-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBinaryTreesB.java
485 lines (396 loc) · 13.2 KB
/
BinaryTreesB.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import java.util.*;
import java.util.LinkedList;
public class BinaryTreesB {
// Build Tree PreOrder
static class Node {
int data;
Node left;
Node right;
Node(int data){
this.data = data;
this.left = null;
this.right = null;
}
}
static class BinaryTree{
static int index =-1;
public static Node buildTree(int nodes[]){
index++;
if(nodes[index] == -1){
return null;
}
Node newNode = new Node(nodes[index]);
newNode.left = buildTree(nodes);
newNode.right = buildTree(nodes);
return newNode;
}
// PreOrder Traversal
public static void preorder(Node root){ // O(n)
if(root == null){
return;
}
System.out.print(root.data+" ");
preorder(root.left);
preorder(root.right);
}
// InOrder Traversal
public static void inorder(Node root){
if(root == null){
return;
}
inorder(root.left);
System.out.print(root.data+" ");
inorder(root.right);
}
// PostOrder Traversal
public static void postorder(Node root){
if(root == null){
return;
}
postorder(root.left);
postorder(root.right);
System.out.print(root.data+" ");
}
// LevelOrder Traversal
public static void levelOrder(Node root){
if(root == null){
return;
}
Queue<Node> q = new LinkedList<>();
q.add(root);
q.add(null);
while(!q.isEmpty()) {
Node currentNode = q.remove();
if(currentNode == null){
System.out.println();
if(q.isEmpty()){
break;
} else{
q.add(null);
}
} else{
System.out.print(currentNode.data+" ");
if(currentNode.left != null){
q.add(currentNode.left);
}
if(currentNode.right != null){
q.add(currentNode.right);
}
}
}
}
}
// Height of a Tree
public static int height(Node root) {
if(root == null){
return 0;
}
int leftheight = height(root.left);
int rightheight = height(root.right);
return Math.max(leftheight, rightheight) + 1;
}
// Count of no of nodes of a tree
public static int count(Node root){
if(root == null){
return 0;
}
int leftCount = count(root.left);
int rightCount = count(root.right);
return leftCount+rightCount+1;
}
// Sum of all Nodes
public static int SumOfAllNodes(Node root){
if(root == null){
return 0;
}
int leftSum = SumOfAllNodes(root.left);
int rightSum = SumOfAllNodes(root.right);
return leftSum + rightSum + root.data;
}
//Diameter of a Tree(Approach 1)
public static int diameter1(Node root){ // O(n^2)
if(root == null){
return 0;
}
int leftDiameter = diameter1(root.left);
int leftHeight = height(root.left);
int rightDiameter = diameter1(root.right);
int rightHeight = height(root.right);
int selfDiameter = leftHeight + rightHeight + 1;
return Math.max(selfDiameter, Math.min(rightDiameter, leftDiameter));
}
//Diameter of a Tree(Approach 2)
static class Info{
int diam;
int ht;
public Info(int diam, int ht){
this.diam = diam;
this.ht = ht;
}
}
public static Info diameter(Node root){ // O(n)
if(root == null){
return new Info(0, 0);
}
Info leftInfo = diameter(root.left);
Info rightInfo = diameter(root.right);
int diam = Math.max(Math.max(leftInfo.diam, rightInfo.diam), leftInfo.ht + rightInfo.ht + 1);
int ht = Math.max(leftInfo.ht, rightInfo.ht) + 1;
return new Info(diam, ht);
}
//SubTree of another Tree
public static boolean isIdentical(Node node, Node subRoot){
if(node == null && subRoot == null){
return true;
} else if(node == null || subRoot == null || node.data != subRoot.data){
return false;
}
if(!isIdentical(node.left, subRoot.left)){
return false;
}
if(!isIdentical(node.right, subRoot.right)){
return false;
}
return true;
}
public static boolean isSubtree(Node root, Node subRoot){
if(root == null){
return false;
}
if(root.data == subRoot.data){
if(isIdentical(root, subRoot)){
return true;
}
}
return isSubtree(root.left, subRoot) || isSubtree(root.right, subRoot);
}
// top view of a Tree
static class Info1 {
Node node;
int hd;
public Info1(Node node, int hd){
this.node = node;
this.hd = hd;
}
}
public static void topView(Node root){
// Level Order
Queue<Info1> q = new LinkedList<>();
HashMap<Integer, Node> map = new HashMap<>();
int min = 0 , max =0;
q.add(new Info1(root, 0));
q.add(null);
while(!q.isEmpty()){
Info1 curr = q.remove();
if(curr == null){
if(q.isEmpty()){
break;
} else{
q.add(null);
}
} else{
if(!map.containsKey(curr.hd)) { // first time hd is occcuring
map.put(curr.hd, curr.node);
}
if(curr.node.left != null){
q.add(new Info1(curr.node.left, curr.hd-1));
min = Math.min(min, curr.hd-1);
}
if(curr.node.right != null){
q.add(new Info1(curr.node.right, curr.hd+1));
max = Math.max(max, curr.hd+1);
}
}
}
// printing top view
for(int i = min;i<= max;i++){
System.out.print(map.get(i).data+" ");
}
System.out.println();
}
// Kth level of a Tree
public static void KLevel(Node root, int level, int k){
if(root == null){
return;
}
if(level == k){
System.out.print(root.data+" ");
return;
}
KLevel(root.left, level+1, k);
KLevel(root.right, level+1, k);
}
// Kth ancestor of Node
public static int KAncestor(Node root, int n, int k){
if(root == null){
return -1;
}
if(root.data == n){
return 0;
}
int leftDistance = KAncestor(root.left, n, k);
int rightDistance = KAncestor(root.right, n, k);
if(leftDistance == -1 && rightDistance == -1){
return -1;
}
int max = Math.max(leftDistance, rightDistance);
if(max+1 == k){
System.out.println(root.data);
}
return max+1;
}
// Transform to Sum Tree
public static int transform(Node root){
if(root == null){
return 0;
}
int leftChild = transform(root.left);
int rightChild = transform(root.right);
int data = root.data;
int newLeft = root.left == null ? 0 : root.left.data;
int newRight = root.right == null ? 0 : root.right.data;
root.data = newLeft + leftChild + newRight + rightChild;
return data;
}
// for priting tree of Transform function
public static void preorder(Node root){ // O(n)
if(root == null){
return;
}
System.out.print(root.data+" ");
preorder(root.left);
preorder(root.right);
}
// function for Lowest Commom Ancestor Appraoch1
public static boolean getPath(Node root, int n, ArrayList<Node> path){
if(root == null){
return false;
}
path.add(root);
if(root.data == n){
return true;
}
boolean foundLeft = getPath(root.left, n, path);
boolean foundRight = getPath(root.right, n, path);
if(foundLeft || foundRight){
return true;
}
path.remove(path.size()-1);
return false;
}
// Lowest Commom Ancestor Appraoch1 // O(n)
public static Node LowestCommonAncestor(Node root, int n1, int n2){
ArrayList<Node> path1 = new ArrayList<>();
ArrayList<Node> path2 = new ArrayList<>();
getPath(root, n1, path1);
getPath(root, n2, path2);
// last common ancestor
int i =0;
for(; i<path1.size() && i<path2.size(); i++){
if(path1.get(i) != path2.get(i)){
break;
}
}
// last equal node -> (i-1)th
Node lca = path1.get(i-1);
return lca;
}
// Lowest Commom Ancestor Appraoch2
public static Node LowestCommonAncestor_Approch2(Node root, int n1, int n2){
if(root == null || root.data == n1 || root.data == n2){
return root;
}
Node leftLca = LowestCommonAncestor_Approch2(root.left, n1, n2);
Node rightLca = LowestCommonAncestor_Approch2(root.right, n1, n2);
// leftLCA=valid rightLca=null
if(rightLca == null){
return leftLca;
}
if(leftLca == null){
return rightLca;
}
return root;
}
// Minimum Distance between nodes
//Helper function for Minimum Distance
public static int lcaDist(Node root, int n){
if(root == null){
return -1;
}
if(root.data == n){
return 0;
}
int leftDist = lcaDist(root.left, n);
int rightDist = lcaDist(root.right, n);
if(leftDist == -1 && rightDist == -1){
return -1;
} else if(leftDist == -1){
return rightDist+1;
} else{
return leftDist+1;
}
}
public static int minimumDistance(Node root, int n1, int n2){
Node lca = LowestCommonAncestor_Approch2(root, n1, n2);
int dist1 = lcaDist(lca, n1);
int dist2 = lcaDist(lca, n2);
return dist1 + dist2;
}
public static void main(String[] args) {
// int nodes[] = {1, 2, 4, -1, -1, 5, -1, -1, 3, -1, 6, -1, -1};
// BinaryTree tree = new BinaryTree();
// Node root = tree.buildTree(nodes);
// System.out.println(root.data);
// printing PreOrder
// tree.preorder(root);
//printing InOrder
// tree.inorder(root);
// printing PostOrder
// tree.postorder(root);
//printing LevelOrder
// tree.levelOrder(root);
//Height of a Tree
Node root = new Node(1);
root.left = new Node(2);
root.right = new Node(3);
root.left.left = new Node(4);
root.left.right = new Node(5);
root.right.left = new Node(6);
root.right.right = new Node(7);
// System.out.println(height(root));
// Count of nodes of a tree
// System.out.println(count(root));
// Sum of nodes of a Tree
// System.out.println(SumOfAllNodes(root));
// diameter of a tree(Approach 1)
// System.out.println(diameter1(root));
// diameter of a tree(Approach 2)
// System.out.println(diameter(root).diam);
// System.out.println(diameter(root).ht);
// Subtree of Another Tree
Node subRoot = new Node(2);
subRoot.left = new Node(4);
subRoot.right = new Node(5);
// System.out.println(isSubtree(root, subRoot));
//Top View of a Tree
// topView(root);
// Kth level of a Tree
// int k = 2;
// KLevel(root, 1, k);
// Kth ancestor of node
// int n=5, k=2;
// KAncestor(root, n, k);
// Transform to Sum Tree
// transform(root);
// preorder(root);
// Lowest Commom Ancestor Appraoch1
// int n1 = 4, n2 = 5;
// System.out.println(LowestCommonAncestor(root, n1, n2).data);
// Lowest Commom Ancestor Appraoch2
// int n1 = 4, n2 = 7;
// System.out.println(LowestCommonAncestor_Approch2(root, n1, n2).data);
// Minimum Distance between nodes
int n1 = 4, n2 = 6;
System.out.println(minimumDistance(root, n1, n2));
}
}