forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpickler.h
262 lines (223 loc) · 7.15 KB
/
pickler.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#pragma once
#include <string>
#include <vector>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <c10/util/ArrayRef.h>
#include <torch/csrc/utils/disallow_copy.h>
namespace torch {
namespace jit {
// See Python's pickletools.py for a detailed description of each of these codes
enum class PickleOpCode : char {
MARK = '(',
STOP = '.',
POP = '0',
POP_MARK = '1',
DUP = '2',
FLOAT = 'F',
INT = 'I',
BININT = 'J',
BININT1 = 'K',
LONG = 'L',
BININT2 = 'M',
NONE = 'N',
PERSID = 'P',
BINPERSID = 'Q',
REDUCE = 'R',
STRING = 'S',
BINSTRING = 'T',
SHORT_BINSTRING = 'U',
// NB: Avoid using UNICODE as it is a macro in the Windows API
UNICODE_ = 'V',
BINUNICODE = 'X',
APPEND = 'a',
BUILD = 'b',
GLOBAL = 'c',
DICT = 'd',
EMPTY_DICT = '}',
APPENDS = 'e',
GET = 'g',
BINGET = 'h',
INST = 'i',
LONG_BINGET = 'j',
LIST = 'l',
EMPTY_LIST = ']',
OBJ = 'o',
PUT = 'p',
BINPUT = 'q',
LONG_BINPUT = 'r',
SETITEM = 's',
TUPLE = 't',
EMPTY_TUPLE = ')',
SETITEMS = 'u',
BINFLOAT = 'G',
// Protocol 2
PROTO = '\x80',
NEWOBJ = '\x81',
EXT1 = '\x82',
EXT2 = '\x83',
EXT4 = '\x84',
TUPLE1 = '\x85',
TUPLE2 = '\x86',
TUPLE3 = '\x87',
NEWTRUE = '\x88',
NEWFALSE = '\x89',
LONG1 = '\x8a',
LONG4 = '\x8b',
// Protocol 3 (Python 3.x)
BINBYTES = 'B',
SHORT_BINBYTES = 'C',
// Protocol 4
SHORT_BINUNICODE = '\x8c',
BINUNICODE8 = '\x8d',
BINBYTES8 = '\x8e',
EMPTY_SET = '\x8f',
ADDITEMS = '\x90',
FROZENSET = '\x91',
NEWOBJ_EX = '\x92',
STACK_GLOBAL = '\x93',
MEMOIZE = '\x94',
FRAME = '\x95'
};
using ::c10::IValue;
struct WriteableTensorData {
const char* data() const {
return static_cast<const char*>(tensor_.storage().data());
}
size_t sizeInBytes() const {
return size_;
}
size_t numel() const {
return tensor_.storage().numel();
}
bool storageHasDeleter() const {
return tensor_.storage().data_ptr().get_context() != nullptr;
}
private:
friend WriteableTensorData getWriteableTensorData(const at::Tensor& tensor);
at::Tensor tensor_;
uint64_t size_;
};
class Pickler {
TH_DISALLOW_COPY_AND_ASSIGN(Pickler);
public:
Pickler(
std::function<void(const char*, size_t)> writer,
std::vector<at::Tensor>* tensor_table,
std::vector<c10::ClassTypePtr>* memorized_class_types = nullptr)
: writer_(writer),
tensor_table_(tensor_table),
memorized_class_types_(memorized_class_types) {}
~Pickler();
// Push protocol onto the stack
void protocol();
// Push STOP PickleOpCode onto the stack
void stop();
void pushIValue(const IValue& ivalue);
void startTuple();
void endTuple();
const std::vector<WriteableTensorData>& tensorData() {
return tensor_data_;
}
void pushEmptyDict();
void pushDict(const IValue& ivalue);
void pushInt(int64_t value);
void pushLong(const std::string& data);
private:
void pushIValueImpl(const IValue& ivalue);
void pushBool(bool value);
void pushDouble(double value);
void pushGenericList(const IValue& ivalue);
void pushIntList(const IValue& ivalue);
void pushList(const IValue& ivalue);
void pushTensor(const IValue& ivalue);
void pushTensorReference(const IValue& ivalue);
void pushLiteralTensor(const IValue& ivalue);
void pushTuple(const IValue& ivalue);
void pushString(const std::string& string);
void pushDevice(const IValue& ivalue);
// unmemoized version
void pushStringImpl(const std::string& string);
void pushStorageOfTensor(const at::Tensor& tensor);
void pushBinGet(uint32_t memo_id);
void pushSpecializedList(
