Particle Filters++

Pieter Abbeel
UC Berkeley EECS

Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Sequential Importance Resampling (SIR)
Particle Filter

1. Algorithm particle_filter( S, ;, u,, z):

2.8,=0 n=0

3. For i=1...n Generate new samples

4. Sample index j(i) from the discrete distribution given by w, |
5 Sample x; from p(x, |x/Vu)

6 w = p(z,|x) Compute importance weight
7. n=n+w Update normalization factor
8 S, =S, Uf<x,w >} Insert

9. For i=1...n

10.  w=w/n Normalize weights

11. Return S,
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Outline

= Improved Sampling

= Issue with vanilla particle filter when noise dominated by
motion model

= Importance Sampling
= Optimal Proposal

= Examples

Resampling

Particle Deprivation

Noise-free Sensors

Adapting Number of Particles: KLD Sampling

Noise Dominated by Motion Model

likelihood

L) robot position

Fig. 1. A Within the interval L (%)
the product of both functions is dominated by the observation likelihood in
case an accurate sensor is used. [Grisetti, Stachniss, Burgard, T-R02006]

- Most particles get (near) zero weights and are lost.
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‘ Importance Sampling
|

= Theoretical justification: for any function f we have:

Ex-p[f(X)] = / f(@)p(a)de

= /f(x) (I)Z(—gdx ifr(z) =0=p(z) =0
@
= [1@ESn @
_ p(X)
m x(l) )
~ % iix("))) f(x(l)) with 2 ~ 7

= fcould be: whether a grid cell is occupied or not, whether
the position of a robot is within 5cm of some (x,y), etc.

Importance Sampling

Task: sample from density p(.)

Solution:

= sample from “proposal density” 7(.)

= Weight each sample x0) by p(x() / m(x®)

] E.g.:

' ‘ H‘ [N} LI
2 a

Requirement: if (x) = 0 then p(x) = 0.
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Particle Filters Revisited

1. Algorithm particle_filter( S,.;, u;, z):
2. §,=0, n=0

3. For i=1l...n Generate new samples
4. Sample index j(i) from the discrete distribution given by w, ,
5. Sample X/ from | 7 (x, 1 x/Vu,.z,)

i _ P x)p(x 1 x,,,u,) . .
6. iy Zl) Compute importance weight
t =127 2%t

7. n=n+w, Update normalization factor
8. S, =8, U{<x,w >} Insert

9 TFor i=1l...n

10.  w=w/n Normalize weights

11. Return S;

Optimal Sequential Proposal =(.)

| OPtlmaI ﬂ(xtlxi_l’uzazt) = p(xtlxi—l’ut’zt)

O AV /T
m(@e|wy_y, ut, 2t)
pzi|y)p(at]e;_y,ur)
p(xe|)_y, ue, 2t)

= Applying Bayes rule to the denominator gives:

p(ze|@e, up, Te—1)p(@e|Ti—1, Ut)

P(Zt|$t—1, Ut)

P(@e|T)_q,upy 2t) =

= Substitution and simplification gives

wi = plafre—i, ur) = / p(eelze)pladlai_y, u)day
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Optimal proposal =(.)

= Optimal 7(x,1x, ,u.,z) = p(x|xi_.,u,z)

> wi=plalesu) = [ plalpadsiu)ds
= Challenges:
= Typically difficult to sample from p(x, 1x,_.u,.2,)

= Importance weight: typically expensive to compute integral

Example 1: =(.) = Optimal proposal
Nonlinear Gaussian State Space Model

m(@e|zh_y,ur, 2e) = p(xe|h_1,up, 20), Wi = p(2e|e—1,us) = /p(ztlwt)p(xtlwi,l,ut)dxa

= Nonlinear Gaussian State Space Model:

z = fl@—1,u) v, v~ N(0,8,)
z = Czp+wy, w ~N(0,3,)

m Then: p(z|zi |, u, 2) = N(my, 2)

with » = (s;'4+cTy;l0)”
m¢ = E (E;lf(xt_l,ut) =+ CTE_lzt)

w

= And:  p(zle-1,u) o
exp (*%(Zt = Cf(zi—1,u) T (By + CSWCT) (2 — Cf (w41, ui”)
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Example 2: 7(.) = Motion Model

