-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_model_evaluation.py
110 lines (82 loc) · 3.11 KB
/
03_model_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# -*- coding: utf-8 -*-
"""
Created on Sun Nov 13 21:35:27 2016
@author: anooptp
"""
# Evaluation procedure #1: Train and test on the entire dataset
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt
iris = load_iris()
# create X (features) and y (response)
X= iris.data
y= iris.target
# Logistic regression
# instantiate the model (using the default parameters)
logreg = LogisticRegression()
# fit the model with data
logreg.fit(X, y)
# predict the response values for the observations in X
y_pred = logreg.predict(X)
#print(y_pred)
# compute classification accuracy for the logistic regression model
print("------Train and test on the entire dataset------")
print("LogisticRegression Accuracy: ",metrics.accuracy_score(y, y_pred))
# KNN (K=5)
knn = KNeighborsClassifier(n_neighbors = 5)
knn.fit(X, y)
y_pred = knn.predict(X)
print("KNeighborsClassifier(K=5) Accuracy: ",metrics.accuracy_score(y, y_pred))
# KNN (K=1)
knn = KNeighborsClassifier(n_neighbors = 1)
knn.fit(X, y)
y_pred = knn.predict(X)
print("KNeighborsClassifier(K=1) Accuracy: ",metrics.accuracy_score(y, y_pred))
# Evaluation procedure #2: Train/test split
print("\n------Train/test split------")
# from sklearn.cross_validation import train_test_split
# STEP 1: split X and y into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=4)
print(X_train.shape,", ", X_test.shape)
print(y_train.shape,", ", y_test.shape)
# STEP 2: train the model on the training set
# LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
# STEP 3: make predictions on the testing set
y_pred = logreg.predict(X_test)
print("LogisticRegression Accuracy: ",metrics.accuracy_score(y_test, y_pred))
# KNN(K=5)
knn = KNeighborsClassifier(n_neighbors = 5)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print("KNeighborsClassifier(K=5) Accuracy: ",metrics.accuracy_score(y_test, y_pred))
# KNN(K=1)
knn = KNeighborsClassifier(n_neighbors = 1)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
print("KNeighborsClassifier(K=1) Accuracy: ",metrics.accuracy_score(y_test, y_pred))
# Can we locate an even better value for K?
# try K=1 through K=25 and record testing accuracy
k_range = list(range(1, 26))
scores = []
for k in k_range:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores.append(metrics.accuracy_score(y_test, y_pred))
print(scores)
# import Matplotlib (scientific plotting library)
# plot the relationship between K and testing accuracy
plt.plot(k_range, scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Testing Accuracy')
# instantiate the model with the best known parameters
knn = KNeighborsClassifier(n_neighbors=11)
# train the model with X and y (not X_train and y_train)
knn.fit(X, y)
# make a prediction for an out-of-sample observation
print("KNeighborsClassifier(K=11): Prediction:", knn.predict([[3, 5, 4, 2]]))