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1 Dynamic process

Consider the following nonlinear system, described by the difference equation and the observation
model with additive noise:

xk = f(xk−1) + wk−1 (1)

zk = h(xk) + vk (2)

The initial state x0 is a random vector with known mean µ0 = E[x0] and covariance P0 =
E[(x0 − µ0)(x0 − µ0)

T ].

In the following we assume that the random vector wk captures uncertainties in the model and vk

denotes the measurement noise. Both are temporally uncorrelated (white noise), zero-mean random
sequences with known covariances and both of them are uncorrelated with the initial state x0.

E[wk] = 0 E[wkw
T
k ] = Qk E[wkw

T
j ] = 0 for k 6= j E[wkx

T
0 ] = 0 for all k (3)

E[vk] = 0 E[vkv
T
k ] = Rk E[vkv

T
j ] = 0 for k 6= j E[vkx

T
0
] = 0 for all k (4)

Also the two random vectors wk and vk are uncorrelated:

E[wkv
T
j ] = 0 for all k and j (5)

Vectorial functions f(·) and h(·) are assumed to be C1 functions (the function and its first derivative
are continuous on the given domain).

Dimension and description of variables:

xk n × 1 − State vector

wk n × 1 − Process noise vector

zk m × 1 − Observation vector

vk m × 1 − Measurement noise vector

f(·) n × 1 − Process nonlinear vector function

h(·) m × 1 − Observation nonlinear vector function

Qk n × n − Process noise covariance matrix

Rk m × m − Measurement noise covariance matrix



2 EKF derivation

Assuming the nonlinearities in the dynamic and the observation model are smooth, we can expand
f(xk) and h(xk) in Taylor Series and approximate this way the forecast and the next estimate of xk.

Model Forecast Step

Initially, since the only available information is the mean, µ0, and the covariance, P0, of the initial
state then the initial optimal estimate xa

0
and error covariance is:

xa
0 = µ0 = E[x0] (6)

P0 = E[(x0 − xa
0
)(x0 − xa

0
)T ] (7)

Assume now that we have an optimal estimate xa
k−1

≡ E[xk−1|Zk−1] with Pk−1 covariance at time
k − 1. The predictable part of xk is given by:

x
f
k ≡ E[xk|Zk−1] (8)

= E[f(xk−1) + wk−1|Zk−1]

= E[f(xk−1)|Zk−1]

Expanding f(·) in Taylor Series about xa
k−1

we get:

f(xk−1) ≡ f(xa
k−1

) + Jf(x
a
k−1

)(xk−1 − xa
k−1

) + H.O.T. (9)

where Jf is the Jacobian of f(·) and the higher order terms (H.O.T.) are considered negligible. Hence,
the Extended Kalman Filter is also called the First-Order Filter. The Jacobian is defined as:

Jf ≡







∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

...
. . .

...
∂fn

∂x1

∂fn

∂x2
· · · ∂fn

∂xn






(10)

where f(x) = (f1(x), f2(x), . . . , fn(x))T and x = (x1, x2, . . . , xn)T . The eq.(9) becomes:

f(xk−1) ≈ f(xa
k−1

) + Jf(x
a
k−1

)ek−1 (11)

where ek−1 ≡ xk−1 − xa
k−1

. The expectated value of f(xk−1) conditioned by Zk−1:

E[f(xk−1)|Zk−1] ≈ f(xa
k−1

) + Jf(x
a
k−1

)E[ek−1|Zk−1] (12)

where E[ek−1|Zk−1] = 0. Thus the forecast value of xk is:

x
f
k ≈ f(xa

k−1
) (13)

Substituting (11) in the forecast error equation results:

e
f
k ≡ xk − x

f
k (14)

= f(xk−1) + wk−1 − f(xa
k−1

)

≈ Jf(x
a
k−1

)ek−1 + wk−1
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The forecast error covariance is given by:

P
f
k ≡ E[ef

k(ef
k)T ] (15)

= Jf(x
a
k−1

)E[ek−1e
T
k−1

]JT
f (xa

k−1
) + E[wk−1w

T
k−1

]

