The proposed cross-domain task coordinator (CDTC) for cross-domain few-shot graph learning.
We used the following Python packages for core development. We tested on Python 3.7
.
- pytorch 1.7.0
- torch-geometric 2.0.3
- torch-cluster 1.5.8
- torch-scatter 2.0.5
- torch-sparse 0.6.8
- torch-spline-conv 1.2.0
Tox21, SIDER, MUV are public datasets from molecular property prediction benchmarks from SNAP.
Example of executing the cross-domain experiments:
python main_ms2t_rl.py --test_dataset $TESTDATA$ --d_names $TRAINDATA-TESTDATA$ --eval_steps 10 --inner_lr $INNER_LR$ --update_step_test 4 --batch_task 4 --seed 5 --naivedim $SOURCE_TASK_NUMBER$ --meta_lr 0.0005 --n_shot_train 10 --n_shot_test 10 --pretrained $PRETRAINED_OR_NOT$ --epochs 2000 --enc_gnn $GNN_TYPE$ --maml --applyrl --rl_adv $AGENT_LR2$ --step_gin1 10 --step_agent 500