diff --git a/.stats.yml b/.stats.yml
index e550e0bd..19e9daeb 100644
--- a/.stats.yml
+++ b/.stats.yml
@@ -1,2 +1,2 @@
-configured_endpoints: 10
-openapi_spec_url: https://storage.googleapis.com/stainless-sdk-openapi-specs/anthropic-73443ebfebee64b8ec0ebbacd2521d6b6aa900e9526ec97abdcbcff0c0955d9b.yml
+configured_endpoints: 19
+openapi_spec_url: https://storage.googleapis.com/stainless-sdk-openapi-specs/anthropic-be055148d227480fcacc9086c37ac8009dcb487731069ada51af35044f65bee4.yml
diff --git a/api.md b/api.md
index ba4507bf..773b5eb6 100644
--- a/api.md
+++ b/api.md
@@ -1,14 +1,35 @@
+# Shared Types
+
+```python
+from anthropic.types import (
+ APIErrorObject,
+ AuthenticationError,
+ BillingError,
+ ErrorObject,
+ ErrorResponse,
+ GatewayTimeoutError,
+ InvalidRequestError,
+ NotFoundError,
+ OverloadedError,
+ PermissionError,
+ RateLimitError,
+)
+```
+
# Messages
Types:
```python
from anthropic.types import (
+ Base64PDFSource,
+ CacheControlEphemeral,
ContentBlock,
ContentBlockDeltaEvent,
ContentBlockParam,
ContentBlockStartEvent,
ContentBlockStopEvent,
+ DocumentBlockParam,
ImageBlockParam,
InputJSONDelta,
Message,
@@ -18,6 +39,7 @@ from anthropic.types import (
MessageStartEvent,
MessageStopEvent,
MessageStreamEvent,
+ MessageTokensCount,
Metadata,
Model,
RawContentBlockDeltaEvent,
@@ -44,7 +66,46 @@ from anthropic.types import (
Methods:
-- client.messages.create(\*\*params) -> Message
+- client.messages.create(\*\*params) -> Message
+- client.messages.count_tokens(\*\*params) -> MessageTokensCount
+
+## Batches
+
+Types:
+
+```python
+from anthropic.types.messages import (
+ MessageBatch,
+ MessageBatchCanceledResult,
+ MessageBatchErroredResult,
+ MessageBatchExpiredResult,
+ MessageBatchIndividualResponse,
+ MessageBatchRequestCounts,
+ MessageBatchResult,
+ MessageBatchSucceededResult,
+)
+```
+
+Methods:
+
+- client.messages.batches.create(\*\*params) -> MessageBatch
+- client.messages.batches.retrieve(message_batch_id) -> MessageBatch
+- client.messages.batches.list(\*\*params) -> SyncPage[MessageBatch]
+- client.messages.batches.cancel(message_batch_id) -> MessageBatch
+- client.messages.batches.results(message_batch_id) -> BinaryAPIResponse
+
+# Models
+
+Types:
+
+```python
+from anthropic.types import ModelInfo
+```
+
+Methods:
+
+- client.models.retrieve(model_id) -> ModelInfo
+- client.models.list(\*\*params) -> SyncPage[ModelInfo]
# Beta
@@ -55,8 +116,10 @@ from anthropic.types import (
AnthropicBeta,
BetaAPIError,
BetaAuthenticationError,
+ BetaBillingError,
BetaError,
BetaErrorResponse,
+ BetaGatewayTimeoutError,
BetaInvalidRequestError,
BetaNotFoundError,
BetaOverloadedError,
@@ -65,6 +128,19 @@ from anthropic.types import (
)
```
+## Models
+
+Types:
+
+```python
+from anthropic.types.beta import BetaModelInfo
+```
+
+Methods:
+
+- client.beta.models.retrieve(model_id) -> BetaModelInfo
+- client.beta.models.list(\*\*params) -> SyncPage[BetaModelInfo]
+
## Messages
Types:
@@ -138,29 +214,3 @@ Methods:
- client.beta.messages.batches.list(\*\*params) -> SyncPage[BetaMessageBatch]
- client.beta.messages.batches.cancel(message_batch_id) -> BetaMessageBatch
- client.beta.messages.batches.results(message_batch_id) -> BinaryAPIResponse
-
-## PromptCaching
-
-### Messages
-
-Types:
-
-```python
-from anthropic.types.beta.prompt_caching import (
- PromptCachingBetaCacheControlEphemeral,
- PromptCachingBetaImageBlockParam,
- PromptCachingBetaMessage,
- PromptCachingBetaMessageParam,
- PromptCachingBetaTextBlockParam,
- PromptCachingBetaTool,