= Jf(x
a
k−1

)Pk−1J
T
f (xa

k−1
) + Qk−1

Data Assimilation Step

At time k we have two pieces of information: the forecast value x
f
k with the covariance P

f
k and the

measurement zk with the covariance Rk. Our goal is to approximate the best unbiased estimate, in
the least squares sense, xa

k of xk. One way is to assume the estimate is a linear combination of both

x
f
k and zk [4]. Let:

xa
k = a + Kkzk (16)

From the unbiasedness condition:

0 = E[xk − xa
k|Zk] (17)

= E[(xf
k + e

f
k) − (a + Kkh(xk) + Kkvk)|Zk]

= x
f
k − a − KkE[h(xk)|Zk]

a = x
f
k − KkE[h(xk)|Zk] (18)

Substitute (18) in (16):

xa
k = x

f
k + Kk(zk − E[h(xk)|Zk]) (19)

Following the same steps as in model forecast step, expanding h(·) in Taylor Series about x
f
k we have:

h(xk) ≡ h(xf
k) + Jh(xf

k)(xk − x
f
k) + H.O.T. (20)

where Jh is the Jacobian of h(·) and the higher order terms (H.O.T.) are considered negligible. The
Jacobian of h(·) is defined as:

Jh ≡







∂h1

∂x1

∂h1

∂x2
· · · ∂h1

∂xn

...
. . .

...
∂hm

∂x1

∂hm

∂x2
· · · ∂hm

∂xn






(21)

where h(x) = (h1(x), h2(x), . . . , hm(x))T and x = (x1, x2, . . . , xn)T . Taken the expectation on both
sides of (20) conditioned by Zk:

E[h(xk)|Zk] ≈ h(xf
k) + Jh(xf

k)E[ef
k |Zk] (22)

where E[ef
k |Zk] = 0. Substitute in (19), the state estimate is:

xa
k ≈ x

f
k + Kk(zk − h(xf

k)) (23)
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The error in the estimate xa
k is:

ek ≡ xk − xa
k (24)

= f(xk−1) + wk−1 − x
f
k − Kk(zk − h(xf

k))

≈ f(xk−1) − f(xa
k−1

) + wk−1 − Kk(h(xk) − h(xf
k) + vk)

≈ Jf(x
a
k−1

)ek−1 + wk−1 − Kk(Jh(xf
k)ef

k + vk)

≈ Jf(x
a
k−1

)ek−1 + wk−1 − KkJh(xf
k)(Jf(x

a
k−1

)ek−1 + wk−1) − Kkvk

≈ (I − KkJh(xf
k))Jf(x

a
k−1

)ek−1 + (I − KkJh(xf
k))wk−1 − Kkvk

Then, the posterior covariance of the new estimate is:

Pk ≡ E[eke
T
k ] (25)

= (I −KkJh(xf
k))Jf(x

a
k−1

)Pk−1J
T
f (xa

k−1
)(I − KkJh(xf

k))T

+(I − KkJh(xf
k))Qk−1(I − KkJh(xf

k))T + KkRkK
T
k

= (I −KkJh(xf
k))Pf

k(I − KkJh(xf
k))T + KkRkK

T
k

= P
f
k − KkJh(xf

k)Pf
k − P

f
kJ

T
h
(xf

k)KT
k + KkJh(xf

k)Pf
kJ

T
h
(xf

k)KT
k + KkRkK

T
k

The posterior covariance formula holds for any Kk. Like in the standard Kalman Filter we find out
Kk by minimizing tr(Pk) w.r.t. Kk.

0 =
∂tr(Pk)

∂Kk
(26)

= −(Jh(xf
k)Pf

k)T − P
f
kJ

T
h
(xf

k) + 2KkJh(xf
k)Pf

kJ
T
h
(xf

k) + 2KkRk

Hence the Kalman gain is:

Kk = P
f
kJ

T
h(xf

k)
(

Jh(xf
k)Pf

kJ
T
h(xf

k) + Rk

)

−1

(27)

Substituting this back in (25) results:

Pk = (I − KkJh(xf
k))Pf

k − (I − KkJh(xf
k))Pf

kJ
T
h(xf

k)KT
k + KkRkK

T
k (28)

= (I − KkJh(xf
k))Pf

k −
(

P
f
kJ

T
h(xf

k) − KkJh(xf
k)Pf

kJ
T
h(xf

k) − KkRk

)

