forked from erkyrath/plotex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
plotex3.py
1355 lines (1232 loc) · 47.4 KB
/
plotex3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# PlotEx: a tool for exploring puzzle plot constraints
# Version 1.1.1
# Andrew Plotkin <erkyrath@eblong.com>
# This script is in the public domain.
#
# For a full description, see <http://eblong.com/zarf/plotex/>
# This is the Python 3 version. (Auto-generated by 2to3.)
# If you have Python 3 installed, you'll have to copy plotex3.py over
# plotex.py, or else change the "import plotex" lines in the examples to
# "import plotex3".
import sys
import optparse
class TrackMetaClass(type):
'''TrackMetaClass does some Python magic to catalog the members of a
class as it's being defined. We use this to catalog a scenario and set
it up properly. (Thanks to Zack Weinberg and Aahz for magic support.)
'''
def __init__(cls, name, bases, dict):
super(TrackMetaClass, cls).__init__(name, bases, dict)
states = {}
actions = {}
tests = {}
for (key, val) in list(dict.items()):
if (key.startswith('_')):
continue
if (isinstance(val, Action)):
val.name = key
actions[key] = val
if (isinstance(val, State)):
val.name = key
states[key] = val
if (isinstance(val, Test)):
val.name = key
tests[key] = val
types = merge_typelists_of(list(actions.values()) + list(states.values()) + list(tests.values()))
senses = {}
for key in types:
if (key is None):
# The Once action sometimes lacks a key. In those cases, it will
# generate a negative sense boolean.
continue
senses[key] = (not key.startswith('_'))
cls._statemap = states
cls._actionmap = actions
cls._testmap = tests
cls._typemap = types
cls._sensemap = senses
for val in list(states.values()):
val.scenario = cls
for val in list(actions.values()):
val.set_scenario(cls)
for val in list(tests.values()):
val.set_scenario(cls)
def merge_typelists_of(ls):
'''Given a list of objects (actions and states), pull the type map
out of each one and return the union of all the maps. If they're not
all consistent, raise an exception.
'''
typedic = {}
for obj in ls:
for (key, val) in list(obj.typelist.items()):
oldval = typedic.get(key)
if (oldval is None):
typedic[key] = val
continue
if (val != oldval):
raise Exception('Inconsistent types for key "%s"' % (key,))
return typedic
def infer_typelist(dic):
'''Given a dictionary of qualities (as you'd see it in a State or
Set definition), create a type map describing them. Each quality
must be a number (int), string (str), boolean (bool), or sequence
(set).
'''
res = {}
for (key, val) in list(dic.items()):
typ = type(val)
if (typ in (int, int)):
res[key] = int
elif (typ in (str, str)):
res[key] = str
elif (typ is bool):
res[key] = bool
elif (typ in (tuple, list, set, frozenset)):
res[key] = set
else:
raise Exception('Value must be int, str, set, or bool: %s' % repr(val))
return res
def parse_states(scenario, optls):
'''Given a list of strings (as given on the command line), parse them
as states. Arguments can be separate strings or comma-separated.
Unrecognized states throw exceptions.
'''
res = set()
for val in optls:
ls = [ key.strip() for key in val.split(',') ]
for key in ls:
state = scenario._statemap.get(key)
if (not state):
raise Exception('No such state: "%s"' % (key,))
res.add(state)
return res
def parse_actions(scenario, optls):
'''Given a list of strings (as given on the command line), parse them
as actions. Arguments can be separate strings or comma-separated.
Unrecognized actions throw exceptions.
'''
res = set()
for val in optls:
ls = [ key.strip() for key in val.split(',') ]
for key in ls:
action = scenario._actionmap.get(key)
if (not action):
raise Exception('No such action: "%s"' % (key,))
res.add(action)
return res
def parse_qualities(scenario, optls):
'''Given a list of strings (as given on the command line), parse them
as qualities. Arguments can be separate strings or comma-separated.
