-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheval_only_loop.py
319 lines (304 loc) · 16.4 KB
/
eval_only_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import argparse
import json
import os
import glob
import numpy as np
import scipy.io
from scipy.signal import butter
from utils import get_nframe_video, read_from_txt, print_cuda_memory
from data_generator import rPPG_Dataset, rPPG_Dataset_Swin
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torch.optim as optim
import torch.nn.functional as F
from model import TSCAN, MTTS_CAN, TSCAN_Single
from swin_transfomer import SwinTransformer3D
from post_process import calculate_metric, calculate_metric_per_video, calculate_metric_peak_per_video
from swin_transfomer_2d import SwinTransformer, SwinTransformer_Both
from swin_transfomer_2d_noTSM import SwinTransformerNoTSM
import time
from ppg_loss import ppg_loss
from collections import OrderedDict
import h5py
import csv
from utils import plot_signal
# time.sleep(7000)
torch.manual_seed(100)
np.random.seed(100)
torch.cuda.empty_cache()
# %%
parser = argparse.ArgumentParser()
parser.add_argument('-exp', '--exp_name', type=str,
help='experiment name')
parser.add_argument('-i', '--data_dir', type=str,
default='/gscratch/ubicomp/xliu0/data3/mnt/',
help='Location for the dataset') # default='/gscratch/scrubbed/xliu0/', help='Location for the dataset')
parser.add_argument('-mo', '--model', type=str,
default='tscan', help='tscan or mtts-can')
parser.add_argument('-tr_txt', '--train_txt', type=str, default='./filelists/Train.txt',
help='train file') # ./filelists/AFRL/36/meta/train.txt', help='train file')
parser.add_argument('-ts_txt', '--test_txt', type=str, default='./filelists/Test.txt',
help='test file') # ./filelists/AFRL/36/meta/test.txt', help='test file')
parser.add_argument('-a', '--nb_filters1', type=int, default=32,
help='number of convolutional filters to use')
parser.add_argument('-b', '--nb_filters2', type=int, default=64,
help='number of convolutional filters to use')
parser.add_argument('-c', '--dropout_rate1', type=float, default=0.25,
help='dropout rates')
parser.add_argument('-d', '--dropout_rate2', type=float, default=0.5,
help='dropout rates')
parser.add_argument('-e', '--nb_dense', type=int, default=128,
help='number of dense units')
parser.add_argument('-f', '--cv_split', type=int, default=0,
help='cv_split')
parser.add_argument('-g', '--nb_epoch', type=int, default=48,
help='nb_epoch')
parser.add_argument('-t', '--nb_task', type=int, default=12,
help='nb_task')
parser.add_argument('-x', '--batch_size', type=int, default=24,
help='batch')
parser.add_argument('-fd', '--frame_depth', type=int, default=20,
help='frame_depth for 3DCNN')
parser.add_argument('-save', '--save_all', type=int, default=0,
help='save all or not')
parser.add_argument('-shuf', '--shuffle', type=str, default=True,
help='shuffle samples')
parser.add_argument('-freq', '--fs', type=int, default=30,
help='shuffle samples')
parser.add_argument('--window_size', type=int, default=256,
help='window size for filtering and FFT')
parser.add_argument('--signal', type=str, default='pulse')
parser.add_argument('--swin_window_size', type=int, default=4)
parser.add_argument('--img_size', type=int, default=72)
parser.add_argument('--swin_2d_patch', type=int, default=3)
parser.add_argument('--swin_input_channel', type=str, default='diff')
parser.add_argument('--light', action='store_true', help='light swin')
parser.add_argument('--superlight', action='store_true', help='light swin')
parser.add_argument('--regular', action='store_true', help='Non-PPV2')
parser.add_argument('--debug_method', type=str, default='peak')
parser.add_argument('--error_cut', type=int, default=5)
parser.add_argument('--total_epoch', type=int, default=10)
args = parser.parse_args()
print('input args:\n', json.dumps(vars(args), indent=4, separators=(',', ':'))) # pretty print args