- PromptCachingBetaToolResultBlockParam,
- PromptCachingBetaToolUseBlockParam,
- PromptCachingBetaUsage,
- RawPromptCachingBetaMessageStartEvent,
- RawPromptCachingBetaMessageStreamEvent,
-)
-```
-
-Methods:
-
-- client.beta.prompt_caching.messages.create(\*\*params) -> PromptCachingBetaMessage
diff --git a/src/anthropic/_client.py b/src/anthropic/_client.py
index e2eb27c4..8bf77861 100644
--- a/src/anthropic/_client.py
+++ b/src/anthropic/_client.py
@@ -25,7 +25,7 @@
get_async_library,
)
from ._version import __version__
-from .resources import messages, completions
+from .resources import models, completions
from ._streaming import Stream as Stream, AsyncStream as AsyncStream
from ._exceptions import APIStatusError
from ._base_client import (
@@ -34,6 +34,7 @@
AsyncAPIClient,
)
from .resources.beta import beta
+from .resources.messages import messages
__all__ = [
"Timeout",
@@ -50,6 +51,7 @@
class Anthropic(SyncAPIClient):
completions: completions.Completions
messages: messages.Messages
+ models: models.Models
beta: beta.Beta
with_raw_response: AnthropicWithRawResponse
with_streaming_response: AnthropicWithStreamedResponse
@@ -120,6 +122,7 @@ def __init__(
self.completions = completions.Completions(self)
self.messages = messages.Messages(self)
+ self.models = models.Models(self)
self.beta = beta.Beta(self)
self.with_raw_response = AnthropicWithRawResponse(self)
self.with_streaming_response = AnthropicWithStreamedResponse(self)
@@ -268,6 +271,7 @@ def _make_status_error(
class AsyncAnthropic(AsyncAPIClient):
completions: completions.AsyncCompletions
messages: messages.AsyncMessages
+ models: models.AsyncModels
beta: beta.AsyncBeta
with_raw_response: AsyncAnthropicWithRawResponse
with_streaming_response: AsyncAnthropicWithStreamedResponse
@@ -338,6 +342,7 @@ def __init__(
self.completions = completions.AsyncCompletions(self)
self.messages = messages.AsyncMessages(self)
+ self.models = models.AsyncModels(self)
self.beta = beta.AsyncBeta(self)
self.with_raw_response = AsyncAnthropicWithRawResponse(self)
self.with_streaming_response = AsyncAnthropicWithStreamedResponse(self)
@@ -487,6 +492,7 @@ class AnthropicWithRawResponse:
def __init__(self, client: Anthropic) -> None:
self.completions = completions.CompletionsWithRawResponse(client.completions)
self.messages = messages.MessagesWithRawResponse(client.messages)
+ self.models = models.ModelsWithRawResponse(client.models)
self.beta = beta.BetaWithRawResponse(client.beta)
@@ -494,6 +500,7 @@ class AsyncAnthropicWithRawResponse:
def __init__(self, client: AsyncAnthropic) -> None:
self.completions = completions.AsyncCompletionsWithRawResponse(client.completions)
self.messages = messages.AsyncMessagesWithRawResponse(client.messages)
+ self.models = models.AsyncModelsWithRawResponse(client.models)
self.beta = beta.AsyncBetaWithRawResponse(client.beta)
@@ -501,6 +508,7 @@ class AnthropicWithStreamedResponse:
def __init__(self, client: Anthropic) -> None:
self.completions = completions.CompletionsWithStreamingResponse(client.completions)
self.messages = messages.MessagesWithStreamingResponse(client.messages)
+ self.models = models.ModelsWithStreamingResponse(client.models)
self.beta = beta.BetaWithStreamingResponse(client.beta)
@@ -508,6 +516,7 @@ class AsyncAnthropicWithStreamedResponse:
def __init__(self, client: AsyncAnthropic) -> None:
self.completions = completions.AsyncCompletionsWithStreamingResponse(client.completions)
self.messages = messages.AsyncMessagesWithStreamingResponse(client.messages)
+ self.models = models.AsyncModelsWithStreamingResponse(client.models)