Unrecognized qualities throw exceptions.
'''
res = set()
for val in optls:
ls = [ key.strip() for key in val.split(',') ]
for key in ls:
val = scenario._typemap.get(key)
if (not val):
raise Exception('No such quality: "%s"' % (key,))
res.add(key)
return res
def parse_tests(scenario, optls):
'''Given a list of strings (as given on the command line), parse them
as tests. Arguments can be separate strings or comma-separated.
Unrecognized tests throw exceptions.
'''
res = set()
for val in optls:
ls = [ key.strip() for key in val.split(',') ]
for key in ls:
test = scenario._testmap.get(key)
if (not test):
raise Exception('No such test: "%s"' % (key,))
res.add(test)
return res
class Graph:
'''Graph: The context structure for doing a run. You set up a graph
with some starting states, then tell it to run with some actions.
The graph object can also display its results neatly.
'''
def __init__(self, scenario, states):
self.scenario = scenario
self.startstates = states
self.states = {}
self.statels = []
self.seenmaxes = set()
self.maxls = []
def run(self, actions, limit=10000, noopt=False):
'''run(): Do the run. The results are stored within the Graph.
'''
improveactions = actions
changeactions = actions
if (not noopt):
improveactions = [ action for action in actions if (action.equivtype != EQUIV_LOSS) ]
changeactions = [ action for action in actions if (action.equivtype in (EQUIV_LOSS, EQUIV_UNKNOWN)) ]
#print '%d actions filtered to %d improve, %d change' % (len(actions), len(improveactions), len(changeactions))
newstates = []
for state in self.startstates:
newstate = self.find_maximal_state(state, improveactions)
if (newstate in newstates):
continue
newstates.append(newstate)
self.seenmaxes.add(newstate)
newnode = self.states[newstate]
newnode.history = self.states[state].maxing_actions
while (newstates):
if (len(self.seenmaxes) >= limit):
raise Exception('More than %d states!' % (limit,))
oldstate = newstates.pop(0)
oldnode = self.states[oldstate]
self.maxls.append(oldstate)
for action in changeactions:
newstate = action(oldstate)
if (not newstate):
continue
maxstate = self.find_maximal_state(newstate, improveactions)
if (maxstate == oldstate):
continue
if (maxstate in oldnode.ancestors):
continue
aclist = (action,) + self.states[newstate].maxing_actions
maxnode = self.states[maxstate]
if (maxstate in self.seenmaxes):
maxnode.ancestors.update(oldnode.ancestors)
maxnode.ancestors.add(oldstate)
else:
newstates.append(maxstate)
self.seenmaxes.add(maxstate)
maxnode.history = oldnode.history + aclist
maxnode.ancestors.update(oldnode.ancestors)
maxnode.ancestors.add(oldstate)
oldnode.children.append( (aclist, maxstate) )
maxnode.parents.append( (aclist, oldstate) )
def find_maximal_state(self, state, actions):
'''Do every possible actions that is strictly an improvement --
that is, every action that produces a better state. Return the
resulting state.
'''
node = self.states.get(state)
if (node):
return node.maximal
statechain = []
actchain = []
while True:
node = GraphNode(state)
self.states[state] = node
self.statels.append(state)
statechain.append(state)
found_improvement = False
for action in actions:
newstate = action(state)
if (not newstate):
continue
if (newstate == state):
continue
if not(newstate > state):
continue
# That action was an improvement
actchain.append(action)
found_improvement = True
if (newstate in self.states):
# We've run into a known state. (Might be maximal, or
# it might have its own maximal state.)
gotstate = newstate
gotnode = self.states[gotstate]
pos = 0
for newstate in statechain:
newnode = self.states[newstate]
newnode.maximal = gotnode.maximal
newnode.maxing_actions = tuple(actchain[pos:]) + gotnode.maxing_actions
pos = pos+1
return gotnode.maximal
state = newstate
break
if (not found_improvement):
