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1.   Algorithm particle_filter( St-1, ut , zt): 

2.   

3.  For                                                Generate new samples 
4.    Sample index j(i) from the discrete distribution given by wt-1 

5.    Sample     from  

6.        Compute importance weight 
7.        Update normalization factor 

8.         Insert 
9.   For  

10.       Normalize weights 
11.  Return St 
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Sequential Importance Resampling (SIR) 
Particle Filter 
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n  Improved Sampling 

n  Issue with vanilla particle filter when noise dominated by 
motion model 

n  Importance Sampling 

n  Optimal Proposal 

n  Examples 

n  Resampling 

n  Particle Deprivation 

n  Noise-free Sensors 

n  Adapting Number of Particles: KLD Sampling 

Outline 

Noise Dominated by Motion Model  

[Grisetti, Stachniss, Burgard, T-RO2006] 

à Most particles get (near) zero weights and are lost. 
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n  Theoretical justification: for any function f we have: 

n  f could be: whether a grid cell is occupied or not, whether 
the position of a robot is within 5cm of some (x,y), etc. 

 

Importance Sampling 

n  Task: sample from density p(.)  

n  Solution:  

n  sample from “proposal density” ¼(.) 

n  Weight each sample  x(i)  by  p(x(i)) / ¼(x(i)) 

n  E.g.: 

n  Requirement: if ¼(x) = 0 then p(x) = 0.  

 

Importance Sampling 

p ¼
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Particle Filters Revisited 
1.   Algorithm particle_filter( St-1, ut , zt): 

2.   

3.  For                                                Generate new samples 
4.    Sample index j(i) from the discrete distribution given by wt-1 

5.    Sample     from                                        

6.        Compute importance weight 

7.        Update normalization factor 
8.         Insert 
9.   For  

10.       Normalize weights 
11.  Return St 
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n  Optimal    = 

n  à 

n  Applying Bayes rule to the denominator gives: 

n  Substitution and simplification gives  

 

    

Optimal Sequential Proposal ¼(.) 
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n  Optimal    = 

n  à 

n  Challenges: 

n  Typically difficult to sample from 

n  Importance weight: typically expensive to compute integral 

    

Optimal proposal ¼(.) 
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n  Nonlinear Gaussian State Space Model:     

n  Then: 

    with 

 

n  And:  

    

Example 1: ¼(.) = Optimal proposal 
Nonlinear Gaussian State Space Model 
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Example 2: ¼(.) = Motion Model 

n  à the “standard” particle filter 

Example 3: Approximating Optimal ¼ for Localization 

[Grisetti, Stachniss, Burgard, T-RO2006] 

n  One (not so desirable solution): use smoothed likelihood 
such that more particles retain a meaningful weight --- BUT 
information is lost 

n  Better: integrate latest observation z into proposal ¼ 
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1.  Initial guess 

2.  Execute scan matching starting from the initial guess     , 
resulting in pose estimate     . 

3.  Sample K points                  in region around      . 

4.  Proposal distribution is Gaussian with mean and covariance: 

5.  Sample from (approximately optimal) proposal distribution. 

6.  Weight =  

Example 3: Approximating Optimal ¼ for 
Localization: Generating One Weighted Sample 

n  Compute 

n  E.g., using gradient descent   

Scan Matching 
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Example 3: Example Particle Distributions 

[Grisetti, Stachniss, Burgard, T-RO2006] 

Particles generated from the approximately optimal proposal 
distribution.  If using the standard motion model, in all three 
cases the particle set would have been similar to (c). 

n  Consider running a particle filter for a system with 
deterministic dynamics and no sensors 

n  Problem:  

n  While no information is obtained that favors one particle 
over another, due to resampling some particles will 
disappear and after running sufficiently long with very high 
probability all particles will have become identical. 

n  On the surface it might look like the particle filter has 
uniquely determined the state. 

n  Resampling induces loss of diversity.  The variance of the 
particles decreases, the variance of the particle set as an 
estimator of the true belief increases. 

Resampling 
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n  Effective sample size: 

n  Example: 

n  All weights = 1/N à Effective sample size = N 

n  All weights = 0, except for one weight = 1 à Effective 
sample size = 1 

n  Idea: resample only when effective sampling size is low 

Resampling Solution I 

Normalized weights 

Resampling Solution I (ctd) 
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n  M = number of particles 

n  r \in [0, 1/M] 

n  Advantages: 

n  More systematic coverage of space of samples 

n  If all samples have same importance weight, no samples are lost 

n  Lower computational complexity 

Resampling Solution II: Low Variance 
Sampling 

n  Loss of diversity caused by resampling from a discrete 
distribution 

n  Solution: “regularization” 

n  Consider the particles to represent a continuous density 

n  Sample from the continuous density 

n  E.g., given (1-D) particles 

 sample from the density: 

 

  

Resampling Solution III 
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n  = when there are no particles in the vicinity of the correct state 

n  Occurs as the result of the variance in random sampling.  An unlucky 
series of random numbers can wipe out all particles near the true state.  
This has non-zero probability to happen at each time à will happen 
eventually. 

n  Popular solution: add a small number of randomly generated particles 
when resampling. 

n  Advantages: reduces particle deprivation, simplicity. 

n  Con: incorrect posterior estimate even in the limit of infinitely many 
particles. 

n  Other benefit: initialization at time 0 might not have gotten anything near the true state, and not 
even near a state that over time could have evolved to be close to true state now; adding random 
samples will cut out particles that were not very consistent with past evidence anyway, and instead 
gives a new chance at getting close the true state.   

Particle Deprivation 

n  Simplest: Fixed number. 

n  Better way: 

n  Monitor the probability of sensor measurements 

which can be approximated by: 

 

n  Average estimate over multiple time-steps and compare 
to typical values when having reasonable state estimates.  
If low, inject random particles. 

Particle Deprivation:  
How Many Particles to Add? 
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n  Consider a measurement obtained with a noise-free sensor, 
e.g., a noise-free laser-range finder---issue? 

n  All particles would end up with weight zero, as it is very 
unlikely to have had a particle matching the measurement 
exactly. 

n  Solutions: 

n  Artificially inflate amount of noise in sensors 

n  Better proposal distribution (see first section of this set of 
slides). 

Noise-free Sensors 
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n  E.g., typically more particles need at the beginning of 
localization run 

n  Idea: 

n  Partition the state-space 

n  When sampling, keep track of number of bins occupied 

n  Stop sampling when a threshold that depends on the 
number of occupied bins is reached 

n  If all samples fall in a small number of bins à lower threshold 

Adapting Number of Particles: KLD-Sampling 

n  z_{1-\delta}: the upper 1-
\delta quantile of the 
standard normal 
distribution 

n  \delta = 0.01 and \epsilon 
= 0.05 works well in 
practice 
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KLD-sampling  

KLD-sampling 