self.beta = beta.AsyncBetaWithStreamingResponse(client.beta)
diff --git a/src/anthropic/resources/__init__.py b/src/anthropic/resources/__init__.py
index 318d5cdd..ffff8855 100644
--- a/src/anthropic/resources/__init__.py
+++ b/src/anthropic/resources/__init__.py
@@ -8,6 +8,14 @@
BetaWithStreamingResponse,
AsyncBetaWithStreamingResponse,
)
+from .models import (
+ Models,
+ AsyncModels,
+ ModelsWithRawResponse,
+ AsyncModelsWithRawResponse,
+ ModelsWithStreamingResponse,
+ AsyncModelsWithStreamingResponse,
+)
from .messages import (
Messages,
AsyncMessages,
@@ -38,6 +46,12 @@
"AsyncMessagesWithRawResponse",
"MessagesWithStreamingResponse",
"AsyncMessagesWithStreamingResponse",
+ "Models",
+ "AsyncModels",
+ "ModelsWithRawResponse",
+ "AsyncModelsWithRawResponse",
+ "ModelsWithStreamingResponse",
+ "AsyncModelsWithStreamingResponse",
"Beta",
"AsyncBeta",
"BetaWithRawResponse",
diff --git a/src/anthropic/resources/beta/__init__.py b/src/anthropic/resources/beta/__init__.py
index d06a0802..82b343fa 100644
--- a/src/anthropic/resources/beta/__init__.py
+++ b/src/anthropic/resources/beta/__init__.py
@@ -8,6 +8,14 @@
BetaWithStreamingResponse,
AsyncBetaWithStreamingResponse,
)
+from .models import (
+ Models,
+ AsyncModels,
+ ModelsWithRawResponse,
+ AsyncModelsWithRawResponse,
+ ModelsWithStreamingResponse,
+ AsyncModelsWithStreamingResponse,
+)
from .messages import (
Messages,
AsyncMessages,
@@ -16,28 +24,20 @@
MessagesWithStreamingResponse,
AsyncMessagesWithStreamingResponse,
)
-from .prompt_caching import (
- PromptCaching,
- AsyncPromptCaching,
- PromptCachingWithRawResponse,
- AsyncPromptCachingWithRawResponse,
- PromptCachingWithStreamingResponse,
- AsyncPromptCachingWithStreamingResponse,
-)
__all__ = [
+ "Models",
+ "AsyncModels",
+ "ModelsWithRawResponse",
+ "AsyncModelsWithRawResponse",
+ "ModelsWithStreamingResponse",
+ "AsyncModelsWithStreamingResponse",
"Messages",
"AsyncMessages",
"MessagesWithRawResponse",
"AsyncMessagesWithRawResponse",
"MessagesWithStreamingResponse",
"AsyncMessagesWithStreamingResponse",
- "PromptCaching",
- "AsyncPromptCaching",
- "PromptCachingWithRawResponse",
- "AsyncPromptCachingWithRawResponse",
- "PromptCachingWithStreamingResponse",
- "AsyncPromptCachingWithStreamingResponse",
"Beta",
"AsyncBeta",
"BetaWithRawResponse",
diff --git a/src/anthropic/resources/beta/beta.py b/src/anthropic/resources/beta/beta.py
index fbff30fa..8293782d 100644
--- a/src/anthropic/resources/beta/beta.py
+++ b/src/anthropic/resources/beta/beta.py
@@ -2,6 +2,14 @@
from __future__ import annotations
+from .models import (
+ Models,
+ AsyncModels,
+ ModelsWithRawResponse,
+ AsyncModelsWithRawResponse,
+ ModelsWithStreamingResponse,
+ AsyncModelsWithStreamingResponse,
+)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from .messages.messages import (
@@ -12,26 +20,18 @@
MessagesWithStreamingResponse,
AsyncMessagesWithStreamingResponse,
)
-from .prompt_caching.prompt_caching import (
- PromptCaching,
- AsyncPromptCaching,
- PromptCachingWithRawResponse,
- AsyncPromptCachingWithRawResponse,
- PromptCachingWithStreamingResponse,
- AsyncPromptCachingWithStreamingResponse,
-)
__all__ = ["Beta", "AsyncBeta"]
class Beta(SyncAPIResource):
@cached_property
- def messages(self) -> Messages:
- return Messages(self._client)
+ def models(self) -> Models:
+ return Models(self._client)
@cached_property
- def prompt_caching(self) -> PromptCaching:
- return PromptCaching(self._client)
+ def messages(self) -> Messages:
+ return Messages(self._client)