# This state is maximal.
pos = 0
for newstate in statechain:
newnode = self.states[newstate]
newnode.maximal = state
newnode.maxing_actions = tuple(actchain[pos:])
pos = pos+1
self.states[state].is_maximal = True
return state
def has(self, state):
return state in self.states
def showlist(self, showmed=True, filters=[], histories=[]):
outls = []
for state in self.maxls:
node = self.states[state]
if (not showmed):
if (node.children):
continue
filtered = False
for filter in filters:
if (filter not in state.dic):
filtered = True
if (filtered):
continue
for histac in histories:
if (histac not in node.history):
filtered = True
if (filtered):
continue
outls.append(state)
trumped = None
if (len(outls) <= 20):
trumped = set()
for state1 in outls:
if (state1 in trumped):
continue
for state2 in outls:
if (state2 in trumped):
continue
if (state1 == state2):
continue
if (state2 < state1):
trumped.add(state2)
return (outls, trumped)
def display(self, showmed=False, showin=False, showout=False, showdiff=False, showcount=False, filters=[], histories=[]):
(outls, trumped) = self.showlist(showmed, filters, histories)
if (not showcount):
difffrom = None
if (showdiff and len(outls) >= 2):
difffrom = outls[0]
for state in outls[1:]:
difffrom = difffrom & state
print('(common state: %s)' % (difffrom,))
print()
for state in outls:
node = self.states[state]
val = ''
if (trumped is not None and state not in trumped):
val = '*'
if (difffrom is None):
print(val+str(state))
else:
print(val+state.printdiff(difffrom))
acs = [ ac.name for ac in node.history]
print(' (%d): %s' % (len(node.history), ', '.join(acs),))
#print ' ### ancs:', list(node.ancestors)
if (showin):
subls = [ '<= %s : %s' % (substate, ', '.join([ ac.name for ac in acls ])) for (acls, substate) in node.parents ]
for val in subls:
print(' %s' % (val,))
if (showout):
subls = [ '=> %s : %s' % (', '.join([ ac.name for ac in acls ]), substate) for (acls, substate) in node.children ]
for val in subls:
print(' %s' % (val,))
print()
if (showmed):
summary = '%d maximal states' % (len(outls),)
else:
summary = '%d terminal states' % (len(outls),)
if (trumped):
val = len(outls) - len(trumped)
summary += ' (%d preferred)' % (val,)
if (filters):
summary += ' with "' + '", "'.join(filters) + '"'
if (histories):
subls = [ ac.name for ac in histories ]
subls.sort()
summary += ' with ' + ', '.join(subls)
#print '### (%d intermediate states)' % (len(self.states),)
print(summary, 'reached')
def writegv(self, filename, filters=[], histories=[]):
(outls, trumped) = self.showlist()
(colorls, _) = self.showlist(True, filters, histories)
if (len(colorls) >= len(outls)):
colorls = ()
extrastart = [ state for state in self.startstates if not self.states[state].is_maximal ]
outls = extrastart + outls
nodenames = {}
pos = 1
for state in outls:
nodenames[state] = str(pos)
pos = pos+1
fl = open(filename, 'w')
fl.write('digraph PlotEx {\n')
fl.write('\n')
for state in outls:
node = self.states[state]
penwidth = 1
if (node.is_maximal and not node.children):
penwidth = 3
color = 'gray75'
if (state in colorls):
color = 'forestgreen'
if (not node.is_maximal):
color = 'white'
fl.write('# %s\n' % (state,))
fl.write('"%s" [ label="", shape=circle, width=0.2, style=filled, fillcolor=%s, penwidth=%d ];\n' % (nodenames[state], color, penwidth))
fl.write('\n')
if (node.is_maximal):
for (acls, child) in node.children:
label = '\\n'.join([ ac.name for ac in acls ])
fl.write(' "%s" -> "%s" [ label="%s" ];\n' % (nodenames[state], nodenames[child], label))
else:
acls = node.maxing_actions
label = '\\n'.join([ ac.name for ac in acls ])
fl.write(' "%s" -> "%s" [ label="%s", style=dashed ];\n' % (nodenames[state], nodenames[node.maximal], label))
