forked from gringer/bioinfscripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath_extrude.scad
268 lines (231 loc) · 11.5 KB
/
path_extrude.scad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
// path_extrude.scad -- Extrude a path in 3D space
// usage: add "use <path_extrude.scad>;" to the top of your OpenSCAD source code
// Copyright (C) 2014-2018 David Eccles (gringer) <bioinformatics@gringene.org>
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.
// Determine the projection of a point on a plane centered at c1 with normal n1
function project(p1, c1, n1) =
p1 - (n1 * (p1 - c1)) * n1 / (n1 * n1);
// Determine the angle between two points and a centre in 3D space
// c^2 = a^2 + b^2 -2ab * cos(C)
// <=> cos(C) = (a^2 + b^2 -c^2) / (2ab)
function getAngle(p1, c1, p2) =
acos(((p1-c1)*(p1-c1) + (p2-c1)*(p2-c1) - (p1-p2)*(p1-p2)) /
(2*norm(p1-c1)*norm(p2-c1)));
// Generate a line between two points in 3D space
module line3D(tp1,tp2, tk=1, dp=1){
p1 = c3D(tp1);
p2 = c3D(tp2);
sRot = (rToS(p1-p2));
ll = norm(p1-p2);
translate((p1+p2)/2)
rotate(sRot) rotate([90,0,0]) rotate([90,90,0])
cylinder(h=ll, d=dp, center=true);
}
// convert a rotation angle to a rotation matrix
function rot2Mat(rotVec, axis) =
(len(rotVec) == 2) ?
rot2Mat([rotVec[0], rotVec[1], 0], axis) :
(axis == "x") ?
[[1, 0, 0],
[0, cos(rotVec[0]), sin(rotVec[0])],
[0, sin(rotVec[0]), -cos(rotVec[0])]] :
(axis == "y") ?
[[ cos(rotVec[1]), 0, sin(rotVec[1])],
[ 0, 1, 0],
[-sin(rotVec[1]), 0, cos(rotVec[1])]] :
(axis == "z") ?
[[ cos(rotVec[2]), sin(rotVec[2]), 0],
[-sin(rotVec[2]), cos(rotVec[2]), 0],
[0, 0, 1]] : undef;
// rotate a point (or points)
function myRotate(rotation, points) =
(len(points[0]) == undef) ?
myRotate(rotation, [points])[0] :
c3D(points) * rot2Mat(rotation, "x")
* rot2Mat(rotation, "y")
* rot2Mat(rotation, "z");
// translate a point (or points)
function myTranslate(ofs, points, acc = []) =
(len(points[0]) == undef) ?
myTranslate(ofs, [points])[0] :
(len(acc) == len(points)) ? acc :
myTranslate(ofs, points, concat(acc, [points[len(acc)] + ofs]));
// convert point to 3D by setting Z to zero (if not present)
function c3D(tPoints) =
(len(tPoints[0]) == undef) ?
c3D([tPoints])[0] :
(len(tPoints[0]) < 3) ?
tPoints * [[1,0,0],[0,1,0]] :
tPoints;
// Determine spherical rotation for cartesian coordinates
function rToS(pt) =
[-acos((pt[2]) / norm(pt)),
0,
-atan2(pt[0],pt[1])];
// Rotate a position around an angle
function rotPos(r, ang) =
[r * cos(ang), r * sin(ang), 0];
function intp(p1, p2, thr=0.5, res = []) =
(norm(p2-p1) <= thr) ? concat(res,[p1]) :
intp(p1=p1 + (thr/norm(p2-p1)) * (p2-p1), p2=p2,
thr=thr, res = concat(res,[p1]));
// see https://stackoverflow.com/questions/14066933/
// direct-way-of-computing-clockwise-angle-between-2-vectors
// dot = p1 * p2;
// det = (p1[0]*p2[1]*n1[2] + p2[0]*n1[1]*p1[2] + n1[0]*p1[1]*p2[2]) -
// (n1[0]*p2[1]*p1[2] + p1[0]*n1[1]*p2[2] + p2[0]*p1[1]*n1[2]);
// atan2(det, dot);
// determine angle between two points with a given normal orientation
function getNormAngle(p1, n1, p2) =
atan2((p1[0]*p2[1]*n1[2] + p2[0]*n1[1]*p1[2] + n1[0]*p1[1]*p2[2]) -
(n1[0]*p2[1]*p1[2] + p1[0]*n1[1]*p2[2] + p2[0]*p1[1]*n1[2]), p1 * p2);
