-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy patherrant.py
98 lines (78 loc) · 2.12 KB
/
errant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import random
import itertools
import bisect
import math
from collections import defaultdict
class Errant:
def trail_value(self, trail):
val = 0
for i in range(len(trail)-1):
val += 1 / (self.metric(trail[i], trail[i+1]) or 1)
return val
def weight(self, x, y):
length = self.metric(x, y) or 1
length = 1/length
ph = self.pheromones[(x, y)]
we = ph ** self.A + length ** self.B
return we
def solve(self):
best_trail = []
best_trail_val = None
for x in range(0,self.L):
trails = []
for ant in range(0,self.N):
trail = []
nodes = self.nodes.copy()
random.shuffle(nodes)
visited = nodes.pop()
trail.append(visited)
while(len(nodes)>0):
weights = []
for move in nodes:
weights.append(self.weight(visited, move))
total = sum(weights)
cumdist = list(itertools.accumulate(weights)) + [total]
index = bisect.bisect(cumdist, random.random() * total)
visited = nodes.pop(index)
trail.append(visited)
trails.append(trail)
for a in self.nodes:
for b in self.nodes:
ph = self.pheromones[(a, b)]
ph = (1-self.rho)*ph
self.pheromones[(a,b)]= ph
self.pheromones[(b,a)]= ph
for trail in trails:
trail_eval = self.trail_value(trail)
trail_len = 0
for i in range(len(trail)-1):
a = trail[i]
b = trail[i+1]
ph = self.pheromones[(a, b)]
ph = ph + trail_eval * self.Q
self.pheromones[(a,b)]= ph
self.pheromones[(b,a)]= ph
trail_len += self.metric(a, b)
if best_trail_val == None:
best_trail = trail
best_trail_val = trail_len
if best_trail_val > trail_len:
best_trail = trail
best_trail_val = trail_len
if self.show_debug:
print("Iteration: %d Shortest length: %f" % (x,best_trail_val))
return best_trail
def __init__(self, nodes, metric, Q=1, rho=0.8, N=10, L=100, A=1, B = 3, show_debug = False):
# Initializes solver
#
random.seed(42)
self.nodes = nodes
self.metric = metric
self.Q = Q
self.rho = rho
self.N = N
self.L = L
self.A = A
self.B = B
self.pheromones = defaultdict(lambda: 0.1)
self.show_debug = show_debug