fl.write('\n')
fl.write('\n')
fl.write('}\n')
def writegml(self, filename, filters=[], histories=[]):
(outls, trumped) = self.showlist()
(colorls, _) = self.showlist(True, filters, histories)
if (len(colorls) >= len(outls)):
colorls = ()
extrastart = [ state for state in self.startstates if not self.states[state].is_maximal ]
outls = extrastart + outls
nodenames = {}
pos = 1
for state in outls:
nodenames[state] = pos
pos = pos+1
fl = open(filename, 'w')
fl.write('graph [\n')
fl.write(' directed 1\n\n')
for state in outls:
node = self.states[state]
penwidth = 1
if (node.is_maximal and not node.children):
penwidth = 3
color = 'gray75'
if (state in colorls):
color = 'forestgreen'
if (not node.is_maximal):
color = 'white'
fl.write(' comment "%s"\n' % (state,))
fl.write(' node [ id %d ]\n' % (nodenames[state],))
fl.write('\n')
if (node.is_maximal):
for (acls, child) in node.children:
label = ' '.join([ ac.name for ac in acls ])
fl.write(' edge [ source %d target %d label "%s" ]\n' % (nodenames[state], nodenames[child], label))
else:
acls = node.maxing_actions
label = ' '.join([ ac.name for ac in acls ])
fl.write(' edge [ source %d target %d label "%s" ]\n' % (nodenames[state], nodenames[node.maximal], label))
fl.write('\n')
fl.write('\n')
fl.write(']\n')
class GraphNode:
'''GraphNode: Context information for a single state in a Graph.
(We never store information in the State itself -- that's immutable.)
'''
def __init__(self, state):
self.state = state
self.maximal = None
self.is_maximal = False
self.children = []
self.parents = []
self.history = ()
self.ancestors = set()
class State:
'''State: One state in the plot diagram. A state is set up with a
bunch of qualities.
The most interesting thing you can do with states is compare them.
State1 < state2 if state1's qualities are a subset of state2's.
This is a partial ordering; it is not necessarily true that
(x < y or x == y or x > y). Sometimes two states are just different,
in non-overlapping ways.
You can also compute state1 & state2, which is the greatest common
factor (the largest state which is <= both of them). (This doesn't
quite work out for negative-sense string qualities, but what does,
really?)
(Any operation between two states must be within a common Scenario.)
You will normally create a State as described in the documentation:
State(key1=val1, key2=val2, ...)
The constructor supports an alternate form: State(dic, newkeys).
However, this should only be used internally, by the PlotEx run()
algorithm. (It skips some of the type-checking and state-fixing,
on the assumption that the caller has done some of that work
already.)
'''
name = None
scenario = None
def __init__(self, __dic=None, __newkeys=None, **kargs):
if (__dic is None):
__dic = kargs
if (global_scenario is None):
self.typelist = infer_typelist(__dic)
else:
self.typelist = None
self.scenario = global_scenario
self.hashcache = None
if (not __dic):
self.dic = {}
return
self.dic = __dic
State.canonize(self.dic, __newkeys)
def __repr__(self):
keyls = list(self.dic.keys())
keyls.sort(key=lambda x:x.upper())
ls = []
for key in keyls:
val = self.dic[key]
if (isinstance(val, frozenset)):
val = list(val)
val.sort()
val = '[' + ','.join(str(subval) for subval in val) + ']'
if (val is True):
ls.append('%s' % (key,))
else:
ls.append('%s=%s' % (key, val))
joined = ' '.join(ls)
if (self.name):
return '<"%s": %s>' % (self.name, joined)
else:
return '<%s>' % (joined,)
def printdiff(self, other):
'''Return a string representation of the state, not by itself, but
in comparison to some other state. Only quality differences will be
displayed.
