaNft5yoyJ4eyJiOhGWBj97O5OBpWKsycion/69qXfqlQhg0rF2ROR7fepPUCZuT64eLq1bRv90bo1hQUH08Wff+bsaffAgXR2/nwKCw6mv7p14+UpMyaG1jdowMvTlpdfJoNKRb/7+dFf3bpx9hT1ww+kUihoMkDnf/qJsydlYiKp7t+nZQCp7t/n7ImI6OLPP9Mvnp5kUKk4eyIi+qtbN/rdz48MKhVnT3m/T+sbNKDMmBjOnq6uWkXhXbtSM4BOzZvH2dP211+niz//TGHBwfRH69Z2T781aMAmHQzGc8ALP+nIw1HhgGIKlIpMOEGv/vEqNVrXiF754xU6m3KWd6CUUnGdjp/oQAcP1aajx1pSdtY5h3li4YAsHLAsnScWDsjCAcvSeSpr4YAMBqP4sElHLo/eE2o2GunWtm32FzWuCHUfq1D1EBGZDAZauukLarq+KTVa14gG/TOIklXJvGvKyIigIxFN6OCh2nQqsjtpNPHPUHiyDlfE1uuyqsP67Bgd1mfH6LA+O0anJPvMPtPBYDwfsHDAQrAajbiwZAmsxVibuiQRqh6DxYAZp77BGtM+WMiCXrV7IaxnGPzkfrxqSrq/GZevfAiLRY1y5dqiVcs/4eFRo9g6YkCoesqqjlCIzZfYdIRCbL7EpiMUYvMlNh2hEFs9DAZDeCRERKVdREmiVCrh4+MDhUIBb29vwXTVSiVe9fHBcYUCcgF1uZCqScWEIxNwLfMapBIpvmj5BYYGD+W15jeRBXfuLMK9xDUAAD/fAQgM/BZSqcsznik8Yup1WYb12TGwPjsG1mfHUJJ9Lqn/vx9Gr9cjLi4OtWrVgpubW4kcg8Eo6xT19+iFu9JhMRpxbfVqWETybgrfei6kXcDg3YNxLfMafFx88KWpD96v9w6vCYdRl4OTu3vZJxy1a09EUNCiYk84ylqvy7qOUIjNl9h0hEJsvsSmIxRi8yU2HaEQWz0MBkN4XrhJh9Vkwu3wcFhNptIuBQD3eogIW2O2YuS+kcjSZ6FB+QbY2C0UbtvO8PJmMKTj4pVhMHjegkTigobBS1Gr5hhOk5iy0usXRUcoxOZLbDpCITZfYtMRCrH5EpuOUIitHgaDITzs9iqOlOale6PFiHln5mH77e0AgDdqvoHZ7WfDQ+bBS1etvolLl0fCYEiBTFYeTRqvRLlyrZ79xBKG3SbhGFifHQPrs2NgfXYM7PYqBoPBbq96BLNOBwDQKxQ4v2gRzAYDzDodzAYDAMCk1eZvazT2S7wmjQaW3HdejGo1rGazbVulQt57/walElaLxb5NViuIyLZNBLJaYVAqAQBWiyV/22yGNiMDF5YsgVGjgVGtBgBYTCaYNBrbttFo3zYbDEjOTMCIfSOw/fZ2SCVSTGg5AfPbzIGLRQqzwYBzixbZ9YvjKTPzGM6fHwSDIQXubjXhcrY7PFyCOXkyqlQ2bY0G5xYsgNlgeKonk1Zr3847T2a9Hma93n7u8gYql/OUt6198ABRixfDbDBw9mQ1m6HNzMSFJUtgUKt5eTIolbiwZAl02dmcPRmUShi1WlxYsgTaBw84e8obe5Lc43L1ZDYYbONw4cL8ccjBk9VigdlgwNn582HS6Xh5MqjV+eOQoycA0GVn4/x339mex9ETABhz6+XjyWIyQZeVZRuHKhVnTyatNn8cZmVx9mRQKmHS6RD1ww+2ccjRk0mjgdlgwPnvvoMuK4uzp7xtZ4CXJ7JaYdLrbeNQr+fsCQAMKpV9HPLxpMvKKjgOOXgiItvr4Q8/wJT7WsTF08O/TxYenkwaDQwqVf44fMgTg8EoO5TZScfy5csRHByM1q1bAwCOT54MADj99de4tmYNyGJBxNixOL9gAQBgf0gIrixfDgDY3b8/osPCAADbu3fH3Z07AQBb27ZF4qFDAIC/2rRBpdxjrfX3R3ZMDABgpY8P1MnJMKpUWOnjA6NKBXVyMlb6+AAAsmNisNbfHwCQdu4cNjdtipTISCQePIitbdsCAO7u3Int3bsDAKLDwrC7f39bLb/NxMA/++DKgyvwsMjw4ZV6+KDRB4j86iucmj4dZLHg2sqVOL9oUbE8XTsyC5evjILFqoGHNBDNGm3E2S9/QPaNG5w8bQgKAgAkHjyI8wsXgiyWQj1dWb4c+0NCAADnFyxAxNixAIBT06fj1PTpAIDIyZPRJLfXxT1PG4KCkHbuHABgXZ06SNi/H2SxcPd06BD+fPVVpERG8vIUMXYszi9ahJTISBwaOZKzp7X+/si+cQMpkZFYVbkyZ095Y686gD19+nD3tGAByGLB5V9+wZUVK7h7iokBWSyI/OorqJOSeHm6u3MnohYvBlksnD0BwKGRIxGzaRPIYuHsCQA2BATAA4CJp6e/e/ZESmQkYjZs4Oxpf0gIrqxYgZTISOx5+23Onlb6+ECdlITk48exqnJlzp62d+8Oslhwa9s27Hn7be6ecn+fugC488cf3D0lJ8OYk4PIr76CMSeHsycAiNmwARd//BFksfDytOftt3Fr2zaQxcLdk0qFVZUrI/n4caiTkjh7ig4Lw6EhQwAAN1at4uxpd//+iNmwASmRkfi7Z0+7p+1du4IhLBKJBDtz+/skIiIiIJFIkJOT47CansWsWbPQrFmz0i6DIQQlsV6vmCgr4YB/3vyTmoU1o0brGlHfnX0p9sFt3uFLVquFoq/PpoOHatPBQ7XpyqXPyWTQ2H2IJSSLhQOycMCydJ5YOCALByxL54mFA5YOv/76K8nlcjLlnmciIpVKRc7OztSpU6cC+x45coQA0J07dwgA7dixo1Bdg8FAKSkpZLVaiYgoNDSUfHx8il1f3jGDg4PJnDv+8vDx8aHQ0NAia6lUKsrIyCh2DQzHwcIBc3k0XMik11PkzJn2FzuuCBWI9Kx6jGYjzTk1hxqta0SN1jWi8YfHk8ao4aT1MGazli5fGW2fcNy9+5P9RUaoHj1vvX7RdVifHaPD+uwYHdZnx+iUZJ9ZOGDhxMTEEACKjIy0P/bff/+Rv78/ubm5FfAzY8YMql69OhHRMycdj8J30uHm5kZr164t8LPiTjoY4oeFAxaG1Qp1UhJgtZZ2JTaeUk+GLgMj94/EtlvbIIEEY5uPxZLOSwr/wHgRvRkMD3Dhwnt48GBf/gpVtcbmr1AlVI+eo14zHQERmy+x6QiF2HyJTUcoxOZLbDpCIbZ6RE6DBg3g5+eHiIgI+2MRERHo06cPatWqhdOnTxd4vEuXLvbvMzIy0K9fP3h4eKBevXr4559/Cuybd3tVREQERowYAYVCAYlEAolEglmzZgEADAYDJk2ahGrVqsHT0xNt27YtUEseY8eOxcyZM2HI/fzOk7h37x769OkDuVwOb29vvP3220hLS7P//NHbqyIiItCmTRt4enqiXLly6NChAxISEuw///vvv9GiRQu4ubmhdu3amD17Nsy5n3FilDIOmgSVGiX1TolQ7+4UxpX0K9R1W1dqtK4RvbzpZTqaeFQQXZUqhk6ceIUOHqpNR4+1pOzsc4LoliQl3WuGDdZnx8D67BhYnx1DSfa5NK50WK1W0hhMpfKVd7dBUXnvvffo9ddft3/funVrCg8Pp08++YRmzJhBRERarZZcXV1p3bp1RGS70uHv70+bN2+m27dv0+eff05yuZwyMzOJKP8KRXZ2NhkMBlq2bBl5e3tTSkoKpaSkkCr3NrtRo0ZR+/bt6dixY3Tnzh36/vvvydXVlW7dulVA5/79++Tn50fff/+9vc6Hr3RYLBZq1qwZvfLKK3T+/Hk6ffo0tWzZssAtYjNnzqSmTZsSEZHJZCIfHx+aNGkS3blzh27cuEHr1q2jhIQEIiI6duwYeXt707p16yg2Npb2799PNWvWpFmzZhWrt4ziwa50FIJZr8exiRPtq2mUNk+qZ+ednRi+dzjStemo5VMLm9/cjI7+HTlpPUxm1gmcj3obekMy3N1rolXLP5+4JK5QPXoees10hEdsvsSmIxRi8yU2HaEQmy+x6QiFWOrRmSwInrGvVL50Jkuxau3SpQtOnjwJs9kMlUqFixcvolOnTujYsaP9qkNkZCQMBkOBKx3Dhw/Hu+++i7p162L+/PlQq9U4e/bsY/ouLi7w8fGBRCKBr68vfH19IZfLce/ePYSGhiI8PByvvvoq6tSpg0mTJuGVV15BaGhoAQ0PDw/MnDkTCxYsgEKheOwYhw4dwtWrV7F582a0bNkSbdu2RVhYGI4ePYpzuYshPIxSqYRCoUCvXr1Qp04dBAUFISQkBNWrVwcAzJ49G19++SVCQkJQu3ZtvPbaa5g7dy5+++23YvWWUTK8cJMOMWOymrDgzAJ8c/IbGK1GdAnogs3/24xaPrV4a9+/vwWXL38Ai0WNcuXaoHWrP+HhUZN/0QwGg8FgMBxO586dodFocO7cORw/fhz169fHSy+9hE6dOuHMmTPQ6/WIiIhA7dq17X+UA0CTJk3s256envD29kZ6enqRj3v16lVYLBbUr18fcrnc/nX06FHExsY+tv/IkSNRsWJFLMpdWfNhoqOjERAQgICAAPtjwcHBKFeuHKKjox/bv0KFChg+fDh69OiB3r1748cff0RKSor955cvX8acOXMK1PXhhx8iJSUF2twlnRmlh3NpF+BonN3c0HHJktIuw05ePZm6TEzaPwnn084DAD5t+ik+bvoxpJKizwuf5I3IitjY75Fw73cAgG+VvggKmg+p1LVYOlwQa6+ZTskiNl9i0xEKsfkSm45QiM2X2HSEQiz1uMuccGNOj1I7dnGoW7cu/P39ceTIEWRnZ6NTp04AgKpVqyIgIACnTp3CkSNH0PWRpYdlMlmB7yUSCazF+CyNWq2Gk5MToqKi4ORUsGa5XP7Y/s7Ozpg3bx6GDx+Ozz77rMjHKYzQ0FB8/vnn2Lt3L7Zu3Yqvv/4aBw4cwMsvvwy1Wo3Zs2ejf+4y4g/Dwh9LnxfmSoc9HDA7G/uHD7eFFIkhHDA9HaHj38XgXYNxPu08PGWeWNpxCUbVGwapRFqsMDOzTof9w4fDkLu+tl6ViStXxtgnHDWrf4bg4MWw6MxPDZQy63TYN2xYfrga13BAlQr7QkJg1unEEQ6YloYDH3xgD+bjHA744AEOjhplC0TjEw6Yk4ODo0ZBl5nJLxxQrcbBUaOgTUsTRzjgI+OQczhg7jg0aTT8wgGVSuzPG4d8wgEzM7F/xAiYdTpxhANmZNjGoULBLxwwbxxmZPALB9RocGDkSNs45BMOqNNh/4gR0GVkcPYkaDigVmsbh1otv3BAhcI+DnmFA2ZkFByHXMMB09JwYORIWzCfGMIBFYr8cViK4YASiQQeLs6l8mVfzKUYdOnSBREREYiIiEDnzp3tj3fs2BF79uzB2bNnC9xaVVxcXFxgsRS87at58+awWCxIT09H3bp1C3z5+vo+UWfQoEFo2LAhZs+eXeDxoKAgJCYmIjEx0f7YjRs3kJOTg+Dg4ELrat68OaZNm4ZTp06hUaNG2Lx5MwCgRYsWuHnz5mN11a1bF1LpC/Mnr2gps2eg0HDAWbOQffMmIJWKIhxwxoiX8XPTG0jTpaF8FmHz/zajxvkcbqFzUikyrlxB1OLFMBgzcHx3Z2Rk7odE4gLdrirQRXhBIpE8O1BKKsWtrVuRffs2J095gVJJR48iYc8eQCoVRzhgvXpwcnMDpFJ+4YCdOkHu74+43bt5hQNGLV4Mub8/Dn30Eb9wwNu3Iff3xypfX1GEA0IqRdq5c7j6++/cPcXEAFIpYjZsgCY1lZenuN27kXj4MCCV8gsH/OgjaJKTAalUHOGAvXpB7u+Pm5s38woHvPr775D7+2PPu+/yCgfUpKbCvXJlrPL15RUOCKkU+sxM7Hn3Xc6ehAwHNGk0iNmwASaNhlc44M3Nm5F88iQglfILB3z3XegzMwGplF84oK8v3CtXhiY1VRThgDc3b4bc3x9/9+rFwgGLQZcuXXDixAlcunTJfqUDADp16oTffvsNRqOR16SjZs2aUKvVOHToEDIyMqDValG/fn28//77GDZsGLZv3464uDicPXsWCxYswL///luo1sKFC7F27VpocieqANC9e3c0btwY77//Pi5cuICzZ89i2LBh6NSpE1q1evwzp3FxcZg2bRoiIyORkJCA/fv34/bt2wjKHaszZsxAWFgYZs+ejevXryM6OhpbtmzB119/zbkHDAEpsY+yiwSxhgOaLCZadHqhPX9j9P7RlJGZG8rGM1AqJ+sanTj5Kh08VJsijjanrKwzoguUYuGA4gv+YuGALBywLJ0nFg7IwgGLwvOa05FHXFwcAaDAwMACj8fHxxMAatCgQYHH8YScjodXk3p49ao8PvnkE6pYsSIBoJkzZxIRkdFopBkzZlDNmjVJJpORn58f9evXj65cuVKoDhHR66+/TgAK5HQkJCTQW2+9RZ6enuTl5UWDBg2i1Ny/2YgKrl6VmppKffv2JT8/P3JxcaEaNWrQjBkzyGKx2Pffu3cvtW/fntzd3cnb25vatGlDv//+exE7yuACCwfM5dEl94waDe0eOND+4sgVPssEZumyaOS+kfYJx9ivOpFereJVD5HN23/jXqcjEU3o4KHadPJUF9Jo7nLSEaJHYuh1SdRTVnVYnx2jw/rsGB3WZ8folGSfWTggg/F8UNTfoxfug+QSJyf4tWsHiVPxPrAlFDezbmLckXG4r74Pd2d3zGk7C5UzY+DkLHv2k59B6oMdcOl9FxaLFT4+rdC0yUrIZOWLrSNUj0q7148iNl9i0xEKsfkSm45QiM2X2HSEQmy+xKYjFGKrh8FgCI+EiKi0iyhJlEolfHx8oFAo4O3tLZiuWqnEqz4+OK5QQF5E3b1xe/HNyW+gt+jhL/fHT11/Qr3y9XjXQmRF7N0fkJCwEgDgW6UPgoIWPHWFqucJLr1mFB/WZ8fA+uwYWJ8dQ0n2uaT+/34YvV6PuLg41KpVi61uxGBwpKi/R6X6QfIFCxagdevW8PLyQuXKldG3b1/cvHmzwD56vR5jxoxBxYoVIZfLMWDAAKSlpXE+pkmjwY4ePewrbjgCi9WCJVFLMPnYZOgterSv2h5bem1BvfL1eNdjsehx7fo4+4TDcKI86tWYw2vCIVSPSqPXT0NsvsSmIxRi8yU2HaEQmy+x6QiF2HyJTUcoxFYPg8EQnlKddBw9ehRjxozB6dOnceDAAZhMJrz++usFVjaYMGECdu3ahfDwcBw9ehTJyclPXH+5qEhlMtQbNAhSGf/bmYqCwqDAmENjEHrNltL5QaMPsKLbCvi4+vCux2jMwIWL7yM9/T9IJDIE1l+I6lU/gZOLC6+aheqRo3v9LMTmS2w6QiE2X2LTEQqx+RKbjlCIzZfYdIRCbPUwGAzhEdXtVQ8ePEDlypVx9OhRdOzYEQqFAi+99BI2b96MgQMHAgBiYmIQFBSEyMhIvPzyy8/ULM3bq25l38K4w+OQpE6Cm5Mb5nSYg561egpzfM1tXL48Cnp9EpydfdCk8a8oX76tINpig90m4RhYnx0D67NjYH12DGXl9qqaNWvC3d29RI7BYJR1dDod4uPjn3l7lag+SK5QKADYYu4BICoqCiaTCd1z1wQHgMDAQFSvXr3QSYfBYIAhN3AIsL1oAbYXRilsl3B3vfUWev/zD2Senpxr1eTq5v37KEfuH8HcqHnQWXTw8/DDopcXoJ5PPagf2Z9LPQrlGdyOnQSLRQ1X1wA0qPczZE41kJ2SIog3oXrkqF47up6yqsP67Bgd1mfH6LA+O0anJPv86P+XJUFeorbRaGSTDgaDI9rcYNBH0+4fRTRXOqxWK9566y3k5OTgxIkTAIDNmzdjxIgRBSYRANCmTRt06dIFixYtekxn1qxZjyVeAkBjAI5YE4MkgLVfZdBblQEAkutqSFckQqKxPOOZRaP1G14YOKESnJwliLuqR+iMVGiVVkG0GQwGg8EQCxYAV4ESvdJBRLh37x5MJhOqVq3KUqsZjGJARNBqtUhPT0e5cuXg5+f31P1Fc6VjzJgxuHbtmn3CwZVp06Zh4sSJ9u+VSiUCAgKwNzFR0BctjVKJN3J1PXN1VUYVZp2fg1NppwAA79Z9B5/2GQ3nr/m3mciKpPvLkZy6FgBQsUJPtA6ZiXdGlI0Vqp7Gk3rNEB7WZ8fA+uwYWJ8dQ0n2WalUolpAgKCajyKRSODn54e4uDgkJCSU6LEYjLJKuXLl4Ovr+8z9RDHp+Oyzz7B7924cO3YM/v7+9sd9fX1hNBqRk5ODcuXK2R9PS0sr1JyrqytcXR//Q1zu7Q25tzeMajW2tm2LwWfOwEUu5127Z67u3Zy7+Pz450hQJsDVyRUz281E7zq9n/n8otRjsehxI3oy0tP/AwDUqjkWtWqNg0QiKbZWURCbTh55vS7tesqqTh6szyWrkwfrc8nq5MH6XLI6eZREnx11Dd/FxQX16tWD0Wh00BEZjLKDTCaz36b4LEp10kFEGDt2LHbs2IGIiAjUqlWrwM9btmwJmUyGQ4cOYcCAAQCAmzdv4t69e2jXrh2nYzq7uaHjkiVwFnA97sP3DmP6ienQmDTw9fTFj11+RHDFYEHqMRozcPnKJ1AqL0IikSEocD78/J68epdQ3sSmIxRi8yU2HaEQmy+x6QiF2HyJTUcoxOZLbDpCUdr1SKVSltPBYJQwpfqZjk8//RSbN2/G33//jQYNGtgf9/HxsX+ga/To0fjvv/+wbt06eHt7Y+zYsQCAU6dOFekYJbl61SvlfDA8cgnWxNhueWpVpRUWd1qMiu4VBTmGRnMHly6Pgl6fmLtC1QqUL//sFbvKGmwVGsfA+uwYWJ8dA+uzY3jeV69iMBiOo1Q/MfXrr79CoVCgc+fO8PPzs39t3brVvs/SpUvRq1cvDBgwAB07doSvry+2b9/O+ZhGlQpr/P1hVKl41a4xaWAdW90+4Xgv8D38/vrvxZ5wFFZPVtYpnI8aCL0+Ee5u1dGq5Z/PnHAI5U1sOkIhNl9i0xEKsfkSm45QiM2X2HSEQmy+xKYjFGKrh8FgCE+p3171LNzc3LB8+XIsX75ckGM6u7vjf+HhcOaxNB4RYVLkZFALb7hIXfBNu2/Qt25fwepJTv4TMTe/ApEZPj4t0KTxSri4PHsyI4Q3MeoIhdh8iU1HKMTmS2w6QiE2X2LTEQqx+RKbjlCIrR4GgyE8olkyt6QoqcuzR2OP4LOdn2D1gPVoW1OYW56IrLh7dwniE34FAFSp3AtBQd/Byansr1D1NNhtEo6B9dkxsD47BtZnx8Bur2IwGEXlhVmQ2qzTAQA06elY4eUFg1IJs04Hc24GiEmrzd/WaGDJXcXCpNHAYjIBsK2uYTWbAQCN3erD+cvbaFghGAalElaLLYfDoFSCrFYQkW2bCGS1wpAbcmS1WPK3zWao7t/Hr97e0GSk4Mrlz+wTjupVP0LDhksBiwQmjcbmwWCAKTeAxWww2D2Z9XqY9XoYlEqs8PKC9sEDTp6MKhWsZrNdR5edzclT3uVxXVaWvdcWk8nuw2I0FtlT3rnLG6hcPQGAKinJXg9XT1azGerkZPzq7Q1tZiYvT9oHD/CrtzfUqamcPRmUSuiys/GrtzdUSUmcPRnVagCAJPe4XD2ZDYbHxyEHT3m1rvDygj4nh5cnbWZm/jjk6AkA1Kmpdh2ungDAmFsvH08WkwnqlBTbOMzI4OzJpNXmj8OUFM6eDEol9Dk5WOHlZRuHHD2ZNBr7eVenpHD2lLftDPDyRFYr9AqFbRwqFJw9AYA2IyP//x4entQpKQXHIQdPRGR/PdTn5HD29PDvk4WHJ5NGA21GRv44fMgTg8EoO5TZScfy5csRHByM1q1bAwCOT54MADg/fz7q9O8PmacnIsaOxfkFCwAA+0NCcCX3Fq7d/fsjOiwMALC9e3fc3bkTALC1bVskHjoEAPirTRu8ZLZdJFrr74/smBgAwEofH6iTk2FUqbDSxwdGlQrq5GSs9PEBAGTHxGBt7rLAaefOYWvbtuh/ci8uXhqKjKx9kEhkqKAeiAsjdkIikSI6LAy7+9tWq7qyfDn2h4TYfCxYgIi8D9VPn45T06dD5umJ6q+/jss//8zJ04agIKSdO2dLgyWCOjGRk6cNQUEAgNTTp+FRpQpknp64u3MntucmyxfHEwBETp6MJrnnlasnANgQHIweGzdC5unJ2VPioUPY8dpreDsyEokHD3L2FDF2LC7//DPejozE0c8+4+xprb8/1ImJeDsyEmsDAjh72tq2LQCgOoA9ffpw9nR+wQLIPD3h1749otev5+wpOyYGMk9PmNRqGBUKXp4SDx6ET506kHl6cvYEAEc/+wyNR4+GzNOTsycA2BAQAA8AJh6e7u7ciX/79cPbkZGI3b6ds6f9ISGIXr8eb0dG4kBICGdPK318YFQo0O/gQawNCODsaXv37pB5eqLFpEk4kOuDi6e836cuAO788QdnT+rkZMBqhUmtBqxWzp4AIHb7dlRq0gQyT09eng6EhKDFpEmQeXpy9mRUqbA2IAD9Dh6EUaHg7Ck6LAyHhgwBANxYtYqzp939+yN2+3a8HRmJf/v1s3va3rUrGAxGGYLKOAqFggBQZmoqERGZdDoy6XS2ba2WTHo9EREZNZr8bbWazAZD/rbRSEREBpWKLCYTERFlJiVRc4BUCgXpFQqymM1ERKRXKMhqsZDVarVtW61ktVhIr1AQEZHFbM7fNpkoO+0ynTzZmQ4eqk0REU0pM+sUmY1GMqrVRERkNhjs2ya9nowajX3bpNUK6smgVNq3+XgyKJX52yqVzQcPT9mpqdQit9dlxZMYz5NKoaDmAGUlJ5cZT2I8T5mJidQMIGVOTpnxJMbzpFIoqFuFDlkAAB/mSURBVBVAOQ8elBlPYjxPWcnJ1AygnPR0wT09uH+