-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathms_faceRecognition_pb2_grpc.py
executable file
·181 lines (156 loc) · 8.47 KB
/
ms_faceRecognition_pb2_grpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT!
"""Client and server classes corresponding to protobuf-defined services."""
import grpc
import ms_faceRecognition_pb2 as ms__faceRecognition__pb2
class FaceRecognitionServiceStub(object):
"""This tells gRPC we have an InferenceServer service with an inference function, notice that we need to specify the type of the messages: InferenceRequest and InferenceReply
"repeated" means list of
"""
def __init__(self, channel):
"""Constructor.
Args:
channel: A grpc.Channel.
"""
self.Inference = channel.unary_unary(
'/faceRecognition.FaceRecognitionService/Inference',
request_serializer=ms__faceRecognition__pb2.FaceRecognitionRequest.SerializeToString,
response_deserializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
)
self.InferenceWithoutDetection = channel.unary_unary(
'/faceRecognition.FaceRecognitionService/InferenceWithoutDetection',
request_serializer=ms__faceRecognition__pb2.FaceRecognitionWithRectListRequest.SerializeToString,
response_deserializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
)
self.FastInferenceWithDetection = channel.unary_unary(
'/faceRecognition.FaceRecognitionService/FastInferenceWithDetection',
request_serializer=ms__faceRecognition__pb2.FaceRecognitionRequest.SerializeToString,
response_deserializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
)
self.AccurateInferenceWithDetection = channel.unary_unary(
'/faceRecognition.FaceRecognitionService/AccurateInferenceWithDetection',
request_serializer=ms__faceRecognition__pb2.FaceRecognitionRequest.SerializeToString,
response_deserializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
)
class FaceRecognitionServiceServicer(object):
"""This tells gRPC we have an InferenceServer service with an inference function, notice that we need to specify the type of the messages: InferenceRequest and InferenceReply
"repeated" means list of
"""
def Inference(self, request, context):
"""Whatever
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def InferenceWithoutDetection(self, request, context):
"""Does inference on image based on the faces detected bounding box from a third party
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def FastInferenceWithDetection(self, request, context):
"""Does face detection and then face recognition, uses a fast face detection mode (ex: OpenCV)
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def AccurateInferenceWithDetection(self, request, context):
"""Does face detection and then face recognition, uses a accurate face detection mode, way slower than Opencv (ex: Retinaface)
"""
context.set_code(grpc.StatusCode.UNIMPLEMENTED)
context.set_details('Method not implemented!')
raise NotImplementedError('Method not implemented!')
def add_FaceRecognitionServiceServicer_to_server(servicer, server):
rpc_method_handlers = {
'Inference': grpc.unary_unary_rpc_method_handler(
servicer.Inference,
request_deserializer=ms__faceRecognition__pb2.FaceRecognitionRequest.FromString,
response_serializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.SerializeToString,
),
'InferenceWithoutDetection': grpc.unary_unary_rpc_method_handler(
servicer.InferenceWithoutDetection,
request_deserializer=ms__faceRecognition__pb2.FaceRecognitionWithRectListRequest.FromString,
response_serializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.SerializeToString,
),
'FastInferenceWithDetection': grpc.unary_unary_rpc_method_handler(
servicer.FastInferenceWithDetection,
request_deserializer=ms__faceRecognition__pb2.FaceRecognitionRequest.FromString,
response_serializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.SerializeToString,
),
'AccurateInferenceWithDetection': grpc.unary_unary_rpc_method_handler(
servicer.AccurateInferenceWithDetection,
request_deserializer=ms__faceRecognition__pb2.FaceRecognitionRequest.FromString,
response_serializer=ms__faceRecognition__pb2.FaceRecognitionInferenceReply.SerializeToString,
),
}
generic_handler = grpc.method_handlers_generic_handler(
'faceRecognition.FaceRecognitionService', rpc_method_handlers)
server.add_generic_rpc_handlers((generic_handler,))
# This class is part of an EXPERIMENTAL API.
class FaceRecognitionService(object):
"""This tells gRPC we have an InferenceServer service with an inference function, notice that we need to specify the type of the messages: InferenceRequest and InferenceReply
"repeated" means list of
"""
@staticmethod
def Inference(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/faceRecognition.FaceRecognitionService/Inference',
ms__faceRecognition__pb2.FaceRecognitionRequest.SerializeToString,
ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def InferenceWithoutDetection(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/faceRecognition.FaceRecognitionService/InferenceWithoutDetection',
ms__faceRecognition__pb2.FaceRecognitionWithRectListRequest.SerializeToString,
ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def FastInferenceWithDetection(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/faceRecognition.FaceRecognitionService/FastInferenceWithDetection',
ms__faceRecognition__pb2.FaceRecognitionRequest.SerializeToString,
ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
@staticmethod
def AccurateInferenceWithDetection(request,
target,
options=(),
channel_credentials=None,
call_credentials=None,
insecure=False,
compression=None,
wait_for_ready=None,
timeout=None,
metadata=None):
return grpc.experimental.unary_unary(request, target, '/faceRecognition.FaceRecognitionService/AccurateInferenceWithDetection',
ms__faceRecognition__pb2.FaceRecognitionRequest.SerializeToString,
ms__faceRecognition__pb2.FaceRecognitionInferenceReply.FromString,
options, channel_credentials,
insecure, call_credentials, compression, wait_for_ready, timeout, metadata)