'''
keyset = set(self.dic.keys()).union(list(other.dic.keys()))
keyls = list(keyset)
keyls.sort(key=lambda x:x.upper())
ls = []
for key in keyls:
typ = self.scenario._typemap[key]
sense = self.scenario._sensemap[key]
if (typ is bool):
val = self.dic.get(key)
otherval = other.dic.get(key)
if (val and not otherval):
ls.append('+%s' % (key,))
elif (otherval and not val):
ls.append('-%s' % (key,))
elif (typ is str):
val = self.dic.get(key)
otherval = other.dic.get(key)
if (val and otherval != val):
ls.append('%s=%s' % (key, val))
elif (otherval and not val):
ls.append('-%s' % (key,))
elif (typ is int):
val = self.dic.get(key, 0)
otherval = other.dic.get(key, 0)
if (val > otherval):
ls.append('%s=+%d' % (key, val-otherval))
elif (otherval and not val):
ls.append('%s=-%d' % (key, otherval-val))
elif (typ is set):
val = self.dic.get(key, set())
otherval = other.dic.get(key, set())
subls = []
for subkey in (val - otherval):
subls.append('+'+subkey)
for subkey in (otherval - val):
subls.append('-'+subkey)
subls.sort()
if (subls):
sublsval = '[' + ','.join(str(subval) for subval in subls) + ']'
ls.append('%s=%s' % (key, sublsval))
else:
ls.append('???')
joined = ' '.join(ls)
if (self.name):
return '<"%s": %s>' % (self.name, joined)
else:
return '<%s>' % (joined,)
def __eq__(self, other):
return (self.dic == other.dic)
def __ne__(self, other):
return (self.dic != other.dic)
def __gt__(self, other):
return (self != other) and self.contains(other)
def __ge__(self, other):
return self.contains(other)
def __lt__(self, other):
return (self != other) and other.contains(self)
def __le__(self, other):
return other.contains(self)
def __and__(self, other):
dic = {}
keyset = set(self.dic.keys()).union(list(other.dic.keys()))
for key in keyset:
typ = self.scenario._typemap[key]
sense = self.scenario._sensemap[key]
val = self.dic.get(key)
otherval = other.dic.get(key)
if (sense):
if ((val is None) or (otherval is None)):
continue
if (typ is bool):
dic[key] = (val and otherval)
if (typ is int):
dic[key] = min(val, otherval)
if (typ is set):
dic[key] = val.intersection(otherval)
if (typ is str):
if (val == otherval):
dic[key] = val
else:
if (val is None):
dic[key] = otherval
continue
if (otherval is None):
dic[key] = val
continue
if (typ is bool):
dic[key] = (val or otherval)
if (typ is int):
dic[key] = max(val, otherval)
if (typ is set):
dic[key] = val.union(otherval)
if (typ is str):
if (val == otherval):
dic[key] = val
res = State(dic) # canonize all keys, this is not speed-critical
res.scenario = self.scenario
return res
def __hash__(self):
if (self.hashcache is None):
ls = list(self.dic.items())
ls.sort()
self.hashcache = hash(tuple(ls))
return self.hashcache
def canonize(dic, changedkeys=None):
'''Modify a dictionary to be a legal state dict (no false values,
sets values in frozenset form).
'''
if (changedkeys is None):
changedkeys = list(dic.keys())
for key in changedkeys:
val = dic[key]
if (not val):
del dic[key]
elif (type(val) in (tuple, list)):
dic[key] = frozenset(val)
canonize = staticmethod(canonize)
def copy(self):
res = State()
res.scenario = self.scenario
res.dic = dict(self.dic)
return res
def addquality(self, key, val):
'''Return a new state which is a copy of this one, with one quality
added (or changed). The value must be of the correct type, or castable
to it.
