-
Notifications
You must be signed in to change notification settings - Fork 0
/
hdr_histogram.c
610 lines (491 loc) · 18.4 KB
/
hdr_histogram.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/**
* hdr_histogram.c
* Written by Michael Barker and released to the public domain,
* as explained at http://creativecommons.org/publicdomain/zero/1.0/
*/
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include <x86intrin.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "hdr_histogram.h"
/////////////////////////////////// Utility ///////////////////////////////////
static int64_t power(int64_t base, int64_t exp)
{
int result = 1;
while(exp)
{
result *= base; exp--;
}
return result;
}
static int32_t get_bucket_index(struct hdr_histogram* h, int64_t value)
{
int32_t pow2ceiling = 64 - __builtin_clzll(value | h->sub_bucket_mask); // smallest power of 2 containing value
return pow2ceiling - (h->sub_bucket_half_count_magnitude + 1);
}
static int32_t get_sub_bucket_index(int64_t value, int32_t bucket_index)
{
return (int32_t)(value >> bucket_index);
}
static int32_t counts_index(struct hdr_histogram* h, int32_t bucket_index, int32_t sub_bucket_index)
{
assert(bucket_index < h->bucket_count);
assert(sub_bucket_index < h->sub_bucket_count);
assert(bucket_index == 0 || (sub_bucket_index >= h->sub_bucket_half_count));
// Calculate the index for the first entry in the bucket:
// (The following is the equivalent of ((bucket_index + 1) * subBucketHalfCount) ):
int32_t bucket_base_index = (bucket_index + 1) << h->sub_bucket_half_count_magnitude;
// Calculate the offset in the bucket:
int32_t offset_in_bucket = sub_bucket_index - h->sub_bucket_half_count;
// The following is the equivalent of ((sub_bucket_index - subBucketHalfCount) + bucketBaseIndex;
return bucket_base_index + offset_in_bucket;
}
static int32_t counts_index_for(struct hdr_histogram* h, int64_t value)
{
int32_t bucket_index = get_bucket_index(h, value);
int32_t sub_bucket_index = get_sub_bucket_index(value, bucket_index);
return counts_index(h, bucket_index, sub_bucket_index);
}
static int64_t value_from_index(int32_t bucket_index, int32_t sub_bucket_index)
{
return ((int64_t) sub_bucket_index) << bucket_index;
}
static int64_t get_count_at_index(struct hdr_histogram* h, int32_t bucket_index, int32_t sub_bucket_index)
{
return h->counts[counts_index(h, bucket_index, sub_bucket_index)];
}
static int64_t size_of_equivalent_value_range(struct hdr_histogram* h, int64_t value)
{
int32_t bucket_index = get_bucket_index(h, value);
int32_t sub_bucket_index = get_sub_bucket_index(value, bucket_index);
return (1 << ((sub_bucket_index >= h->sub_bucket_count) ? (bucket_index + 1) : bucket_index));
}
static int64_t lowest_equivalent_value(struct hdr_histogram* h, int64_t value)
{
int32_t bucket_index = get_bucket_index(h, value);
int32_t sub_bucket_index = get_sub_bucket_index(value, bucket_index);
return value_from_index(bucket_index, sub_bucket_index);
}
static int64_t next_non_equivalent_value(struct hdr_histogram* h, int64_t value)
{
return lowest_equivalent_value(h, value) + size_of_equivalent_value_range(h, value);
}
static int64_t highest_equivalent_value(struct hdr_histogram* h, int64_t value)
{
return next_non_equivalent_value(h, value) - 1;
}
static int64_t median_equivalent_value(struct hdr_histogram* h, int64_t value)
{
return lowest_equivalent_value(h, value) + (size_of_equivalent_value_range(h, value) >> 1);
}
//////////////////////////////////// Memory ///////////////////////////////////
int hdr_alloc(int64_t highest_trackable_value, int significant_figures, struct hdr_histogram** result)
{
if (significant_figures < 3 || 6 < significant_figures)
{
return -1;
}
int64_t largest_value_with_single_unit_resolution = 2 * power(10, significant_figures);
int32_t sub_bucket_count_magnitude = (int32_t) ceil(log(largest_value_with_single_unit_resolution) / log(2));
int32_t sub_bucket_half_count_magnitude = ((sub_bucket_count_magnitude > 1) ? sub_bucket_count_magnitude : 1) - 1;
int32_t sub_bucket_count = (int32_t) pow(2, (sub_bucket_half_count_magnitude + 1));
int32_t sub_bucket_half_count = sub_bucket_count / 2;
int32_t sub_bucket_mask = sub_bucket_count - 1;
// determine exponent range needed to support the trackable value with no overflow:
int64_t trackable_value = (int64_t) sub_bucket_count - 1;
int32_t buckets_needed = 1;
while (trackable_value < highest_trackable_value)
{
trackable_value <<= 1;
buckets_needed++;
}
int32_t bucket_count = buckets_needed;
int32_t counts_len = (bucket_count + 1) * (sub_bucket_count / 2);
size_t histogram_size = sizeof(struct hdr_histogram) + counts_len * sizeof(long);
struct hdr_histogram* histogram = (struct hdr_histogram*) malloc(histogram_size);
if (!histogram)
{
return -2;
}
bzero((void*) histogram, histogram_size);
histogram->highest_trackable_value = highest_trackable_value;
histogram->significant_figures = significant_figures;
histogram->sub_bucket_half_count_magnitude = sub_bucket_half_count_magnitude;
histogram->sub_bucket_half_count = sub_bucket_half_count;
histogram->sub_bucket_mask = sub_bucket_mask;
histogram->sub_bucket_count = sub_bucket_count;
histogram->bucket_count = bucket_count;
histogram->counts_len = counts_len;
histogram->total_count = 0;
*result = histogram;
return 0;
}
// reset a histogram to zero.
