-
Notifications
You must be signed in to change notification settings - Fork 175
/
bgan_synth.py
executable file
·258 lines (192 loc) · 8.99 KB
/
bgan_synth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
import os
import sys
import tensorflow as tf
import numpy as np
from bgan_models import BGAN
from bgan_util import SynthDataset, FigPrinter
from sklearn import mixture
def get_session():
global _SESSION
if tf.get_default_session() is None:
_SESSION = tf.InteractiveSession()
else:
_SESSION = tf.get_default_session()
return _SESSION
def gmm_ms(X):
aics = []
n_components_range = range(1, 20)
for n_components in n_components_range:
# Fit a Gaussian mixture with EM
gmm = mixture.GMM(n_components=n_components,
covariance_type="full")
gmm.fit(X)
aics.append(gmm.aic(X))
return np.array(aics)
def analyze_div(X_real, X_sample):
def kl_div(p, q):
eps = 1e-10
p_safe = np.copy(p)
p_safe[p_safe < eps] = eps
q_safe = np.copy(q)
q_safe[q_safe < eps] = eps
return np.sum(p_safe * (np.log(p_safe) - np.log(q_safe)))
def js_div(p, q):
m = (p + q) / 2.
return (kl_div(p, m) + kl_div(q, m))/2.
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_trans_real = pca.fit_transform(X_real)
X_trans_fake = pca.transform(X_sample)
from scipy import stats
def cartesian_prod(x, y):
return np.dstack(np.meshgrid(x, y)).reshape(-1, 2)
dx = 0.1
dy = 0.1
xmin1 = np.min(X_trans_real[:, 0]) - 3.0
xmax1 = np.max(X_trans_real[:, 0]) + 3.0
xmin2 = np.min(X_trans_real[:, 1]) - 3.0
xmax2 = np.max(X_trans_real[:, 1]) + 3.0
space = cartesian_prod(np.arange(xmin1,xmax1,dx), np.arange(xmin2,xmax2,dy)).T
real_kde = stats.gaussian_kde(X_trans_real.T)
real_density = real_kde(space) * dx * dy
fake_kde = stats.gaussian_kde(X_trans_fake.T)
fake_density = fake_kde(space) * dx * dy
return js_div(real_density, fake_density), X_trans_real, X_trans_fake
def bgan_synth(synth_dataset, z_dim, batch_size=64, numz=5, num_iter=1000,
wasserstein=False, rpath="synth_results",
base_learning_rate=1e-2, lr_decay=3., save_weights=False):
bgan = BGAN([synth_dataset.x_dim], z_dim,
synth_dataset.N,
batch_size=batch_size,
prior_std=10.0, alpha=1e-3,
J=numz, M=1, ml=(numz == 1),
num_classes=1,
wasserstein=wasserstein, # unsupervised only
)
print "Starting session"
session = get_session()
tf.global_variables_initializer().run()
print "Starting training loop"
num_train_iter = num_iter
sample_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
all_aics_fake, all_data_fake, all_dists = [], [], []
for train_iter in range(num_train_iter):
learning_rate = base_learning_rate * np.exp(-lr_decay *
min(1.0, (train_iter*batch_size)/float(synth_dataset.N)))
print learning_rate
batch_z = np.random.uniform(-1, 1, [batch_size, z_dim])
input_batch = synth_dataset.next_batch(batch_size)
_, d_loss = session.run([bgan.d_optim, bgan.d_loss], feed_dict={bgan.inputs: input_batch,
bgan.z: batch_z,
bgan.d_learning_rate: learning_rate})
if wasserstein:
session.run(bgan.clip_d, feed_dict={})
g_losses = []
for gi in xrange(bgan.num_gen):
# compute g_sample loss
batch_z = np.random.uniform(-1, 1, [batch_size, z_dim])
_, g_loss = session.run([bgan.g_optims[gi], bgan.generation["g_losses"][gi]],
feed_dict={bgan.z: batch_z,
bgan.g_learning_rate: learning_rate})
g_losses.append(g_loss)
print "Disc loss = %.2f, Gen loss = %s" % (d_loss, ", ".join(["%.2f" % gl for gl in g_losses]))
if (train_iter + 1) % 100 == 0:
print "Disc loss = %.2f, Gen loss = %s" % (d_loss, ", ".join(["%.2f" % gl for gl in g_losses]))