// determine angle between two points and a centre with a given normal orientation
function getNPAngle(p1, c1, n1, p2) =
getNormAngle(p1=p1-c1, n1=n1 / norm(n1), p2=p2-c1);
// calculate offset based on a given array length, wrapping around to zeroth element
function arrMod(arrBig, arrSmall, ofs) =
arrBig[(len(arrSmall) + len(arrBig) + ofs) % len(arrBig)];
// calculate offset based on a given length, wrapping around to zeroth element
function wrapMod(bigLength, arrLength, ofs) =
(arrLength + bigLength + ofs) % bigLength;
// t0 = p0 + myRotate(rToS(rPlanes[0]), myRotate([0,0,-rawPreRots[0]], c3D(myPoints[0])));
// tm1 = pm1 + myRotate(rToS(rPlanes[len(rPlanes)-1]),
// myRotate([0,0,-rawPreRots[len(rawPreRots)-1]], c3D(myPoints[0])));
// pt0 = project(p1=t0, c1=pm1, n1=(pm1-p0));
// lfAng = -getNPAngle(p1 = pt0, c1 = pm1, n1=(pm1-pm2), p2=tm1);
// work out planar rotations for path slices, minimising distance between the
// first coordinate in the polygon
function getPreRotations(extrudePath, refPt, polyNormals, merge=false, prs = [0]) =
(len(prs) >= (len(extrudePath))) ? prs :
getPreRotations(extrudePath=extrudePath, refPt=refPt,
polyNormals=polyNormals, merge=merge,
prs=concat(prs,getNPAngle(p1=project(
p1=arrMod(extrudePath,prs,-1) +
myRotate(rToS(arrMod(polyNormals,prs,-1)),
myRotate([0,0,-prs[len(prs)-1]], refPt)),
n1=arrMod(polyNormals,prs,-1),
c1=arrMod(extrudePath, prs, -1)),
c1=arrMod(extrudePath,prs, 0),
n1=arrMod(polyNormals,prs, 0),
p2=arrMod(extrudePath,prs, 0) +
myRotate(rToS(arrMod(polyNormals,prs,0)), refPt))));
// spreads an adjustment across all values in an array to reduce jumps
function spreadError(a, adj, acc = []) =
(len(acc) == len(a)) ? acc :
spreadError(a = a, adj = adj,
acc = concat(acc, a[len(acc)] + (adj / (len(a))) * len(acc)));
function getRotationNormals(polyPath, merge = false, acc=[], aDone = 0) =
(aDone >= len(polyPath)) ? acc :
getRotationNormals(polyPath = polyPath, merge=merge,
acc=concat(acc, [arrMod(polyPath, acc,
((!merge) && (aDone>=(len(polyPath)-1)))?0:1) -
arrMod(polyPath,acc,((!merge) && (aDone==0))?0:-1)]),
aDone=aDone+1);
// set up massive point array for polyhedron
function makePolyPoints(polyPath, polyForm, polyAngles, polyNormals,
merge = false, acc = [], aDone = 0) =
(aDone >= len(polyPath)) ? acc :
makePolyPoints(polyPath=polyPath, polyForm=polyForm,
polyAngles=polyAngles, polyNormals=polyNormals,
merge = merge,
acc=concat(acc,
[myTranslate(arrMod(polyPath,acc,0),
myRotate(rToS(polyNormals[aDone]),
myRotate([0,0,-polyAngles[len(acc)]], c3D(polyForm))))]),
aDone=aDone + 1);
// removes the top level array from the array A
function flatten(A, acc = [], aDone = 0) =
(aDone >= len(A)) ? acc :
flatten(A, acc=concat(acc, A[aDone]), aDone = aDone + 1);
// creates a triangle list joining adjacent polygons
function makeTriAdjs(pathLen, formLen, i, acc = [], aDone = 0) =
(aDone >= formLen) ? acc :
makeTriAdjs(pathLen, formLen, i,
acc = concat(acc, [[
[(i*formLen + wrapMod(formLen, aDone, 1)) % (pathLen*formLen),
(i*formLen + wrapMod(formLen, aDone, 0)) % (pathLen*formLen),
(i*formLen + wrapMod(formLen, aDone, 1) + formLen) % (pathLen*formLen)],
[(i*formLen + wrapMod(formLen, aDone, 1) + formLen) % (pathLen*formLen),