void hdr_reset(struct hdr_histogram *h)
{
h->total_count=0;
memset ((void *) &h->counts, 0, (sizeof(int64_t) * h->counts_len));
return;
}
/////////////////////////////////// Updates ///////////////////////////////////
bool hdr_record_value(struct hdr_histogram* h, int64_t value)
{
int32_t counts_index = counts_index_for(h, value);
if (counts_index < 0 || h->counts_len <= counts_index)
{
return false;
}
h->counts[counts_index]++;
h->total_count++;
return true;
}
bool hdr_record_corrected_value(struct hdr_histogram* h, int64_t value, int64_t expected_interval)
{
if (!hdr_record_value(h, value))
{
return false;
}
if (expected_interval <= 0 || value <= expected_interval)
{
return true;
}
int64_t missing_value = value - expected_interval;
for (; missing_value >= expected_interval; missing_value -= expected_interval)
{
if (!hdr_record_value(h, missing_value))
{
return false;
}
}
return true;
}
//////////////////////////////////// Values ///////////////////////////////////
int64_t hdr_max(struct hdr_histogram* h)
{
int64_t max = 0;
struct hdr_iter iter;
hdr_iter_init(&iter, h);
while (hdr_iter_next(&iter))
{
if (0 != iter.count_at_index)
{
max = iter.highest_equivalent_value;
}
}
return lowest_equivalent_value(h, max);
}
int64_t hdr_min(struct hdr_histogram* h)
{
int64_t min = 0;
struct hdr_iter iter;
hdr_iter_init(&iter, h);
while (hdr_iter_next(&iter))
{
if (0 != iter.count_to_index && 0 == min)
{
min = iter.value_from_index;
break;
}
}
return min;
}
int64_t hdr_value_at_percentile(struct hdr_histogram* h, double percentile)
{
struct hdr_iter iter;
hdr_iter_init(&iter, h);
double requested_percentile = percentile < 100.0 ? percentile : 100.0;
int64_t count_at_percentile = (int64_t) (((requested_percentile / 100) * h->total_count) + 0.5);
count_at_percentile = count_at_percentile > 1 ? count_at_percentile : 1;
int64_t total = 0;
while (hdr_iter_next(&iter))
{
total += iter.count_at_index;
if (total >= count_at_percentile)
{
return iter.value_from_index;
}
}
return 0;
}
double hdr_mean(struct hdr_histogram* h)
{
struct hdr_iter iter;
int64_t total = 0;
hdr_iter_init(&iter, h);
while (hdr_iter_next(&iter))
{
if (0 != iter.count_at_index)
{
total += iter.count_at_index * median_equivalent_value(h, iter.value_from_index);
}
}
return (total * 1.0) / h->total_count;
}
double hdr_stddev(struct hdr_histogram* h)
{
double mean = hdr_mean(h);
double geometric_dev_total = 0.0;
struct hdr_iter iter;
hdr_iter_init(&iter, h);
while (hdr_iter_next(&iter))
{
if (0 != iter.count_at_index)
{
double dev = (median_equivalent_value(h, iter.value_from_index) * 1.0) - mean;
geometric_dev_total += (dev * dev) * iter.count_at_index;
}
}
return sqrt(geometric_dev_total / h->total_count);
}
bool hdr_values_are_equivalent(struct hdr_histogram* h, int64_t a, int64_t b)
{
return lowest_equivalent_value(h, a) == lowest_equivalent_value(h, b);
}
/////////////////////////////////// Iterators /////////////////////////////////
static bool has_buckets(struct hdr_iter* iter)
{
return iter->bucket_index < iter->h->bucket_count;
}
static bool has_next(struct hdr_iter* iter)
{
return iter->count_to_index < iter->h->total_count;
}
static void increment_bucket(struct hdr_histogram* h, int32_t* bucket_index, int32_t* sub_bucket_index)
{
(*sub_bucket_index)++;
if (*sub_bucket_index >= h->sub_bucket_count)
{
*sub_bucket_index = h->sub_bucket_half_count;
(*bucket_index)++;
}
}
static bool move_next(struct hdr_iter* iter)
{
increment_bucket(iter->h, &iter->bucket_index, &iter->sub_bucket_index);
if (!has_buckets(iter))
{
return false;
}
iter->count_at_index = get_count_at_index(iter->h, iter->bucket_index, iter->sub_bucket_index);