# %% Evaluation
def eval(args, model_epoch, test_file, checkpoint_folder):
# Reading Data
args.test_file = test_file
if args.test_file == 'UBFCPPV2Crop':
args.test_txt = './filelists/UBFC/UBFC_72_all_video_PPV2.txt'
elif args.test_file == 'UBFCPPV2NoCrop':
args.test_txt = './filelists/UBFC/UBFC_72_all_video_PPV2_nocrop.txt'
elif args.test_file == 'PUREPPV2Crop':
args.test_txt = './filelists/PURE/PURE72x72PPV2.txt'
elif args.test_file == 'PUREPPV2NoCrop':
args.test_txt = './filelists/PURE/PURE72x72PPV2NoCrop.txt'
elif args.test_file == 'MMSEPPV2':
args.test_txt = './filelists/MMSE/MMSE72x72PPV2.txt'
args.fs = 25
elif args.test_file == 'UBFCCrop':
args.test_txt = './filelists/UBFC/UBFC_72_all_video.txt'
elif args.test_file == 'UBFCNoCrop':
args.test_txt = './filelists/UBFC/UBFC_72_all_video_nocrop.txt'
elif args.test_file == 'PURECrop':
args.test_txt = './filelists/PURE/PURE72x72.txt'
else:
raise Exception('The dataset is not supported yet.')
_, path_of_video_test = read_from_txt(args.train_txt, args.test_txt, args.data_dir)
# num_gpus = 1
# num_gpus = torch.cuda.device_count()
# path_ts_len = (len(path_of_video_test) // num_gpus) * num_gpus
# path_of_video_test = path_of_video_test[:path_ts_len]
num_gpus = 1
testing_dataset = rPPG_Dataset(path_of_video_test, frame_depth=args.frame_depth,
signal=args.signal, img_size=args.img_size,
input_channel=args.swin_input_channel, num_gpus=num_gpus,
background_aug=False)
ts_dataloader = DataLoader(testing_dataset, batch_size=1, shuffle=False)
if args.swin_input_channel == 'diff' or args.swin_input_channel == 'raw':
in_chans = 3
else:
in_chans = 6
if args.model == 'MTTS-CAN':
model = MTTS_CAN(frame_depth=args.frame_depth)
elif args.model == 'swin':
if args.img_size == 36:
if args.swin_window_size == 9:
dense_layer = 768
elif args.swin_window_size == 4:
dense_layer = 3072
elif args.swin_window_size == 2:
dense_layer = 6912
else:
raise Exception('Unsupported window size in Img size of 36')
elif args.img_size == 72:
if args.swin_window_size == 9:
dense_layer = 768
elif args.swin_window_size == 4:
dense_layer = 6912
elif args.swin_window_size == 2:
dense_layer = 19200
else:
raise Exception('Unsupported window size in Img size of 72')
else:
raise Exception('Unsupported Img Size. Only supported 36 or 72 now')
model = SwinTransformer3D(patch_size=(1, args.swin_window_size, args.swin_window_size), pretrained2d=False,
dense_layer_number=dense_layer, in_chans=in_chans)
elif args.model == 'TS-CAN':
if args.swin_input_channel == 'both':
model = TSCAN(frame_depth=args.frame_depth, img_size=args.img_size)
else:
model = TSCAN_Single(frame_depth=args.frame_depth, img_size=args.img_size, channel=args.swin_input_channel)
elif args.model == 'swin-2d':
if args.swin_input_channel == 'both':
model = SwinTransformer_Both(img_size=args.img_size, patch_size=3,
in_chans=6, window_size=3, depths=[2, 6, 2], frame_depth=args.frame_depth)
else:
if args.light:
model = SwinTransformer(img_size=args.img_size, patch_size=args.swin_2d_patch, in_chans=3, window_size=3,
depths=[1, 2, 1], channel=args.swin_input_channel, frame_depth=args.frame_depth)
elif args.superlight:
model = SwinTransformer(img_size=args.img_size, patch_size=args.swin_2d_patch, in_chans=3, window_size=3,
depths=[1], channel=args.swin_input_channel, frame_depth=args.frame_depth)
else:
model = SwinTransformer(img_size=args.img_size, patch_size=args.swin_2d_patch, in_chans=3, window_size=3,
depths=[2, 6, 2], channel=args.swin_input_channel, frame_depth=args.frame_depth)
elif args.model == 'swin-2d-notsm':
if args.swin_input_channel == 'raw':
model = SwinTransformerNoTSM(img_size=args.img_size, patch_size=args.swin_2d_patch, in_chans=3,
window_size=3, depths=[2, 6, 2],
channel=args.swin_input_channel, frame_depth=args.frame_depth)
else:
raise Exception('Only raw frames are supported in swin-2d-notsm')
else:
raise Exception('Unsupported Model!')