'''
typ = self.scenario._typemap[key]
dic = dict(self.dic)
if (typ is bool):
dic[key] = bool(val)
elif (typ is int):
dic[key] = int(val)
elif (typ is str):
dic[key] = str(val)
elif (typ is set):
dic[key] = dic.get(key, set()).union(set[val])
res = State(dic) # canonize all keys
res.scenario = self.scenario
return res
def contains(self, other):
'''X.contains(Y) is the basic comparison -- X is a subset of (or
equal to) Y.
'''
for (key, oval) in list(other.dic.items()):
if (not self.scenario._sensemap[key]):
continue
if (not self.atleast(key, oval)):
return False
for (key, ival) in list(self.dic.items()):
if (self.scenario._sensemap[key]):
continue
if (not other.atleast(key, ival)):
return False
return True
def atleast(self, key, val):
'''X.atleast(key, val) tests whether the key quality is val or better.
(This does *not* account for negative-sense keys, so don't call it
on them.)
'''
if (not val):
return True
ival = self.dic.get(key)
if (ival is None):
return False
typ = self.scenario._typemap[key]
if (typ is int):
if (ival < val):
return False
elif (typ is set):
if (not ival.issuperset(frozenset(val))):
return False
else:
if (ival != val):
return False
return True
def atmost(self, key, val):
'''X.atmost(key, val) tests whether the key quality is val or worse.
(Call this for negative-sense keys.)
'''
ival = self.dic.get(key)
if (not val and not ival):
return True
if (not val):
return False
if (ival is None):
return True
typ = self.scenario._typemap[key]
if (typ is int):
if (ival > val):
return False
elif (typ is set):
if (not ival.issubset(frozenset(val))):
return False
else:
if (ival != val):
return False
return True
class Test:
name = '???'
scenario = None
def __init__(self, **dic):
self.startstatelist = []
val = dic.pop('start', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.startstatelist.append(val)
else:
for state in val:
self.startstatelist.append(state)
self.blockactions = set()
val = dic.pop('block', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.blockactions.add(val)
else:
for ac in val:
self.blockactions.add(ac)
self.includeactions = []
val = dic.pop('includes', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.includeactions.append(val)
else:
for ac in val:
self.includeactions.append(ac)
self.excludeactions = []
val = dic.pop('excludes', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.excludeactions.append(val)
else:
for ac in val:
self.excludeactions.append(ac)
self.canactions = []
val = dic.pop('can', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.canactions.append(val)
else:
for ac in val:
self.canactions.append(ac)
self.cannotactions = []
val = dic.pop('cannot', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.cannotactions.append(val)
else:
for ac in val:
self.cannotactions.append(ac)
self.getqualities = []
val = dic.pop('gets', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.getqualities.append(val)
else:
for ac in val:
self.getqualities.append(ac)
self.getnotqualities = []
val = dic.pop('getsnot', None)
if (val is not None):
if (type(val) not in (list, tuple)):
self.getnotqualities.append(val)
else:
for ac in val:
self.getnotqualities.append(ac)
if (dic):
raise TypeError('Test() got unknown argument: %s' % (', '.join(list(dic.keys())),))
ls = list(self.blockactions) + self.startstatelist + self.canactions + self.cannotactions
self.typelist = merge_typelists_of(ls)
def __repr__(self):
return '<Test "%s">' % (self.name,)
def set_scenario(self, scen):
self.scenario = scen
for state in self.startstatelist:
state.scenario = scen
for ac in self.canactions + self.cannotactions:
ac.set_scenario(scen)
def startstates(self):
if (not self.startstatelist):
state = self.scenario._statemap['Start']
return [state]
return self.startstatelist
def actions(self):
actions = [ action for action in list(self.scenario._actionmap.values()) if action not in self.blockactions ]
return actions
def verify(self, graph):
states = list(graph.states.keys())
for qual in self.getqualities:
states = [ state for state in states if qual in state.dic ]
if (not states):
return False
for ac in self.canactions:
states = [ state for state in states if ac(state) ]
if (not states):
return False
for ac in self.includeactions:
states = [ state for state in states if (ac in graph.states[state].history) ]
if (not states):
return False
for qual in self.getnotqualities:
ls = [ state for state in states if qual in state.dic ]
if (ls):
return False
for ac in self.cannotactions:
ls = [ state for state in states if ac(state) ]
if (ls):
return False
for ac in self.excludeactions:
ls = [ state for state in states if (ac in graph.states[state].history) ]
if (ls):