fAJAityYGg/F888JMOvJetPQKBS0D7C+sXFEpFNQs9w9hrmRlRdKRiKZ08FBtOn78VVKr7/CqSShvYtMRotdC1lNWdVifHaPD+uwYHdZnx+iUZJ8f/f+bwWA834gikdyRuMjl+CAxUZAEVj6kpPyF6JivQGSC3K0hmrVYA1e3l3hpCuVNbDpCITZfYtMRCrH5EpuOUIjNl9h0hEJsvsSmIxRiq4fBYAjPCzfpgEQCF29vQCIplcMTEe7GLUV8vO1e1sqV30Rd/2/g4lqJv7hQ3sSmIxRi8yU2HaEQmy+x6QiF2HyJTUcoxOZLbDpCIbZ6GAyG4JTZD5IXxsMfSHU0FosB129MsE84atYYjXoBc/B7+cqC1COUN7HpCIXYfIlNRyjE5ktsOkIhNl9i0xEKsfkSm45QiK0eBoMhPC9cTgcRwahSwcXLCxIe76gUd21yozETV66OhkIRBYnEGYEN5qFq1YGC1QNAMC2x6Qi1DrzYfIlNh/XZMTqsz47RYX12jE5J9pnldDAYZYsX7koHiGzr5DtwrqXR3MX5qIFQKKLg7OyFZk1DUbXqQOHrEUpLbDpCITZfYtMRCrH5EpuOUIjNl9h0hEJsvsSmIxRiq4fBYAjOCzPpyAsq0mZk2NaRV6t5hQMaVSrkvTf0tHDArKzTOB81EDrdPbi5+aNFs63wdG4EIDdoLiUFawMCoM/JeWb40rMCpYxqNdYGBECXmcnZU14I1NqAAOgViid6oiIGf+lzcuy9FkM4oDo52V4Pn3BATWqqrc/Z2bw86TIzsTYgAJr0dF7hgHqFwp7RIYZwwMfGIccgvTydPC9cPemys/PHIY9wQE16ul1HDOGAmrQ0W5+zsniFA9rHYVoaryA9g1KZPw55hAPmnXdNWhpnT0KGAxpyMy0MKhWvcEBdVlb+/z08POWdd/s45BgOmPd6mHfuuHgSMhwwrz+atDQWDshglFHK7KSjsHDAqIUL0XzCBLh6e/MOB8z76Hdh4UtbBlbDpcshMJsV0N7Qo3Wrv2BMNBcIX9rWti3GESE9NygQeDx8qajBX67e3mg4cqTdB9cgPVdvb7h4eUGbnPyYp+KEmaWfO4cKwcFw9fYWRTjgxuBgDLl2Da7e3rzDAccR4f7hw7zCAa8sX45xRDiau83F01p/f2iTkzGOSDThgK7e3qg7cCBiNmzg7Ck7JgauubdTmNRqXp7uHz4M35dfhqu3N79wwLFj8eoPP8DV21sc4YD9+2McEe7u3MkrHDBmwwaMI8KB4cN5hQOa1Gp8kjsB5hMO6OrtjW6rVuHA8OGcPQkZDph3q49EIuEVDnh3505Uf/11uHp78wsHHD4c3Vatgqu3N+9wwE8UCpjUalGEA97duRPjiPBv7jbAwgEZjDJHiSzEKyIeDQc0qNWUFhVFFrO5xMIBLWYz3YldQgcP1aaDh2rTlStjSJOdRkSPhy/psrMp49o1Mun1vAOlLGYzpZ4/b9+Ha6CUxWym5NOnyZS7P9dAKZNeTylnz5LFbBZFOKAuK4vSL1+218s1JEuXk0MZ166RUafjFfxl1Ggo49o10iuVvIK/TAYDZVy7RrqsLFGEA1rMZko9dy5/HHIMM8sbh2ajkVeYmVGno9S8ccgjoE2vVFLahQtkMZtFEQ6oVyhs41Cr5RU6Zx+HCgWv0Dmz0UgPrl61jUMeoXMWs5nSLl6071/a4YBmk8k2Dk0mXkF6Rq3WPg75hAPqFQpKu3gxfxxyDAfUZWXRg6tX7WOJiychwwGNWm3+OGThgAxGmeSFmXQ8HA64wsurxAKRLBY9Xb023j7huH3ne7JaLYXqCFWPkFpi0xEyfEpMvsSmw/rsGB3WZ8fosD47Rqck+8zCARmMssULt3qVUDxpxQ6jMSt3harzuStUzUXVqm8LdswXFaFWR2E8HdZnx8D67BhYnx1DSfaZrV7FYJQtyuxnOgrDajYjJTLS/iE7odBq43JXqDqfu0LV2iJNOISsRygtsekIhdh8iU1HKMTmS2w6QiE2X2LTEQqx+RKbjlCIrR4GgyE8L9ykw6zT4b9Bg+wrawhBdvZZnDs/EDpdAtzc/NGyZTgqVOjg8HqE0hKbjlCIzZfYdIRCbL7EpiMUYvMlNh2hEJsvsekIhdjqYTAYwsNur+JI3iXl7Xc3IS5+DohM8PZuhiZNfoOrS6VnCzCKDLtNwjGwPjsG1mfHwPrsGNjtVQwGo6i8cFc6rGYzEvbt430Jl4jw+rDyuBv3DYhMqPxST7RovqnYEw6h6hFSS2w6QiE2X2LTEQqx+RKbjlCIzZfYdIRCbL7EpiMUYquHwWAIzwsz6ci7ZKvPycHR8eNtgUUcwwGJCHduT8frIeUBAP6+wxEctBROTm7FDp3TPniAYxMnwqhW8w4HNOv1ODp+PAy5oX5cg/TMej2OjhsHY+5xuQbpGdVqe6/FEA6oTU/H0QkTYNbreYUD6jIycGziRBhUKl6eDAoFjk2cCF1WFq9wQKNGg2MTJ0Kbni6KcMDHxiHHIL28cWjSanl5MqhU+eOQRzigLivLriOGcEBdZqZtHCqVvMIB7eMwM5NXkJ5Jq8XRCRNs45BHOKBZr8fRCRPs4ZKlHQ5o0uls41Cn4xUOaFAq8//v4eFJl5lpfx3jEw6Y93po0mpFEQ5oUCrzxyELB2QwyiRldtJRWDjg+fnzUbNnT7jI5ZzDASUSCW4t3wWrhVCrxjc4/PL3yLl5C0Dxg