# model = torch.nn.DataParallel(model, device_ids=list(range(num_gpus)))
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
raise ValueError('Your training is not using GPU!')
##############################################################################################################
pre_trained_path = str(os.path.join('./checkpoints', args.exp_name, args.exp_name + '_' + str(model_epoch)+'.pth'))
checkpoint = torch.load(pre_trained_path)
state_dict = checkpoint
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove 'module.' of dataparallel
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model = model.to(device)
num_gpus = 1
##############################################################################################################
# Evaluation
with torch.no_grad():
model.eval()
final_preds = []
final_labels = []
final_HR = []
final_HR0 = []
final_HR_peak = []
final_HR0_peak = []
filename_csv = str(os.path.join(checkpoint_folder, 'Epoch_' + str(model_epoch) + '_summary.csv'))
csvfile = open(filename_csv, 'w', newline='')
fieldnames = ['filename', 'HR0-FFT', 'HR-FFT', 'MAE-FFT', 'HR0-Peak', 'HR-Peak', 'MAE-Peak']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for i, ts_data in enumerate(ts_dataloader):
video_filename = path_of_video_test[i].split('/')[-1]
ts_inputs, ts_labels = ts_data[0].to(device), ts_data[1].to(device)
if args.model == 'swin':
ts_inputs = ts_inputs.view(-1, in_chans, args.frame_depth, args.img_size, args.img_size)
if args.swin_input_channel == 'raw':
padd_frames = torch.zeros(ts_inputs.shape[0], in_chans, 1, args.img_size, args.img_size)
ts_inputs = torch.cat((ts_inputs, padd_frames.to(device)), -3)
else:
ts_inputs = ts_inputs.view(-1, in_chans, args.img_size, args.img_size)
if args.swin_input_channel == 'raw':
last_frame = torch.unsqueeze(ts_inputs[-1, :, :, :], 0).repeat(num_gpus, 1, 1, 1)
ts_inputs = torch.cat((ts_inputs, last_frame), 0)
ts_labels = ts_labels.view(-1, 1)
if args.model == 'TS-CAN' and args.swin_input_channel == 'both':
if ts_inputs.shape[0] >= 1500:
ts_inputs_1 = ts_inputs[:1500]
ts_inputs_rest = ts_inputs[1500:]
ts_outputs = model(ts_inputs_1)
del ts_inputs_1
ts_outputs_rest = model(ts_inputs_rest)
ts_outputs = torch.cat((ts_outputs, ts_outputs_rest), 0)
else:
ts_outputs = model(ts_inputs)
else:
ts_outputs = model(ts_inputs)
ts_outputs_numpy = ts_outputs.cpu().numpy()
ts_labels_numpy = ts_labels.cpu().numpy()
HR0, HR = calculate_metric_per_video(ts_outputs_numpy, ts_labels_numpy, signal=args.signal,
fs=args.fs, bpFlag=True)
HR0_peak, HR_peak, all_peaks, all_peaks0, filter_pred_signal, filter_label_signal = \
calculate_metric_peak_per_video(ts_outputs_numpy, ts_labels_numpy, signal=args.signal,
window_size=args.window_size, fs=args.fs, bpFlag=True)
# plot_signal(filter_pred_signal, filter_label_signal, video_filename, checkpoint_folder, 'pred', HR0, HR, HR0_peak,
# HR_peak, all_peaks, all_peaks0)
final_HR.append(HR)
final_HR0.append(HR0)
final_HR_peak.append(HR_peak)
final_HR0_peak.append(HR0_peak)
final_preds.append(ts_outputs_numpy)