iter->count_to_index += iter->count_at_index;
iter->value_from_index = value_from_index(iter->bucket_index, iter->sub_bucket_index);
iter->highest_equivalent_value = highest_equivalent_value(iter->h, iter->value_from_index);
return true;
}
static int64_t peek_next_value_from_index(struct hdr_iter* iter)
{
int32_t bucket_index = iter->bucket_index;
int32_t sub_bucket_index = iter->sub_bucket_index;
increment_bucket(iter->h, &bucket_index, &sub_bucket_index);
return value_from_index(bucket_index, sub_bucket_index);
}
void hdr_iter_init(struct hdr_iter* itr, struct hdr_histogram* h)
{
itr->h = h;
itr->bucket_index = 0;
itr->sub_bucket_index = -1;
itr->count_at_index = 0;
itr->count_to_index = 0;
itr->value_from_index = 0;
itr->highest_equivalent_value = 0;
}
bool hdr_iter_next(struct hdr_iter* iter)
{
if (!has_next(iter))
{
return false;
}
move_next(iter);
return true;
}
////////////////////////////////// Percentiles ////////////////////////////////
void hdr_percentile_iter_init(struct hdr_percentile_iter* percentiles,
struct hdr_histogram* h,
int32_t ticks_per_half_distance)
{
hdr_iter_init(&percentiles->iter, h);
percentiles->seen_last_value = false;
percentiles->ticks_per_half_distance = ticks_per_half_distance;
percentiles->percentile_to_iterate_to = 0.0;
percentiles->percentile = 0.0;
}
bool hdr_percentile_iter_next(struct hdr_percentile_iter* percentiles)
{
if (!has_next(&percentiles->iter))
{
if (percentiles->seen_last_value)
{
return false;
}
percentiles->seen_last_value = true;
percentiles->percentile = 100.0;
return true;
}
if (percentiles->iter.sub_bucket_index == -1 && !hdr_iter_next(&percentiles->iter))
{
return false;
}
do
{
double current_percentile = (100.0 * (double) percentiles->iter.count_to_index) / percentiles->iter.h->total_count;
if (percentiles->iter.count_at_index != 0 &&
percentiles->percentile_to_iterate_to <= current_percentile)
{
percentiles->percentile = percentiles->percentile_to_iterate_to;
int64_t half_distance = (int64_t) pow(2, (int64_t) (log(100 / (100.0 - (percentiles->percentile_to_iterate_to))) / log(2)) + 1);
int64_t percentile_reporting_ticks = percentiles->ticks_per_half_distance * half_distance;
percentiles->percentile_to_iterate_to += 100.0 / percentile_reporting_ticks;
return true;
}
}
while (hdr_iter_next(&percentiles->iter));
return true;
}
static void format_line_string(char* str, int len, int significant_figures, format_type format)
{
const char* format_str = "%s%d%s";
switch (format)
{
case CSV:
snprintf(str, len, format_str, "%.", significant_figures, "f,%f,%d,%.2f\n");
break;
case CLASSIC:
snprintf(str, len, format_str, "%12.", significant_figures, "f %12f %12d %12.2f\n");
break;
default:
snprintf(str, len, format_str, "%12.", significant_figures, "f %12f %12d %12.2f\n");
}
}
static const char* format_head_string(format_type format)
{
switch (format)
{
case CSV:
return "%s,%s,%s,%s\n";
case CLASSIC:
return "%12s %12s %12s %12s\n\n";
default:
return "%12s %12s %12s %12s\n\n";
}
}
void hdr_percentiles_print(struct hdr_histogram* h,
FILE* stream,
int32_t ticks_per_half_distance,
double value_scale,
format_type format)
{
char line_format[25];
format_line_string(line_format, 25, h->significant_figures, format);
const char* head_format = format_head_string(format);
struct hdr_percentile_iter percentiles;
hdr_percentile_iter_init(&percentiles, h, ticks_per_half_distance);
fprintf(stream, head_format, "Value", "Percentile", "TotalCount", "1/(1-Percentile)");
while (hdr_percentile_iter_next(&percentiles))
{
double value = percentiles.iter.highest_equivalent_value / value_scale;
double percentile = percentiles.percentile / 100.0;
int64_t total_count = percentiles.iter.count_to_index;