W(xt‘xi—lautazt) = p(xt’xi—hut)’
i p(zﬂwi)p(.rﬂmi_l,ut) _ i
wy = —p(zt|xt)

T((mil‘rg—l ) Ut Zt)

= > the “standard” particle filter

Example 3: Approximating Optimal = for Localization

p(zlx)
p(xIx’ u)

likelihood

L) robot position

[Grisetti, Stachniss, Burgard, T-RO2006]

= One (not so desirable solution): use smoothed likelihood

such that more particles retain a meaningful weight --- BUT
information is lost

= Better:integrate latest observation z into proposal 7
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Example 3: Approximating Optimal = for
Localization: Generating One Weighted Sample

. Initial guess @' = f(zj_1,ut)

2. Execute scan matching starting from the initial guess =7,
resulting in pose estimate & .

3. Sample K points {z1,...,2x} in region around & .

4. Proposal distribution is Gaussian with mean and covariance:

K
. 1 R
W= > ap(ales, mp(eleig,w)
Jj=1
1 K
o= ;Zp(ztlz]mp(wj\x;,l,m)(wj—u;)(wj—u;ﬁ
j=1
K
7= Y palrgmp(alal_yw)
j=1

5. Sample from (approximately optimal) proposal distribution.

6. Weight = /p(ztlw',m)p(x'lxt_l,w)dw’ ~ 7'

‘ Scan Matching

|
s Compute  argmaxp(z|z, m)p(z|ri—1,u)
T

= E.g, using gradient descent

P(z|x,m) = :P(zk | x, m)

Ay Phit(zk I x,m) | 1\\“
P (Z | X, m)
P(Zk | x,m)= unexp e |
A ax Pmax(zk | X,m) e ”
— A
amnd Prand (Zk l X m) -
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‘Example 3: Example Particle Distributions

[Grisetti, Stachniss, Burgard, T-RO2006]

’ ..o M.k', )

T

(a) (b) (©

Particles generated from the approximately optimal proposal
distribution. If using the standard motion model, in all three
cases the particle set would have been similar to (c).

Resampling

= Consider running a particle filter for a system with
deterministic dynamics and no sensors

= Problem:

= While no information is obtained that favors one particle
over another, due to resampling some particles will
disappear and after running sufficiently long with very high
probability all particles will have become identical.

= On the surface it might look like the particle filter has
uniquely determined the state.

= Resampling induces loss of diversity. The variance of the
particles decreases, the variance of the particle set as an
estimator of the true belief increases.
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Resampling Solution I

= Effective sample size:

- 1
chf =

i Normalized weights |
= Example:

= All weights

I/N = Effective sample size = N

= All weights = 0, except for one weight = | - Effective
sample size = |

= |dea: resample only when effective sampling size is low

Resampling Solution I (ctd)

1. Importance Sampling

e Fori=1,...,N,sample iEl) ~ ﬂ(md.’p&fail, 20:¢) and 'i,sll = (m&llil,igl)).
e Fori=1,..., N, evaluate the importance weights up to a normaliz-

ing constant:

7@ (1)) = ()
i) vi)? (ltl'”‘ )p ('E' "EH)
) W(iﬁz)‘ifﬁlquo:t)
2. Resampling
e For i =1,..., N, normalize the importance weights:

ap*(@)
[ p—

N
Z]:I w:(./)

L] N(‘,ff:

1
PORNCIUE

If Nep > Nynres

o 2l = &) fori=1,...,N.
otherwise

e For i =1,...,N, sample an index j(i) distributed according to the
discrete distribution with N elements satisfying Pr{j(i) = I} = u‘)f”
forl=1,...,N.

e Fori=1,...,N, ’I'é(;) and w(m = i,v
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Resampling Solution II: Low Variance

Sampling

= M = number of particles

Wzﬂ ] th]
A

A A A

roortMTr2M
Figure 4.7 Principle of the low variance resampling procedure We choose a random
number r and then select those particles that correspond tou=r+(m—-1)-M*!
wherem =1, ..., M.