@cached_property
def with_raw_response(self) -> BetaWithRawResponse:
@@ -55,12 +55,12 @@ def with_streaming_response(self) -> BetaWithStreamingResponse:
class AsyncBeta(AsyncAPIResource):
@cached_property
- def messages(self) -> AsyncMessages:
- return AsyncMessages(self._client)
+ def models(self) -> AsyncModels:
+ return AsyncModels(self._client)
@cached_property
- def prompt_caching(self) -> AsyncPromptCaching:
- return AsyncPromptCaching(self._client)
+ def messages(self) -> AsyncMessages:
+ return AsyncMessages(self._client)
@cached_property
def with_raw_response(self) -> AsyncBetaWithRawResponse:
@@ -87,12 +87,12 @@ def __init__(self, beta: Beta) -> None:
self._beta = beta
@cached_property
- def messages(self) -> MessagesWithRawResponse:
- return MessagesWithRawResponse(self._beta.messages)
+ def models(self) -> ModelsWithRawResponse:
+ return ModelsWithRawResponse(self._beta.models)
@cached_property
- def prompt_caching(self) -> PromptCachingWithRawResponse:
- return PromptCachingWithRawResponse(self._beta.prompt_caching)
+ def messages(self) -> MessagesWithRawResponse:
+ return MessagesWithRawResponse(self._beta.messages)
class AsyncBetaWithRawResponse:
@@ -100,12 +100,12 @@ def __init__(self, beta: AsyncBeta) -> None:
self._beta = beta
@cached_property
- def messages(self) -> AsyncMessagesWithRawResponse:
- return AsyncMessagesWithRawResponse(self._beta.messages)
+ def models(self) -> AsyncModelsWithRawResponse:
+ return AsyncModelsWithRawResponse(self._beta.models)
@cached_property
- def prompt_caching(self) -> AsyncPromptCachingWithRawResponse:
- return AsyncPromptCachingWithRawResponse(self._beta.prompt_caching)
+ def messages(self) -> AsyncMessagesWithRawResponse:
+ return AsyncMessagesWithRawResponse(self._beta.messages)
class BetaWithStreamingResponse:
@@ -113,12 +113,12 @@ def __init__(self, beta: Beta) -> None:
self._beta = beta
@cached_property
- def messages(self) -> MessagesWithStreamingResponse:
- return MessagesWithStreamingResponse(self._beta.messages)
+ def models(self) -> ModelsWithStreamingResponse:
+ return ModelsWithStreamingResponse(self._beta.models)
@cached_property
- def prompt_caching(self) -> PromptCachingWithStreamingResponse:
- return PromptCachingWithStreamingResponse(self._beta.prompt_caching)
+ def messages(self) -> MessagesWithStreamingResponse:
+ return MessagesWithStreamingResponse(self._beta.messages)
class AsyncBetaWithStreamingResponse:
@@ -126,9 +126,9 @@ def __init__(self, beta: AsyncBeta) -> None:
self._beta = beta
@cached_property
- def messages(self) -> AsyncMessagesWithStreamingResponse:
- return AsyncMessagesWithStreamingResponse(self._beta.messages)
+ def models(self) -> AsyncModelsWithStreamingResponse:
+ return AsyncModelsWithStreamingResponse(self._beta.models)
@cached_property
- def prompt_caching(self) -> AsyncPromptCachingWithStreamingResponse:
- return AsyncPromptCachingWithStreamingResponse(self._beta.prompt_caching)
+ def messages(self) -> AsyncMessagesWithStreamingResponse:
+ return AsyncMessagesWithStreamingResponse(self._beta.messages)
diff --git a/src/anthropic/resources/beta/messages/batches.py b/src/anthropic/resources/beta/messages/batches.py
index 5253465f..e0268bb5 100644
--- a/src/anthropic/resources/beta/messages/batches.py
+++ b/src/anthropic/resources/beta/messages/batches.py
@@ -191,7 +191,7 @@ def list(
limit: Number of items to return per page.
- Defaults to `20`. Ranges from `1` to `100`.
+ Defaults to `20`. Ranges from `1` to `1000`.
betas: Optional header to specify the beta version(s) you want to use.