print "Running GMM on sampled data"
fake_data = []
for num_samples in xrange(10):
for gi in xrange(bgan.num_gen):
# collect sample
sample_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
sampled_data = session.run(bgan.generation["gen_samplers"][gi], feed_dict={bgan.z: sample_z})
fake_data.append(sampled_data)
X_real = synth_dataset.X
X_sample = np.concatenate(fake_data)
all_data_fake.append(X_sample)
aics_fake = gmm_ms(X_sample)
print "Fake number of clusters (AIC estimate):", aics_fake.argmin()
dist, X_trans_real, X_trans_fake = analyze_div(X_real, X_sample)
print "JS div:", dist
fp = FigPrinter((1,2))
xmin1 = np.min(X_trans_real[:, 0]) - 1.0
xmax1 = np.max(X_trans_real[:, 0]) + 1.0
xmin2 = np.min(X_trans_real[:, 1]) - 1.0
xmax2 = np.max(X_trans_real[:, 1]) + 1.0
fp.ax_arr[0].plot(X_trans_real[:, 0], X_trans_real[:, 1], '.r')
fp.ax_arr[0].set_xlim([xmin1, xmax1]); fp.ax_arr[0].set_ylim([xmin2, xmax2])
fp.ax_arr[1].plot(X_trans_fake[:, 0], X_trans_fake[:, 1], '.g')
fp.ax_arr[1].set_xlim([xmin1, xmax1]); fp.ax_arr[1].set_ylim([xmin2, xmax2])
fp.ax_arr[0].set_aspect('equal', adjustable='box')
fp.ax_arr[1].set_aspect('equal', adjustable='box')
fp.ax_arr[1].set_title("Iter %i" % (train_iter+1))
fp.print_to_file(os.path.join(rpath, "pca_distribution_%i_%i.png" % (numz, train_iter+1)))
all_aics_fake.append(aics_fake)
all_dists.append(dist)
if save_weights:
var_dict = {}
for var in tf.trainable_variables():
var_dict[var.name] = session.run(var.name)
np.savez_compressed(os.path.join(rpath,
"weights_%i.npz" % train_iter),
**var_dict)
return {"data_fake": all_data_fake,
"data_real": synth_dataset.X,
"z_dim": z_dim,
"numz": numz,
"num_iter": num_iter,
"divergences": all_dists,
"all_aics_fake": np.array(all_aics_fake)}
if __name__ == "__main__":
import argparse
import time
parser = argparse.ArgumentParser(description='Script to run Bayesian GAN synthetic experiments')
parser.add_argument('--x_dim',
type=int,
default=100,
help='dim of x for synthetic data')
parser.add_argument('--z_dim',
type=int,
default=2,
help='dim of z for generator')
parser.add_argument('--train_iter',
type=int,
default=1000,
help='no of GAN iterations')
parser.add_argument('--numz',
type=int,
default=1,
help='no of z samples')
parser.add_argument('--wasserstein',
action="store_true",
help='use wasserstein GAN')
parser.add_argument('--out_dir',
default="/tmp/synth_results",
help='path of where to store results')
parser.add_argument('--random_seed',
type=int,
default=2222,
help='set seed for repeatability')
parser.add_argument('--save_weights',
action="store_true",
help='whether to save weight vectors')
args = parser.parse_args()
if args.random_seed is not None:
np.random.seed(args.random_seed)
tf.set_random_seed(args.random_seed)
if not os.path.exists(args.out_dir):
print "Creating %s" % args.out_dir
os.makedirs(args.out_dir)
results_path = os.path.join(args.out_dir, "experiment_%i" % (int(time.time())))
os.makedirs(results_path)
import pprint
with open(os.path.join(results_path, "args.txt"), "w") as hf:
hf.write("Experiment settings:\n")
hf.write("%s\n" % (pprint.pformat(args.__dict__)))
synth_d = SynthDataset(args.x_dim)
results = bgan_synth(synth_d, args.z_dim, num_iter=args.train_iter,
numz=args.numz, wasserstein=args.wasserstein,
rpath=results_path, save_weights=args.save_weights)
np.savez(os.path.join(results_path, "run_%s_%s.npz" % ("wasserstein" if args.wasserstein else "regular",
"ml" if args.numz == 1 else "bayes")),
**results)