= r\in [0, I/M]
Advantages:
= More systematic coverage of space of samples
= If all samples have same importance weight, no samples are lost

= Lower computational complexity

Resampling Solution III

m Loss of diversity caused by resampling from a discrete
distribution

= Solution: “regularization”
= Consider the particles to represent a continuous density

= Sample from the continuous density

= E.g, given (1-D) particles {z",=®), ..., (K)}

(1—1(}”))2
i

K
sample from the density: p(z) = .
h—1 7TO'
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Particle Deprivation

= = when there are no particles in the vicinity of the correct state

= Occurs as the result of the variance in random sampling. An unlucky
series of random numbers can wipe out all particles near the true state.
This has non-zero probability to happen at each time - will happen
eventually.

= Popular solution: add a small number of randomly generated particles
when resampling.

= Advantages: reduces particle deprivation, simplicity.

= Con: incorrect posterior estimate even in the limit of infinitely many
particles.

= Other benefit: initialization at time 0 might not have gotten anything near the true state, and not
even near a state that over time could have evolved to be close to true state now; adding random
samples will cut out particles that were not very consistent with past evidence anyway, and instead
gives a new chance at getting close the true state.

Particle Deprivation:

How Many Particles to Add?
|

= Simplest: Fixed number.
= Better way:
= Monitor the probability of sensor measurements
p(2t]21:0-1, urie, m)

which can be approximated by:

L, 0
— wl
AZZ; ¢

= Average estimate over multiple time-steps and compare
to typical values when having reasonable state estimates.
If low, inject random particles.
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

. Algorithm Augmented MCL(X;_1, us, z¢,m):

static Wslow, Weast
Wayg = 0

X=X, = ¢
fori=1to N do

(@) (1)

z; = sample_motion_model(uy, z;”)
w,(,’) = measurement_mOdel(Zt’Iii)’m)
X=X, + (Ii”,w@)
Wayg = Wavg + ﬁwp

endfor

Wetow = Wstow + Asiow (Wave — Wslow)

Weast = Wrast, + Qfast (Wavg — Weast)
for k=1to N do
with probability max{0.0, 1.0 — Weast/Wslow } do
add random pose to X}
else
draw i € {1,..., N} with probability oc w,@
add 15,“ to Ay
endwith

endfor

return X

Noise-free Sensors

m Consider a measurement obtained with a noise-free sensor,

e.g., a noise-free laser-range finder---issue?

= All particles would end up with weight zero, as it is very
unlikely to have had a particle matching the measurement

exactly.

= Solutions:

= Artificially inflate amount of noise in sensors

= Better proposal distribution (see first section of this set of

slides).
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localization run

Idea:

= Partition the state-space

Adapting Number of Particles: KLD-Sampling

= E.g, typically more particles need at the beginning of

= When sampling, keep track of number of bins occupied

= Stop sampling when a threshold that depends on the

number of occupied bins is reached

= If all samples fall in a small number of bins = lower threshold

1. Algorithm KLD_Sampling MCL(X,_1, w, 2, m, €,06):

2.
3.

N> o

Xy =M =0,My =0,k=0
for all b€ H do
b = empty
endfor
do
draw ¢ with probability oc wﬁ',)l
xEM) = sample_motion_model(uy, acﬁfl)

M
= measurement_model(z, l£ ), m)

W™

X=X+ (@™ wi™)

if IEM) falls into empty bin b then
k=k+1

b = non-empty

if k£ > 1 then
3
y k—
My =152 (1 ~ e+ Vﬁzu)
endif
M=M+1

while M < My or M < M min

return X

z_{I-\delta}: the upper |-
\delta quantile of the
standard normal
distribution

\delta = 0.0 and \epsilon
= 0.05 works well in
practice
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KLD-sampling
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Figure 8.18 KLD-sampling: Typical evolution of number of samples for a global
localization run, plotted against time (number of samples is shown on a log scale).
The solid line shows the number of samples when using the robot’s laser range-finder,
the dashed graph is based on sonar sensor data.

KLD-sampling

T -
KLD sampling —&—
Fixed sampling - E)-

KL-divergence
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Figure 8.19 Comparison of KLD-sampling and MCL with fixed sample set sizes.
The z-axis represents the average sample set size. The y-axis plots the KL-distance
between the reference beliefs and the sample sets generated by the two approaches.

Page 14