@@ -500,7 +500,7 @@ def list(
limit: Number of items to return per page.
- Defaults to `20`. Ranges from `1` to `100`.
+ Defaults to `20`. Ranges from `1` to `1000`.
betas: Optional header to specify the beta version(s) you want to use.
diff --git a/src/anthropic/resources/beta/models.py b/src/anthropic/resources/beta/models.py
new file mode 100644
index 00000000..fdad3298
--- /dev/null
+++ b/src/anthropic/resources/beta/models.py
@@ -0,0 +1,300 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+import httpx
+
+from ... import _legacy_response
+from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven
+from ..._utils import maybe_transform
+from ..._compat import cached_property
+from ..._resource import SyncAPIResource, AsyncAPIResource
+from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
+from ...pagination import SyncPage, AsyncPage
+from ...types.beta import model_list_params
+from ..._base_client import AsyncPaginator, make_request_options
+from ...types.beta.beta_model_info import BetaModelInfo
+
+__all__ = ["Models", "AsyncModels"]
+
+
+class Models(SyncAPIResource):
+ @cached_property
+ def with_raw_response(self) -> ModelsWithRawResponse:
+ """
+ This property can be used as a prefix for any HTTP method call to return the
+ the raw response object instead of the parsed content.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
+ """
+ return ModelsWithRawResponse(self)
+
+ @cached_property
+ def with_streaming_response(self) -> ModelsWithStreamingResponse:
+ """
+ An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
+ """
+ return ModelsWithStreamingResponse(self)
+
+ def retrieve(
+ self,
+ model_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> BetaModelInfo:
+ """
+ Get a specific model.
+
+ The Models API response can be used to determine information about a specific
+ model or resolve a model alias to a model ID.
+
+ Args:
+ model_id: Model identifier or alias.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not model_id:
+ raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}")
+ return self._get(
+ f"/v1/models/{model_id}?beta=true",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=BetaModelInfo,
+ )
+
+ def list(
+ self,
+ *,
+ after_id: str | NotGiven = NOT_GIVEN,
+ before_id: str | NotGiven = NOT_GIVEN,
+ limit: int | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> SyncPage[BetaModelInfo]:
+ """
+ List available models.
+
+ The Models API response can be used to determine which models are available for
+ use in the API. More recently released models are listed first.
+
+ Args:
+ after_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately after this object.
+
+ before_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately before this object.
+
+ limit: Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._get_api_list(
+ "/v1/models?beta=true",
+ page=SyncPage[BetaModelInfo],
+ options=make_request_options(
+ extra_headers=extra_headers,
+ extra_query=extra_query,
+ extra_body=extra_body,
+ timeout=timeout,
+ query=maybe_transform(
+ {
+ "after_id": after_id,
+ "before_id": before_id,
+ "limit": limit,
+ },
+ model_list_params.ModelListParams,
+ ),
+ ),
+ model=BetaModelInfo,
+ )
+
+
+class AsyncModels(AsyncAPIResource):
+ @cached_property
+ def with_raw_response(self) -> AsyncModelsWithRawResponse:
+ """
+ This property can be used as a prefix for any HTTP method call to return the
+ the raw response object instead of the parsed content.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
+ """
+ return AsyncModelsWithRawResponse(self)
+
+ @cached_property
+ def with_streaming_response(self) -> AsyncModelsWithStreamingResponse:
+ """
+ An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
+ """
+ return AsyncModelsWithStreamingResponse(self)
+
+ async def retrieve(
+ self,
+ model_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> BetaModelInfo:
+ """
+ Get a specific model.
+
+ The Models API response can be used to determine information about a specific
+ model or resolve a model alias to a model ID.
+
+ Args:
+ model_id: Model identifier or alias.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not model_id:
+ raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}")
+ return await self._get(
+ f"/v1/models/{model_id}?beta=true",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=BetaModelInfo,
+ )
+
+ def list(
+ self,
+ *,
+ after_id: str | NotGiven = NOT_GIVEN,
+ before_id: str | NotGiven = NOT_GIVEN,
+ limit: int | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> AsyncPaginator[BetaModelInfo, AsyncPage[BetaModelInfo]]:
+ """
+ List available models.
+
+ The Models API response can be used to determine which models are available for
+ use in the API. More recently released models are listed first.
+
+ Args:
+ after_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately after this object.
+
+ before_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately before this object.