const IValue& ivalue,
const char* list_name,
const std::function<void(const IValue&)>& item_pusher);
void pushGlobal(
const std::string& module_name,
const std::string& class_name);
// raw string data is appended directly to the byte stream
void pushBytes(const std::string& string);
void pushTensorData(const at::Tensor& tensor);
// Add a BINPUT op and return the memoization id used
size_t pushNextBinPut();
const void* getPointer(const IValue& ivalue);
// Caller checks that bufferPos_ > 0
void flushNonEmpty() {
writer_(buffer_.data(), bufferPos_);
bufferPos_ = 0;
}
void flush() {
if (bufferPos_ != 0) {
flushNonEmpty();
}
}
// These convert values to bytes and add them to the stack (NB: since T is to
// the left of a '::', its type cannot be deduced by the compiler so one must
// explicitly instantiate the template, i.e. push<int>(int) works, push(int)
// does not)
static constexpr size_t kBufferSize = 256;
template <typename T>
void push(typename std::common_type<T>::type value) {
const char* begin = reinterpret_cast<const char*>(&value);
if (bufferPos_ + sizeof(T) > buffer_.size()) {
flushNonEmpty();
}
static_assert(sizeof(T) <= kBufferSize, "Buffer size assumption");
memcpy(buffer_.data() + bufferPos_, begin, sizeof(T));
bufferPos_ += sizeof(T);
}
// Stream to write binary data to
// Code shouldn't call writer_ directly without first flush()ing.
std::function<void(const char*, size_t)> writer_;
// Buffer to avoid calling a writer_ on a per-byte basis.
std::array<char, kBufferSize> buffer_;
size_t bufferPos_{0};
// Stack of opcodes/data
std::vector<char> stack_;
// External table of tensors to serialize. If this is missing, then tensors
// are serialized directly into the pickle
std::vector<at::Tensor>* tensor_table_;
// TODO: only use this if necessary (add a pass to find all shared ivalues,
// and only memoize those)
uint32_t memo_id_ = 0;
// Memoization of IValues that have been written (index in table is used for
// BINPUT opcodes) to enable shared references
std::unordered_map<const void*, uint32_t> memoized_ivalue_map_;
// because we de-dup ivalues based on their raw pointer address in the above
// map we need to keep all the memoized values alive during the pickle.
// Otherwise, it is possible that a raw address gets reused for another
// object, and we will alias it to the old object at that address.
std::vector<IValue> memoized_ivalues_;
// List of all the types that it wrote, inspect from the IValues it wrote.
std::vector<c10::ClassTypePtr>* memorized_class_types_;
// List of tensor storages to serialize in the same binary as the pickle data
// similar to ivalues, they are memoized using BINPUT
std::vector<WriteableTensorData> tensor_data_;
std::unordered_map<const void*, uint32_t> memoized_storage_map_;
std::unordered_map<std::string, uint32_t> memoized_globals_map_;
std::unordered_map<std::string, uint32_t> memoized_strings_map_;
std::unordered_map<std::string, uint32_t> memoized_devices_map_;
};
// returns a (tensor, record_size) for a tensor, converting it to a CPU tensor
// if necessary
WriteableTensorData getWriteableTensorData(const at::Tensor& tensor);
// return the value of the tensor's storage pointer
uint64_t getStorageKey(const at::Tensor& tensor);
// if the cls has __getstate__/__setstate__
// assert they have the right schema and return true,
// otherwise return false
bool checkHasValidSetGetState(const std::shared_ptr<c10::ClassType>& cls);
} // namespace jit
} // namespace torch