KT
k

= (I − KkJh(xf
k))Pf

k −
[

P
f
kJ

T
h(xf

k) − Kk

(

Jh(xf
k)Pf

kJ
T
h(xf

k) + Rk

)]

KT
k

= (I − KkJh(xf
k))Pf

k −
[

P
f
kJ

T
h(xf

k) − P
f
kJ

T
h(xf

k)
]

KT
k

= (I − KkJh(xf
k))Pf

k

3 Summary of Extended Kalman Filter

Model and Observation:

xk = f(xk−1) + wk−1

zk = h(xk) + vk
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Initialization:

xa
0 = µ0 with error covariance P0

Model Forecast Step/Predictor:

x
f
k ≈ f(xa

k−1
)

P
f
k = Jf(x

a
k−1

)Pk−1J
T
f (xa

k−1
) + Qk−1

Data Assimilation Step/Corrector:

xa
k ≈ x

f
k + Kk(zk − h(xf

k))

Kk = P
f
kJ

T
h(xf

k)
(

Jh(xf
k)Pf

kJ
T
h(xf

k) + Rk

)

−1

Pk =
(

I− KkJh(xf
k)

)

P
f
k

4 Iterated Extended Kalman Filter

In the EKF, h(·) is linearized about the predicted state estimate x
f
k . The IEKF tries to linearize it

about the most recent estimate, improving this way the accuracy [3, 1]. This is achieved by calculating
xa

k, Kk, Pk at each iteration.

Denote xa
k,i the estimate at time k and ith iteration. The iteration process is initialized with xa

k,0 = x
f
k .

Then the measurement update step becomes for each i:

xa
k,i ≈ x

f
k + Kk(zk − h(xa

k,i))

Kk,i = P
f
kJ

T
h(x̂k,i)

(

Jh(xa
k,i)P

f
kJ

T
h(xa

k,i) + Rk

)

−1

Pk,i =
(

I − Kk,iJh(xa
k,i)

)

P
f
k

If there is little improvement between two consecutive iterations then the iterative process is stopped.
The accuracy reached this way is achieved with higher computational time.

5 Stability

Since Qk and Rk are symmetric positive definite matrices then we can write:

Qk = GkG
T
k (29)

Rk = DkD
T
k (30)

Denote by ϕ and χ the high order terms resulted in the following subtractions:

f(xk) − f(xa
k) = Jf(x

a
k)ek + ϕ(xk,x

a
k) (31)

h(xk) − h(xa
k) = Jh(xa

k)ek + χ(xk,x
a
k) (32)

Konrad Reif showed in [2] that the estimation error remains bounded if the followings hold:
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1. α, β, γ1, γ2 > 0 are positive real numbers and for every k:

‖Jf(x
a
k)‖ ≤ α (33)

‖Jh(xa
k)‖ ≤ β (34)

γ1I ≤ Pk ≤ γ2 (35)

2. Jf is nonsingular for every k

3. There are positive real numbers ǫϕ, ǫχ, κϕ, κχ > 0 such that the nonlinear functions ϕ,χ are
bounded via:

‖ϕ(xk,x
a
k)‖ ≤ ǫϕ ‖xk − xa

k‖
2 with ‖xk − xa

k‖ ≤ κϕ (36)

‖χ(xk,x
a
k)‖ ≤ ǫχ ‖xk − xa

k‖
2 with ‖xk − xa

k‖ ≤ κχ (37)

Then the estimation error ek is exponentially bounded in mean square and bounded with probability
one, provided that the initial estimation error satisfies:

‖ek‖ ≤ ǫ (38)

and the covariance matrices of the noise terms are bounded via:

GkG
T
k ≤ δI (39)

DkD
T
k ≤ δI (40)

for some ǫ, δ > 0.

6 Conclusion

In EKF the state distribution is propagated analytically through the first-order linearization of the
nonlinear system. It does not take into account that xk is a random variable with inherent uncertainty
and it requires that the first two terms of the Taylor series to dominate the remaining terms.

Second-Order version exists [4, 5], but the computational complexity required makes it unfeasible
for practical usage in cases of real time applications or high dimensional systems.
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Figure 1: The block diagram for Extended Kalman Filter
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