+
+ limit: Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._get_api_list(
+ "/v1/models?beta=true",
+ page=AsyncPage[BetaModelInfo],
+ options=make_request_options(
+ extra_headers=extra_headers,
+ extra_query=extra_query,
+ extra_body=extra_body,
+ timeout=timeout,
+ query=maybe_transform(
+ {
+ "after_id": after_id,
+ "before_id": before_id,
+ "limit": limit,
+ },
+ model_list_params.ModelListParams,
+ ),
+ ),
+ model=BetaModelInfo,
+ )
+
+
+class ModelsWithRawResponse:
+ def __init__(self, models: Models) -> None:
+ self._models = models
+
+ self.retrieve = _legacy_response.to_raw_response_wrapper(
+ models.retrieve,
+ )
+ self.list = _legacy_response.to_raw_response_wrapper(
+ models.list,
+ )
+
+
+class AsyncModelsWithRawResponse:
+ def __init__(self, models: AsyncModels) -> None:
+ self._models = models
+
+ self.retrieve = _legacy_response.async_to_raw_response_wrapper(
+ models.retrieve,
+ )
+ self.list = _legacy_response.async_to_raw_response_wrapper(
+ models.list,
+ )
+
+
+class ModelsWithStreamingResponse:
+ def __init__(self, models: Models) -> None:
+ self._models = models
+
+ self.retrieve = to_streamed_response_wrapper(
+ models.retrieve,
+ )
+ self.list = to_streamed_response_wrapper(
+ models.list,
+ )
+
+
+class AsyncModelsWithStreamingResponse:
+ def __init__(self, models: AsyncModels) -> None:
+ self._models = models
+
+ self.retrieve = async_to_streamed_response_wrapper(
+ models.retrieve,
+ )
+ self.list = async_to_streamed_response_wrapper(
+ models.list,
+ )
diff --git a/src/anthropic/resources/beta/prompt_caching/messages.py b/src/anthropic/resources/beta/prompt_caching/messages.py
deleted file mode 100644
index af13a164..00000000
--- a/src/anthropic/resources/beta/prompt_caching/messages.py
+++ /dev/null
@@ -1,1835 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from typing import List, Union, Iterable
-from itertools import chain
-from typing_extensions import Literal, overload
-
-import httpx
-
-from .... import _legacy_response
-from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven
-from ...._utils import (
- is_given,
- required_args,
- maybe_transform,
- strip_not_given,
- async_maybe_transform,
-)
-from ...._compat import cached_property
-from ...._resource import SyncAPIResource, AsyncAPIResource
-from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
-from ...._constants import DEFAULT_TIMEOUT
-from ...._streaming import Stream, AsyncStream
-from ...._base_client import make_request_options
-from ....types.model_param import ModelParam
-from ....types.metadata_param import MetadataParam
-from ....types.tool_choice_param import ToolChoiceParam
-from ....types.beta.prompt_caching import message_create_params
-from ....types.anthropic_beta_param import AnthropicBetaParam
-from ....types.beta.prompt_caching.prompt_caching_beta_message import PromptCachingBetaMessage
-from ....types.beta.prompt_caching.prompt_caching_beta_tool_param import PromptCachingBetaToolParam
-from ....types.beta.prompt_caching.prompt_caching_beta_message_param import PromptCachingBetaMessageParam
-from ....types.beta.prompt_caching.prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam
-from ....types.beta.prompt_caching.raw_prompt_caching_beta_message_stream_event import (
- RawPromptCachingBetaMessageStreamEvent,
-)
-
-__all__ = ["Messages", "AsyncMessages"]
-
-
-class Messages(SyncAPIResource):
- @cached_property
- def with_raw_response(self) -> MessagesWithRawResponse:
- """
- This property can be used as a prefix for any HTTP method call to return the
- the raw response object instead of the parsed content.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
- """
- return MessagesWithRawResponse(self)
-
- @cached_property
- def with_streaming_response(self) -> MessagesWithStreamingResponse:
- """
- An alternative to `.with_raw_response` that doesn't eagerly read the response body.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
- """
- return MessagesWithStreamingResponse(self)
-
- @overload
- def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- stream: Literal[False] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> PromptCachingBetaMessage:
- """
- Send a structured list of input messages with text and/or image content, and the
- model will generate the next message in the conversation.
-
- The Messages API can be used for either single queries or stateless multi-turn
- conversations.