/S2tm6NodevI+3MGd7hgC5yOap26IDLP/9cbE9AfqCUi1wOTXIyNElJnDzlBUqlnTkDiVQKF7lcFOGAGwID8WZ4OFzkcl7hgNu7dcPQ69eRdPAgr3DAyz//jKHXryNizBhe4YCapCQMvX4da6pVE0U4oItcjoqNGiF6/XrOnrJjYuAilyP75k0YlUpenpIOHoRruXJwkct5hQNGjBmDRh9+CBe5XBThgLv79sXQ69cRu307r3DA6PXrMfT6dewfNoxXOKBRqcTg06explo1XuGALnI5WkyciP3DhnH2JGQ4IIiQffMmkJvizTVIL3b7dnhVrw4XuZyXp/3DhqHFxIlwkct5hQOuqVYNg0+fhlGpFEU4YOz27Rh6/Tp29+3LwgEZjLKKY1fodTyPhgPqlUqK3riRzEYj73DA1wNkTwwHLE5AmzYzk25t20ZGrZZ3OKDZaKTojRvzQ9E4BumZjUa6vm4dGXMDnbgG6Rm1WroRFkZmo1EU4YDajAy6uWWLPQyLa5CeNiuLbm3bRgaNhlc4oEGlolvbtpEuJ4dXOKBRp6Nb27aRNiNDFOGAZqORojdsyB+HHIP08sahSa/nFQ5o0GjyxyGPcEBdTg5Fb9pkH8ulHQ6oy862jUO1mlc4oH0cZmfzCgc06fV0c+tW2zjkEQ5oNhopZvNm0mVnc/YkZDigyWCwjUODgVc4oEGtto9DPuGAuuxsitm8uUC/iuvJarXaXg+3biWTXi+KcECDWp0/Dlk4IINRJnlhJh15L1pGtZq2vPyy/UWTK0IFIglVj5BaYtMRW6/Lqg7rs2N0WJ8do8P67BidkuwzCwdkMMoWbPUqjrCVURwH67VjYH12DKzPjoH12TGw1asYDEZRKbOf6SgMi9GIa6tX2z9cWNoIWY9QWmLTEQqx+RKbjlCIzZfYdIRCbL7EpiMUYvMlNh2hEFs9DAZDeF64SYfVZMLt8HBYc1fHKG2ErEcoLbHpCIXYfIlNRyjE5ktsOkIhNl9i0xEKsfkSm45QiK0eBoMhPOz2Ko6wS/eOg/XaMbA+OwbWZ8fA+uwY2O1VDAajqLxwVzrMBgMuLFliXx+8tBGyHqG0xKYjFGLzJTYdoRCbL7HpCIXYfIlNRyjE5ktsOkIhtnoYDIbwvDCTjrygIpNGg/snToAsFs7hgIAtfEmSq11Y+FJRgr8MOTlIiYyExWDgHQ5IFgvunzgBc+4+XIP0yGLB/WPH7PtzDdKzGAy4f/w4yGIRRTigITsbyadOgXLr5Rykp1AgJTLSHs7F1ZNZq0VKZCSMKhWvcECL0YiUyEgYsrNFEQ5IFgvuHz+ePw45BunljUOrycTLk1mvzx+HPMIBjSoVknNfO8QQDmhUKm3jUKfjFQ5oH4e5Y4mLJ4NSCavJhORTp2zjkEc4IFksSD550t6n0g4HtJrNtnFoNvMKBzTrdPZxyMeTUalE8smT+eOQYzhg3uuh1WQSRTigWafLH4csHJDBKJOU2UlHYeGA5779Fj41a0Lm4cE5HBAA/mrTBpVyj1VY+FJRgr+2tGyJN8PDkRoZyTscUObhAfcKFXDpxx85ecoLlJJ5eCDp8GGo793j5CkvUCo1MhI5t25B5uEhinDAsPr10W72bMg8PHiFA/7VpQveDA9H4v79vMIBL/34I94MD8eR0aN5hQOq793Dm+HhWO3nJ4pwQJmHB6TOzrgRGsrZU3ZMjG3c/P03DDk5vDwl7t8PbWoqZB4evMIBj4wejaqvvAKZh4cowgF3vfUW3gwPx50//+QVDngjNBRvhodj35AhvMIBDTk5eG3tWqz28+MVDijz8EDNnj2xLzd0rrTDAcliwd2//wZZLLzCAe/8+SfMWi1kHh68PO0bMgQ1e/aEzMODVzjgaj8/vLZ2LQw5OaIIB7zz5594Mzwcu956i4UDMhhlFUev0etoHg0H1OXk0MmvvrKHF/EJB2yeuzY5n3BAzYMHFDlzJhnUat7hgCa9nk5On27X5xqkZ9Lr6fiXX5Ih91hcg/QMajWdmDbNHhhX2uGAmvR0OvXNN/YwLK5BepqMDIqcOZP0KhWvcEC9QkGRM2eSNiuLVzigQaOhyJkzSZOeLopwQJNeTyceHoccg/TyxqFRq+UVDqhXqfLHIY9wQG1Wlv21QwzhgNrMTNs4VCp5hQPax2FmJq9wQKNWS6dmzLCNQx7hgCa9nk5+/TVpMzM5exIyHNCo09nGoU7HKxxQr1TaxyGfcEBtZiad/Prr/HHIMRxQk55Op2bMIGPuaxEXT0KGA+qVyvxxyMIBGYwyiXPpTnkch7O7u+1fFxdoU1MBq9X+GADIPDzytz09n7jtIpfnb3t5Ie8T+K4PfcDtidsSiX1b6uSUv+3sDBdPT6iTkiCVSu31OMlkcJLJbNsuLnBycbHV7uqa7+fhbTc3ALZL19q0NPtzuXgCbKuI6B88gFQi4eYpV0cqlUKXng5YrXBydeXkCbCdO2te7Rw95T2uSU4GrFbunpyd4eLhAXVSEpycnPLPGQdPAKBOSoLMzc2+X3E9uXp7w6zTQZ2UBBe5HBKplJsnuRxGpRL00HG5ejLrdNA9PA45eAIAq9EI/YMHkACQPOSjOJ4AwMnJKX8curtz8gQAMjc3+2sHV08A4JK7zcuTTAaZu7ttHDo757++FdeTh4d9/Mge6k1xPeWNQ839+7ZxKJFw8uQkk9lex1JSIOPhCQBgMMAM8PIEABIi2zgkgkQq5eQJAJycne3j8OF6i+UJgMzdHdqUlMfGYXE85e2vuX8fkoceL7YnF5f81wtXV3udxfbk6VlwHObqP+yJwWA8/7DVqzjCVkZxHKzXjoH12TGwPjsG1mfHwFavYjAYRaXMfqajMMx6PY5NnGj/YFtpI2Q9QmmJTUcoxOZLbDpCITZfYtMRCrH5EpuOUIjNl9h0hEJs9TAYDOF54SYdDAaDwWAwGAwGw7Gw26s4wi7dOw7Wa8fA+uwYWJ8dA+uzY2C3VzEYjKJS5j9InjenUuat+a7T4fjkyXj1++8LfKituKiVSlhyda3P3LtwhKpHSC2x6Yit12VVh/XZMTqsz47RYX12jE5J9jnv/+0y/t4og/HCUOavdCQlJSEgIKC0y2AwGAwGg8GBxMRE+OfmhzAYjOeXMj/psFqtSE5OhpeXl20ZRwCtW7fGudzgJK4olUoEBAQgMTGR92VfIeoRWktMOmLsdVnUYX12jA7rs2N0WJ8do1OSfSYiqFQqVK1aFVIp+wgqg/G8U+Zvr5JKpY+9Q+Lk5CTY/aHe3t68tYSsRygtsekA4up1WdUBWJ8doQOwPjtCB2B9doQOUHJ99slNS2cwGM8/L+RbB2PGjCntEgogZD1CaYlNRyjE5ktsOkIhNl9i0xEKsfkSm45QiM2X2HSEQmz1MBgMYSnzt1eVFGxVDcfBeu0YWJ8dA+uzY2B9dgyszwwGo6i8kFc6hMDV1RUzZ86Eq6traZdS5mG9dgysz46B9dkxsD47BtZnBoNRVNiVDgaDwWAwGAwGg1GisCsdDAaDwWAwGAwGo0Rhkw4Gg8FgMBgMBoNRorBJB4PBYDAYDAaDwShR2KSDwWAwGAwGg8FglChs0iEQNWvWhEQiKfC1cOHC0i7ruWf58uWoWbMm3Nzc0LZtW5w9e7a0SypTzJo167FxGxgYWNpllQmOHTuG3r17o2rVqpBIJNi5c2eBnxMRZsyYAT8/P7i7u6N79+64fft26RT7HPOsPg8fPvyxMf7GG2+UTrHPMQsWLEDr1q3h5eWFypUro2/fvrh582aBffR6PcaMGYOKFStCLpdjwIABSEtLK6WKGQyG2GCTDgGZM2cOUlJS7F9jx44t7ZKea7Zu3YqJEydi5syZuHDhApo2bYoePXogPT29tEsrUzRs2LDAuD1x4kRpl1Qm0Gg0aNq0KZYvX/7En3/33Xf46aefsHLlSpw5cwaenp7o0aMH9Hq9gyt9vnlWnwHgjTfeKDDG//jjDwdWWDY4evQoxowZg9OnT+PAgQMwmUx4/fXXodFo7PtMmDABu3btQnh4OI4ePYrk5GT079+/FKtmMBhiwrm0CyhLeHl5wdfXt7TLKDMsWbIEH374IUaMGAEAWLlyJf7991+sXbsWX375ZSlXV3ZwdnZm47YE6NmzJ3r27PnEnxERli1bhq+//hp9+vQBAISFhaFKlSrYuXMn3nnnHUeW+lzztD7n4erqysY4T/bu3Vvg+3Xr1qFy5cqIiopCx44doVAosGbNGmzevBldu3YFAISGhiIoKAinT5/Gyy+/XBplMxgMEcGudAjIwoULUbFiRTRv3hzff/89zGZzaZf03GI0GhEVFYXu3bvbH5NKpejevTsiIyNLsbKyx+3bt1G1alXUrl0b77//Pu7du1faJZV54uLikJqaWmB8+/j4oG3btmx8lwARERGoXLkyGjRogNGjRyMzM7O0S3ruUSgUAIAKFSoAAKKiomAymQqM6cDAQFSvXp2NaQaDAYBd6RCMzz//HC1atECFChVw6tQpTJs2DSkpKViyZElpl/ZckpGRAYvFgipVqhR4vEqVKoiJiSmlqsoebdu2xbp169CgQQOkpKRg9uzZePXVV3Ht2jV4eXmVdnllltTUVAB44vjO+xlDGN544w30798ftWrVQmxsLKZPn46ePXsiMjISTk5OpV3ec4nVasX48ePRoUMHNGrUCIBtTLu4uKBcuXIF9mVjmsFg5MEmHU/hyy+/xKJFi566T3R0NAIDAzFx4kT7Y02aNIGLiws+/vhjLFiwAK6uriVdKoPBiYdvS2nSpAnatm2LGjVqYNu2bRg5cmQpVsZgCMPDt6o1btwYTZo0QZ06dRAREYFu3bqVYmXPL2PGjMG1a9fY578YDEaxYJOOp/DFF19g+PDhT92ndu3aT3y8bdu2MJvNiI+PR4MGDUqgurJNpUqV4OTk9NjKJ2lpaeze7BKkXLlyqF+/Pu7cuVPapZRp8sZwWloa/Pz87I+npaWhWbNmpVTVi0Ht2rVRqVIl3Llzh006OPDZZ59h9+7dOHbsGPz9/e2P+/r6wmg0Iicnp8DVDvaazWAw8mCf6XgKL730EgIDA5/65eLi8sTnXrp0CVKpFJUrV3Zw1WUDFxcXtGzZEocOHbI/ZrVacejQIbRr164UKyvbqNVqxMbGFvhDmCE8tWrVgq+vb4HxrVQqcebMGTa+S5ikpCRkZmayMV5MiAifffYZduzYgcOHD6NWrVoFft6yZUvIZLICY/rmzZu4d+8eG9MMBgMAu9IhCJGRkThz5gy6dOkCLy8vREZGYsKECRgyZAjKly9f2uU9t0ycOBEhISFo1aoV2rRpg2XLlkGj0dhXs2LwZ9KkSejduzdq1KiB5ORkzJw5E05OTnj33XdLu7TnHrVaXeCKUVxcHC5duoQKFSqgevXqGD9+PL799lvUq1cPtWrVwjfffIOqVauib9++pVf