double inverted_percentile = (1.0 / (1.0 - percentile));
fprintf(stream, line_format, value, percentile, total_count, inverted_percentile);
}
if (CLASSIC == format)
{
double mean = hdr_mean(h) / value_scale;
double stddev = hdr_stddev(h) / value_scale;
double max = hdr_max(h) / value_scale;
fprintf(stream, "#[Mean = %12.3f, StdDeviation = %12.3f]\n", mean, stddev);
fprintf(stream, "#[Max = %12.3f, Total count = %12ld]\n", max, h->total_count);
fprintf(stream, "#[Buckets = %12d, SubBuckets = %12d]\n", h->bucket_count, h->sub_bucket_count);
}
fflush(stream);
}
////////////////////////////////// Recorded Values ////////////////////////////////
void hdr_recorded_iter_init(struct hdr_recorded_iter* recorded, struct hdr_histogram* h)
{
hdr_iter_init(&recorded->iter, h);
recorded->count_added_in_this_iteration_step = 0;
}
bool hdr_recorded_iter_next(struct hdr_recorded_iter* recorded)
{
while (hdr_iter_next(&recorded->iter))
{
if (recorded->iter.count_at_index != 0)
{
recorded->count_added_in_this_iteration_step = recorded->iter.count_at_index;
return true;
}
}
return false;
}
////////////////////////////////// Linear Values ////////////////////////////////
void hdr_linear_iter_init(struct hdr_linear_iter* linear, struct hdr_histogram* h, int value_units_per_bucket)
{
hdr_iter_init(&linear->iter, h);
linear->count_added_in_this_iteration_step = 0;
linear->value_units_per_bucket = value_units_per_bucket;
linear->next_value_reporting_level = value_units_per_bucket;
linear->next_value_reporting_level_lowest_equivalent = lowest_equivalent_value(h, value_units_per_bucket);
}
bool hdr_linear_iter_next(struct hdr_linear_iter* linear)
{
linear->count_added_in_this_iteration_step = 0;
if (has_next(&linear->iter) ||
peek_next_value_from_index(&linear->iter) > linear->next_value_reporting_level_lowest_equivalent)
{
do
{
if (linear->iter.value_from_index >= linear->next_value_reporting_level_lowest_equivalent)
{
linear->next_value_reporting_level += linear->value_units_per_bucket;
linear->next_value_reporting_level_lowest_equivalent = lowest_equivalent_value(linear->iter.h, linear->next_value_reporting_level);
return true;
}
if (!move_next(&linear->iter))
{
break;
}
linear->count_added_in_this_iteration_step += linear->iter.count_at_index;
}
while (true);
}
return false;
}
////////////////////////////////// Log Values ////////////////////////////////
void hdr_log_iter_init(struct hdr_log_iter* logarithmic, struct hdr_histogram* h, int value_units_first_bucket, double log_base)
{
hdr_iter_init(&logarithmic->iter, h);
logarithmic->count_added_in_this_iteration_step = 0;
logarithmic->value_units_first_bucket = value_units_first_bucket;
logarithmic->log_base = log_base;
logarithmic->next_value_reporting_level = value_units_first_bucket;
logarithmic->next_value_reporting_level_lowest_equivalent = lowest_equivalent_value(h, value_units_first_bucket);
}
bool hdr_log_iter_next(struct hdr_log_iter* logarithmic)
{
logarithmic->count_added_in_this_iteration_step = 0;
if (has_next(&logarithmic->iter) ||
peek_next_value_from_index(&logarithmic->iter) > logarithmic->next_value_reporting_level_lowest_equivalent)
{
do
{
if (logarithmic->iter.value_from_index >= logarithmic->next_value_reporting_level_lowest_equivalent)
{
logarithmic->next_value_reporting_level *= logarithmic->log_base;
logarithmic->next_value_reporting_level_lowest_equivalent = lowest_equivalent_value(logarithmic->iter.h, logarithmic->next_value_reporting_level);
return true;
}
if (!move_next(&logarithmic->iter))
{
break;
}
logarithmic->count_added_in_this_iteration_step += logarithmic->iter.count_at_index;
}
while (true);
}
return false;
}