return False
return True
# When running, it is handy to know whether a given action will strictly
# improve the state (stay in the same maximal class), or always lose
# something (a different maximal class). Often, though, we don't know
# either.
EQUIV_UNKNOWN = '????' # We don't know
EQUIV_SAME = 'SAME' # Does not change the state at all
EQUIV_IMPROVE = 'IMPR' # Definitely an improvement
EQUIV_LOSS = 'LOSS' # Definitely a loss of something
class Action:
'''Action: An abstract action in a scenario. Calling Action(State)
will return a new State, or None if the Action isn't possible in that
state.
'''
name = '???'
scenario = None
equivtype = EQUIV_UNKNOWN
unnamedcount = 0
def __repr__(self):
return '<Action "%s">' % (self.name,)
def __call__(self, state):
raise NotImplementedError('Action type not implemented')
def subactions(self):
return None
def set_scenario(self, scen):
self.scenario = scen
ls = self.subactions()
if ls:
for ac in ls:
ac.set_scenario(scen)
class Set(Action):
def __init__(self, **dic):
self.typelist = infer_typelist(dic)
self.params = dic
self.keylist = list(dic.keys())
allbool = True
pos = 0
for (key, val) in list(dic.items()):
if (self.typelist[key] is not bool):
allbool = False
break
if ((not key.startswith('_') and val)
or (key.startswith('_') and not val)):
pos += 1
if (allbool):
if (pos == len(dic)):
self.equivtype = EQUIV_IMPROVE
else:
self.equivtype = EQUIV_LOSS
def __call__(self, state):
dic = state.dic.copy()
dic.update(self.params)
return State(dic, self.keylist)
class Reset(Action):
def __init__(self, **dic):
self.typelist = infer_typelist(dic)
self.params = dic
State.canonize(self.params)
def __call__(self, state):
dic = self.params.copy()
return State(dic, ())
class Has(Action):
equivtype = EQUIV_SAME
def __init__(self, **dic):
self.typelist = infer_typelist(dic)
self.params = dic
def __call__(self, state):
for (key, val) in list(self.params.items()):
if (self.scenario._sensemap[key]):
if (not state.atleast(key, val)):
return
else:
if (not state.atmost(key, val)):
return
return state
class HasAny(Action):
equivtype = EQUIV_SAME
def __init__(self, **dic):
self.typelist = infer_typelist(dic)
self.params = dic
def __call__(self, state):
for (key, val) in list(self.params.items()):
if (self.scenario._sensemap[key]):
if (state.atleast(key, val)):
return state
else:
if (state.atmost(key, val)):
return state
return
class Lose(Action):
def __init__(self, *keys):
self.typelist = {}
self.keys = keys
pos = 0
for key in keys:
if (not key.startswith('_')):
pos += 1
if (pos > 0):
self.equivtype = EQUIV_LOSS
else:
self.equivtype = EQUIV_IMPROVE
def __call__(self, state):
olddic = state.dic
for key in self.keys:
if (key not in olddic):
return
dic = olddic.copy()
for key in self.keys:
dic.pop(key)
return State(dic, ())
class Once(Action):