forked from nomic-ai/gpt4all
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
207 lines (155 loc) · 7.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.trainer_pt_utils import get_parameter_names
import torch
import torch.nn as nn
from argparse import ArgumentParser
from read import read_config
from accelerate import Accelerator
from accelerate.utils import DummyScheduler, DummyOptim, set_seed
from peft import get_peft_model, LoraConfig, TaskType
from data import load_data
from torchmetrics import MeanMetric
from tqdm import tqdm
def format_metrics(metrics, split, prefix=""):
log = f"[{split}]" + prefix
log += " ".join([f"{key}: {value:.4f}" for key, value in metrics.items()])
return log
def evaluate(config, model, val_dataloader):
model.eval()
val_loss = MeanMetric().to(model.device)
with torch.no_grad():
for i, batch in enumerate(
tqdm(val_dataloader),
):
if i == config["eval_steps"]:
break
loss = model(**batch).loss
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
val_loss.update(loss_values["loss"])
return val_loss
def train(accelerator, config):
set_seed(config['seed'])
accelerator.print(config)
accelerator.print(f"Using {accelerator.num_processes} GPUs")
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'])
# llama has no pad token, set it to new token
if tokenizer.pad_token is None:
# these tokens are already in the vocab, just not mapped correctly
added_tokens = tokenizer.add_special_tokens({"bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>"})
with accelerator.main_process_first():
train_dataloader, val_dataloader = load_data(config, tokenizer)
checkpoint = config["gradient_checkpointing"]
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
use_cache=False if checkpoint else True,
trust_remote_code=True)
if added_tokens > 0:
model.resize_token_embeddings(len(tokenizer))
if checkpoint:
model.gradient_checkpointing_enable()
if config["lora"]:
peft_config = LoraConfig(
# should R be configurable?
task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
optimizer_cls = (
torch.optim.AdamW
if accelerator.state.deepspeed_plugin is None
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
# karpathy doesn't decay embeddding, maybe we should exclude
# https://github.com/karpathy/minGPT/commit/bbbdac74fa9b2e55574d70056163ffbae42310c1#diff-2075fa9c224b395be5bda85544dd36572b59c76c54562819eadadbf268602834R157s
optimizer = optimizer_cls(model.parameters(), lr=config["lr"])
# scheduler defined in Deepspeed config
scheduler = DummyScheduler(
optimizer, warmup_num_steps=config["warmup_steps"],
)
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, val_dataloader, scheduler
)
# setup for saving training states in case preemption
accelerator.register_for_checkpointing(scheduler)
if config["checkpoint"]:
accelerator.load_state(config["checkpoint"])
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
training_difference = os.path.splitext(path)[0]
resume_step = int(training_difference.replace("step_", ""))
accelerator.skip_first_batches(train_dataloader, resume_step)
accelerator.print(f"Resuming from step {resume_step}")
train_loss = MeanMetric().to(model.device)
if accelerator.state.deepspeed_plugin is not None:
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
"gradient_accumulation_steps"
]
for epoch in range(config["num_epochs"]):
for step, batch in enumerate(tqdm(train_dataloader)):
model.train()
outputs = model(**batch)
loss = outputs.loss
loss = loss / gradient_accumulation_steps
accelerator.backward(loss)
# log LR in case something weird happens
if step > 0 and step % (config["eval_every"] // 10) == 0:
if config["wandb"]:
curr_step = step + epoch * len(train_dataloader)
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
scheduler.step()
optimizer.zero_grad()
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
train_loss.update(loss_values["loss"])
if step > 0 and step % config["save_every"] == 0:
accelerator.save_state(f"{config['output_dir']}/step_{step}")
if step > 0 and step % config["eval_every"] == 0:
val_loss = evaluate(config, model, val_dataloader)
log_train = {
"train_loss": train_loss.compute()
}
log_val = {
"val_loss": val_loss.compute()
}
if config["wandb"]:
curr_step = step + epoch * len(train_dataloader)
accelerator.log({**log_train, **log_val}, step=curr_step)
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
accelerator.print(format_metrics(log_train, "train", f" step {step} "))
accelerator.print(format_metrics(log_val, "val", f" step {step} "))
train_loss.reset()
accelerator.print(f"Epoch {epoch} finished")
accelerator.print(f"Pushing to HF hub")
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
unwrapped_model.push_to_hub(config["save_name"] + "_first_epoch", private=True)
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
f"{config['output_dir']}/final",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
state_dict=accelerator.get_state_dict(model),
)
if accelerator.is_main_process:
unwrapped_model.push_to_hub(config["save_name"], private=True)
accelerator.end_training()
if __name__ == "__main__":
# parse arguments by reading in a config
parser = ArgumentParser()
parser.add_argument("--config", type=str, default="config.yaml")
args = parser.parse_args()
config = read_config(args.config)
if config["wandb"]:
accelerator = Accelerator(log_with="wandb")
accelerator.init_trackers(
project_name=config["wandb_project_name"],
config=config,
init_kwargs={"wandb": {"entity": config["wandb_entity"]}},
)
else:
accelerator = Accelerator()
train(accelerator, config=config)