final_labels.append(ts_labels_numpy)
writer.writerow({'filename': video_filename, 'HR0-FFT': HR0, 'HR-FFT': HR, 'MAE-FFT': abs(HR0-HR),
'HR0-Peak': HR0_peak, 'HR-Peak': HR_peak, 'MAE-Peak': abs(HR0_peak-HR_peak)})
final_HR = np.array(final_HR)
final_HR0 = np.array(final_HR0)
final_HR_peak = np.array(final_HR_peak)
final_HR0_peak = np.array(final_HR0_peak)
print('----------------------------')
print('FFT Metric')
print('Avg MAE across subjects: ', np.mean(np.abs(final_HR - final_HR0)))
print('Avg RMSE across subjects: ', np.sqrt(np.mean(np.square(final_HR - final_HR0))))
print('Pearson FFT: ', abs(np.corrcoef(final_HR, final_HR0)[1, 0]))
print('Std FFT', np.std(final_HR))
print('----------------------------')
print('Peak Detection Metric')
print('Avg MAE across subjects: ', np.mean(np.abs(final_HR_peak - final_HR0_peak)))
print('Avg RMSE across subjects: ', np.sqrt(np.mean(np.square(final_HR_peak - final_HR0_peak))))
print('Pearson Peak: ', abs(np.corrcoef(final_HR_peak, final_HR0_peak)[1, 0]))
print('Std Peak', np.std(final_HR_peak))
print('----------------------------')
csvfile.close()
with open(str(os.path.join(checkpoint_folder, 'Epoch_' + str(model_epoch) + '_summary.txt')), "w") as text_file:
text_file.write('----------------------------\n')
text_file.write('FFT Metric' + '\n')
text_file.write('Avg MAE across subjects: \n')
text_file.write(str(np.mean(np.abs(final_HR - final_HR0)))+ '\n')
text_file.write('Avg RMSE across subjects: \n')
text_file.write(str(np.sqrt(np.mean(np.square(final_HR - final_HR0)))) + '\n')
text_file.write('Pearson FFT: \n')
text_file.write(str(abs(np.corrcoef(final_HR, final_HR0)[1, 0])) + '\n')
text_file.write('Std FFT: \n')
text_file.write(str(np.std(final_HR)) + '\n')
text_file.write('----------------------------' + '\n')
text_file.write('Peak Detection Metric' + '\n')
text_file.write('Avg MAE across subjects: \n')
text_file.write(str(np.mean(np.abs(final_HR_peak - final_HR0_peak))) + '\n')
text_file.write('Avg RMSE across subjects: \n')
text_file.write(str(np.sqrt(np.mean(np.square(final_HR_peak - final_HR0_peak)))) + '\n')
text_file.write('Pearson Peak: \n')
text_file.write(str(abs(np.corrcoef(final_HR_peak, final_HR0_peak)[1, 0])) + '\n')
text_file.write('Std Peak: \n')
text_file.write(str(np.std(final_HR_peak)) + '\n')
text_file.write('----------------------------' + '\n')
if __name__ == '__main__':
checkpoint_folder = str(os.path.join('./results', args.exp_name))
if not os.path.exists(checkpoint_folder):
os.makedirs(checkpoint_folder)
test_file_list = ['UBFCPPV2NoCrop', 'PUREPPV2NoCrop', 'UBFCPPV2Crop', 'PUREPPV2Crop']
if args.regular:
test_file_list = ['UBFCNoCrop', 'PURECrop', 'UBFCCrop']
for test_file in test_file_list:
print('==============================')
print('Test File: ', test_file)
checkpoint_test_folder = str(os.path.join(checkpoint_folder, test_file))
if not os.path.exists(checkpoint_test_folder):
os.makedirs(checkpoint_test_folder)
for model_epoch in range(args.total_epoch):
print('Epoch : ', str(model_epoch))
eval(args, model_epoch, test_file, checkpoint_test_folder)