(i*formLen + wrapMod(formLen, aDone, 0)) % (pathLen*formLen),
(i*formLen + wrapMod(formLen, aDone, 0) + formLen) % (pathLen*formLen)]]]),
aDone = aDone+1);
myPathTrefoil = [ for(t = [0:(360 / 51):359]) [ // trefoil knot
5*(.41*cos(t) - .18*sin(t) - .83*cos(2*t) - .83*sin(2*t) -
.11*cos(3*t) + .27*sin(3*t)),
5*(.36*cos(t) + .27*sin(t) - 1.13*cos(2*t) + .30*sin(2*t) +
.11*cos(3*t) - .27*sin(3*t)),
5*(.45*sin(t) - .30*cos(2*t) +1.13*sin(2*t) -
.11*cos(3*t) + .27*sin(3*t))] ];
myPathSpiral = [ for(t = [-90:(360/30):(360+90)])
[(12/2)*cos(t),(12/2)*sin(t), 5.2*(t)/360] ];
myPathPentagon = [[-1,0,0],[1,0,0],[2,1,0.5],[2,3,1.5],
[1,4,2],[-1,4,3],[-2,3,3.5],[-2,1,4.5],[-1,0,5]]; // pentagon spiral
ofs1=15;
myPointsTriangle = [ for(t = [0:(360/3):359])
2 * [cos(t+30),sin(t+30)]];
myPointsOctagon = [ for(t = [0:(360/8):359])
((t==90)?1:2) * [cos(t+ofs1),sin(t+ofs1)]];
myPointsChunkOctagon = [ for(t = [45:(360/8):136])
((t==90)?1.5:1.9) * [cos(t+ofs1),sin(t+ofs1)]];
module path_extrude(exPath, exShape, exRots = [0], merge=false, preRotate=true){
if((exShape == undef) || (exPath == undef)){
echo("Extrusion path [exPath] or extrusion shape [exShape] has not been defined");
} else {
rPlanes = getRotationNormals(exPath, merge=merge);
// calculate rotations to reorient polygons to best match consecutive copies
rawPreRots = (!preRotate) ? [for(i = [0:(len(exPath)-1)]) 0] :
getPreRotations(extrudePath=exPath, refPt=c3D(exShape[0]),
polyNormals=rPlanes, merge=merge, prs=exRots);
// calculate rotation between last polygon and first polygon
pp1 = exPath[1];
p0 = exPath[0];
pm1 = exPath[len(exPath)-1];
pm2 = exPath[len(exPath)-2];
t0 = p0 + myRotate(rToS(rPlanes[0]),
myRotate([0,0,-rawPreRots[0]], c3D(exShape[0])));
tm1 = pm1 + myRotate(rToS(rPlanes[len(rPlanes)-1]),
myRotate([0,0,-rawPreRots[len(rawPreRots)-1]], c3D(exShape[0])));
pt0 = project(p1=t0, c1=pm1, n1=rPlanes[len(rPlanes)-1]);
lfAng = -getNPAngle(p1 = pt0, c1 = pm1, n1=rPlanes[len(rPlanes)-2], p2=tm1);
preRots = (merge) ? spreadError(rawPreRots, -lfAng) : rawPreRots;
polyPoints = flatten(makePolyPoints(polyPath=exPath, polyForm=exShape,
polyAngles=preRots, polyNormals=rPlanes, merge=merge));
if(merge){
polyhedron(points = polyPoints,
faces = flatten([ for(i = [0:(len(exPath)-1)])
flatten(makeTriAdjs(len(exPath), len(exShape), i)) ]));
} else {
polyhedron(points = polyPoints,
faces = concat(
concat(flatten([ for(i = [0:(len(exPath)-2)])
flatten(makeTriAdjs(len(exPath), len(exShape), i)) ]),
[[for(i = [0:(len(exShape)-1)]) i]]),
[[for(i = [0:(len(exShape)-1)]) ((len(exPath)*len(exShape))-1-i)]]));
}
}
}
translate([-20,0]) {
path_extrude(exRots = [$t*360], exShape=myPointsOctagon,
exPath=myPathTrefoil, merge=false);
color("lightblue") path_extrude(exRots = [$t*360], exShape=myPointsChunkOctagon,
exPath = myPathTrefoil, merge=false);
}
translate([20,0]) {
path_extrude(exRots = [$t*360], exShape=myPointsOctagon,
exPath=myPathTrefoil, merge=true);
color("lightblue") path_extrude(exRots = [$t*360], exShape=myPointsChunkOctagon,
exPath = myPathTrefoil, merge=true);
}
translate([0,20]) {
path_extrude(exRots = [$t*360], exShape=myPointsTriangle,
exPath=myPathSpiral, merge=false, preRotate=false);
}