forked from RubensZimbres/Repo-2017
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHyperparameter Tuning RL
206 lines (181 loc) · 6.6 KB
/
Hyperparameter Tuning RL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
### USE RESET TO START A BRAND NEW ENVIRONMENT EACH RUN (Variables will be cleared)
%reset
### MADE WITH KERAS 1.1.0
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import theano
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.optimizers import SGD
from keras.callbacks import LearningRateScheduler,EarlyStopping, ModelCheckpoint
from keras import backend as K
import time
from sklearn.datasets import load_boston
import sys
### OUT OF LOOP
reward=0
### Number of initial hidden layers
hid=6
### Derivative value before adjusting learning rate
deriv=.23
### Threshold to stop the reinforcement learning
threshold=.924
### Initial random accuracy
acc=0.7
pp=[0,0]
dataset=load_boston()
x_train,y_train=dataset.data,dataset.target
a=pd.DataFrame(x_train)
a.dropna()
### Feature selection
c=[]
for i in range(0,x_train.shape[1]):
c.append(np.corrcoef(x_train.T[i],y_train)[0][1])
d=np.where(abs(np.array(c))>.5)
d
e=[]
for i in d:
e.append(x_train.T[i])
x=e[0].T
## Remove outliers
z2=[]
z2.append(np.where(y_train.T<np.mean(y_train.T)+2*np.std(y_train.T)))
z2[0][0]
def norm(x):
return (x-min(x))/(max(x)-min(x))
f=norm(x[z2[0][0]].T[0])
g=norm(1/x[z2[0][0]].T[1])
h=norm(1/x[z2[0][0]].T[2])
X_train=np.array([f[0:370],g[0:370],h[0:370]]).T
y20=np.array(norm(y_train[z2[0][0]]))
y_train=y20[0:370]
X_test=np.array([f[371:475],g[371:475],h[371:475]]).T
y_test=y20[371:475]
### Loss history, Learning Rate and Derivative of loss
class LossHistory(keras.callbacks.Callback):
def on_train_begin(self, logs={}):
self.losses = [1,1]
def on_epoch_end(self, batch, logs={}):
self.losses.append(logs.get('loss'))
sd.append(step_decay(len(self.losses)))
print('learning rate:', step_decay(len(self.losses)))
print('derivative of loss:', 2*np.sqrt((self.losses[-1])))
### Random Initial weights
def my_init(shape, name=None):
value = np.random.random(shape)
return K.variable(value, name=name)
### Scheduled Learning Rate
def step_decay(losses):
if float(2*np.sqrt(np.array(history.losses[-1])))<deriv:
lrate=0.001
momentum=0.07
decay_rate=0.0
return lrate
else:
lrate=learning_rate
return lrate
###### LOOP based on improvement of accuracy (Reward)
while acc-pp[-2]>0.0001:
sd=[]
if reward==0:
def base_model(nodes):
model=Sequential()
model.add(Dense(nodes, input_dim=3, init=init0))
model.add(Activation('sigmoid'))
model.add(Dense(1, init='uniform'))
model.add(Activation('sigmoid'))
model.add(Dense(1, init='uniform'))
model.add(Activation('sigmoid'))
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=False)
model.compile(loss='mean_squared_error',optimizer=sgd,metrics=['mean_absolute_error'])
return model
hidden_layers=2
else:
def base_model(nodes):
model=Sequential()
model.add(Dense(nodes, input_dim=3, init=init0))
model.add(Dense(1, init=init0))
model.add(Activation('sigmoid'))
sgd = SGD(lr=learning_rate,momentum=momentum, decay=decay_rate, nesterov=False)
model.compile(loss='mean_squared_error',optimizer=sgd,metrics=['mean_absolute_error'])
return model
hidden_layers=1
history=LossHistory()
lrate=LearningRateScheduler(step_decay)
##### NEURAL NETWORK INITIAL SETTINGS
## If configuration is OK, train for more epochs to converge
if reward>.87:
epochs = 800
else:
epochs=100
if reward==0:
learning_rate = 0.1
else:
learning_rate=0.04
decay_rate = 5e-6
momentum = 0.9
batch=50
if reward==0:
hidden_nodes=hid
hidden_nodes=hidden_nodes-1
init0='uniform'
else:
hidden_nodes=hidden_nodes-1
if hidden_nodes<5:
hidden_nodes=4
init0=my_init
model=base_model(hidden_nodes)
time.sleep(6)
model.fit(X_train, y_train,nb_epoch=epochs,batch_size=batch,callbacks=[history,lrate],verbose=2)
d=model.evaluate(X_train, y_train, batch_size=batch)
reward=1-d[-1]
y_pred=model.predict(X_test, batch_size=batch, verbose=0)
acc=1-np.mean(abs(np.array([float(i) for i in y_pred])-y_test))
pp.append(acc)
sys.stdout.flush()
for i in range(1):
time.sleep(2)
print('\n',flush=True)
print('\n','Number of Hidden Layers:',hidden_layers,flush=True)
print('\n','Number of Hidden Nodes:',hidden_nodes,flush=True)
print('\n','Accuracy on Training:',reward,flush=True)
print('\n','Improvement:',acc-pp[-2],flush=True)
print('\n','Accuracy on test set:',acc,flush=True)
print('\n','New configuration on its way', end='')
sys.stdout.flush()
for i in range(7):
time.sleep(1)
print('.', end='', flush=True)
model.summary()
### OUTPUT
learning rate: 0.001
derivative of loss: 0.220770262037
0s - loss: 0.0122 - mean_absolute_error: 0.0825
Epoch 299/300
learning rate: 0.001
derivative of loss: 0.220748450555
0s - loss: 0.0122 - mean_absolute_error: 0.0825
Epoch 300/300
learning rate: 0.001
derivative of loss: 0.22072300209
0s - loss: 0.0122 - mean_absolute_error: 0.0825
300/370 [=======================>......] - ETA: 0s
Number of Hidden Layers: 1
Number of Hidden Nodes: 4
Accuracy on Training: 0.917522253116
Improvement: -0.00210045750898
Accuracy on test set: 0.879107174837
New configuration on its way.......
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
dense_431 (Dense) (None, 4) 16 dense_input_212[0][0]
____________________________________________________________________________________________________
dense_432 (Dense) (None, 1) 5 dense_431[0][0]
____________________________________________________________________________________________________
activation_116 (Activation) (None, 1) 0 dense_432[0][0]
====================================================================================================
Total params: 21
____________________________________________________________________________________________________