0c8jT+lyhQgXMnj0bAwYMgK+vL2JjYzFlyhTUrVsXPXr0KMWqnz/GjBmDzZs34++//4aXl5f9cxo+Pj5wd3eHj48PRo4ciYkTJ6JChQrw9vbG2LFj0a5dO7ZyFYPBsEEM3kRFRVHbtm3Jx8eH3NzcKCgoiObPn096vb60S3vu+fnnn6l69erk4uJCbdq0odOnT5d2SWWKwYMHk5+fH7m4uFC1atVo8ODBdOfOndIuq0xw5MgRAvDYV0hICBERWa1W+uabb6hKlSrk6upK3bp1o5s3b5Zu0c8hT+uzVqul119/nV566SWSyWRUo0YN+vDDDyk1NbW0y37ueFKPAVBoaKh9H51OR59++imVL1+ePDw8qF+/fpSSklJ6RTMYDFEhISJy/FSHwWAwGAwGg8FgvCiwz3QwGAwGg8FgMBiMEoVNOhgMBoPBYDAYDEaJwiYdDAaDwWAwGAwGo0Rhkw4Gg8FgMBgMBoNRorBJB4PBYDAYDAaDwShR2KSDwWAwGAwGg8FglChs0sFgMBgMBoPBYDBKFDbpYDAYDAaDwWAwGCUKm3QwGIwyhdFoRN26dXHq1KlC94mPj4dEIsGlS5eKpf3ll19i7NixPCtkMBgMBuPFg006GAyGIDx48ACjR49G9erV4erqCl9fX/To0QMnT56071OzZk1IJBKcPn26wHPHjx+Pzp0727+fNWsWJBIJJBIJnJycEBAQgI8++ghZWVnPrGPlypWoVasW2rdvX+Ta8yYheV8uLi6oW7cuvv32WxCRfb9JkyZh/fr1uHv3bpG1GQwGg8FgsEkHg8EQiAEDBuDixYtYv349bt26hX/++QedO3dGZmZmgf3c3NwwderUZ+o1bNgQKSkpuHfvHkJDQ7F3716MHj36qc8hIvzyyy8YOXIkJw8HDx5ESkoKbt++jdmzZ2PevHlYu3at/eeVKlVCjx498Ouvv3LSZzAYDAbjRYVNOhgMBm9ycnJw/PhxLFq0CF26dEGNGjXQpk0bTJs2DW+99VaBfT/66COcPn0a//3331M1nZ2d4evri2rVqqF79+4YNGgQDhw48NTnREVFITY2Fm+++WaBx8+ePYvmzZvDzc0NrVq1wsWLF5/4/IoVK8LX1xc1atTA+++/jw4dOuDChQsF9unduze2bNny1DoYDAaDwWAUhE06GAwGb+RyOeRyOXbu3AmDwfDUfWvVqoVPPvkE06ZNg9VqLZJ+fHw89u3bBxcXl6fud/z4cdSvXx9eXl72x9RqNXr16oXg4GBERUVh1qxZmDRp0jOPef78eURFRaFt27YFHm/Tpg2SkpIQHx9fpNoZDAaDwWCwSQeDwRAAZ2dnrFu3DuvXr0e5cuXQoUMHTJ8+HVeuXHni/l9//TXi4uKwadOmQjWvXr0KuVwOd3d31KpVC9evX3/mbVkJCQmoWrVqgcc2b94Mq9WKNWvWoGHDhujVqxcmT578xOe3b98ecrkcLi4uaN26Nd5++20MGzaswD55+gkJCU+thcFgMBgMRj5s0sFgMARhwIABSE5Oxj///IM33ngDERERaNGiBdatW/fYvi+99BImTZqEGTNmwGg0PlGvQYMGuHTpEs6dO4epU6eiR48ez1w5SqfTwc3NrcBj0dHRaNKkSYHH27Vr98Tnb926FZcuXcLly5exbds2/P333/jyyy8L7OPu7g4A0Gq1T62FwWAwGAxGPmzSwWAwBMPNzQ2vvfYavvnmG5w6dQrDhw/HzJkzn7jvxIkTodPpsGLFiif+PG8FqUaNGmHhwoVwcnLC7Nmzn3r8SpUqITs7m3P9AQEBqFu3LoKCgjBo0CCMHz8eP/zwA/R6vX2fvBW0XnrpJc7HYTAYDAbjRYNNOhgMRokRHBwMjUbzxJ/J5XJ88803mDdvHlQq1TO1vv76ayxevBjJycmF7tO8eXPExMQUWOY2KCgIV65cKTBxeHTJ3sJwcnKC2WwucDXm2rVrkMlkaNiwYZE0GAwGg8FgsEkHg8EQgMzMTHTt2hUbN27ElStXEBcXh/DwcHz33Xfo06dPoc/76KOP4OPjg82bNz/zGO3atUOTJk0wf/78Qvfp0qUL1Go1rl+/bn/svffeg0QiwYcffogbN27gv//+w+LFiwv1kZqaiqSkJOzZswc//vgjunTpAm9vb/s+x48fx6uvvmq/zYrBYDAYDMazYZMOBoPBG7lcjrZt22Lp0qXo2LEjGjVqhG+++QYffvghfvnll0KfJ5PJMHfu3AJXIZ7GhAkTsHr1aiQmJj7x5xUrVkS/fv0KfEBdLpdj165duHr1Kpo3b46vvvoKixYteuLzu3fvDj8/P9SsWRMfffQR/ve//2Hr1q0F9tmyZQs+/PDDItXLYDAYDAbDhoQevg+BwWAwnnOuXLmC1157DbGxsZDL5YJq79mzB1988QWuXLkCZ2dnQbUZDAaDwSjLsCsdDAajTNGkSRMsWrQIcXFxgmtrNBqEhoayCQeDwWAwGMWEXelgMBgMBoPBYDAYJQq70sFgMBgMBoPBYDBKFDbpYDAYDAaDwWAwGCUKm3QwGAwGg8FgMBiMEoVNOhgMBoPBYDAYDEaJwiYdDAaDwWAwGAwGo0Rhkw4Gg8FgMBgMBoNRorBJB4PBYDAYDAaDwShR2KSDwWAwGAwGg8FglChs0sFgMBgMBoPBYDBKlP8D/nbhul1nNBwAAAAASUVORK5CYII=",
+ "text/plain": [
+ "