Skip to content

Commit

Permalink
Merge pull request #21 from anshuman23/dev
Browse files Browse the repository at this point in the history
Added Keras example
  • Loading branch information
anshuman23 authored Jul 15, 2018
2 parents 639f11f + d2f7ba7 commit 1f645ae
Show file tree
Hide file tree
Showing 2 changed files with 73 additions and 0 deletions.
73 changes: 73 additions & 0 deletions examples/keras-example/mnist_keras.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,73 @@
'''Trains a simple deep NN on the MNIST dataset.
Gets to 98.40% test accuracy after 20 epochs
(there is *a lot* of margin for parameter tuning).
2 seconds per epoch on a K520 GPU.
'''

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.optimizers import RMSprop
from tensorflow.python.framework.graph_util import convert_variables_to_constants
from keras import backend
import tensorflow as tf

def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or []
output_names += [v.op.name for v in tf.global_variables()]
input_graph_def = graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session, input_graph_def, output_names, freeze_var_names)
return frozen_graph

batch_size = 128
num_classes = 10
epochs = 20

# the data, split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()

x_train = x_train.reshape(60000, 784)
x_test = x_test.reshape(10000, 784)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)

model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(784,), name="input"))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(num_classes, activation='softmax', name="output"))

model.summary()

model.compile(loss='categorical_crossentropy',
optimizer=RMSprop(),
metrics=['accuracy'])

history = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

frozen_graph = freeze_session(backend.get_session(), output_names=[out.op.name for out in model.outputs])
tf.train.write_graph(frozen_graph, "./", "mnist_mlp.pb", as_text=False)
Binary file added examples/keras-example/mnist_mlp.pb
Binary file not shown.

0 comments on commit 1f645ae

Please sign in to comment.