-
- Args:
- max_tokens: The maximum number of tokens to generate before stopping.
-
- Note that our models may stop _before_ reaching this maximum. This parameter
- only specifies the absolute maximum number of tokens to generate.
-
- Different models have different maximum values for this parameter. See
- [models](https://docs.anthropic.com/en/docs/models-overview) for details.
-
- messages: Input messages.
-
- Our models are trained to operate on alternating `user` and `assistant`
- conversational turns. When creating a new `Message`, you specify the prior
- conversational turns with the `messages` parameter, and the model then generates
- the next `Message` in the conversation. Consecutive `user` or `assistant` turns
- in your request will be combined into a single turn.
-
- Each input message must be an object with a `role` and `content`. You can
- specify a single `user`-role message, or you can include multiple `user` and
- `assistant` messages.
-
- If the final message uses the `assistant` role, the response content will
- continue immediately from the content in that message. This can be used to
- constrain part of the model's response.
-
- Example with a single `user` message:
-
- ```json
- [{ "role": "user", "content": "Hello, Claude" }]
- ```
-
- Example with multiple conversational turns:
-
- ```json
- [
- { "role": "user", "content": "Hello there." },
- { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
- { "role": "user", "content": "Can you explain LLMs in plain English?" }
- ]
- ```
-
- Example with a partially-filled response from Claude:
-
- ```json
- [
- {
- "role": "user",
- "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
- },
- { "role": "assistant", "content": "The best answer is (" }
- ]
- ```
-
- Each input message `content` may be either a single `string` or an array of
- content blocks, where each block has a specific `type`. Using a `string` for
- `content` is shorthand for an array of one content block of type `"text"`. The
- following input messages are equivalent:
-
- ```json
- { "role": "user", "content": "Hello, Claude" }
- ```
-
- ```json
- { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
- ```
-
- Starting with Claude 3 models, you can also send image content blocks:
-
- ```json
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": "/9j/4AAQSkZJRg..."
- }
- },
- { "type": "text", "text": "What is in this image?" }
- ]
- }
- ```
-
- We currently support the `base64` source type for images, and the `image/jpeg`,
- `image/png`, `image/gif`, and `image/webp` media types.
-
- See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
- more input examples.
-
- Note that if you want to include a
- [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
- the top-level `system` parameter — there is no `"system"` role for input
- messages in the Messages API.
-
- model: The model that will complete your prompt.\n\nSee
- [models](https://docs.anthropic.com/en/docs/models-overview) for additional
- details and options.
-
- metadata: An object describing metadata about the request.
-
- stop_sequences: Custom text sequences that will cause the model to stop generating.
-
- Our models will normally stop when they have naturally completed their turn,
- which will result in a response `stop_reason` of `"end_turn"`.
-
- If you want the model to stop generating when it encounters custom strings of
- text, you can use the `stop_sequences` parameter. If the model encounters one of
- the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
- and the response `stop_sequence` value will contain the matched stop sequence.
-
- stream: Whether to incrementally stream the response using server-sent events.
-
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
-
- system: System prompt.
-
- A system prompt is a way of providing context and instructions to Claude, such
- as specifying a particular goal or role. See our
- [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
-
- temperature: Amount of randomness injected into the response.
-
- Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
- for analytical / multiple choice, and closer to `1.0` for creative and
- generative tasks.
-
- Note that even with `temperature` of `0.0`, the results will not be fully
- deterministic.
-
- tool_choice: How the model should use the provided tools. The model can use a specific tool,
- any available tool, or decide by itself.
-
- tools: Definitions of tools that the model may use.
-
- If you include `tools` in your API request, the model may return `tool_use`
- content blocks that represent the model's use of those tools. You can then run
- those tools using the tool input generated by the model and then optionally
- return results back to the model using `tool_result` content blocks.
-
- Each tool definition includes:
-
- - `name`: Name of the tool.
- - `description`: Optional, but strongly-recommended description of the tool.
- - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
- shape that the model will produce in `tool_use` output content blocks.
-
- For example, if you defined `tools` as:
-
- ```json
- [
- {
- "name": "get_stock_price",
- "description": "Get the current stock price for a given ticker symbol.",
- "input_schema": {
- "type": "object",
- "properties": {
- "ticker": {
- "type": "string",
- "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
- }
- },
- "required": ["ticker"]
- }
- }
- ]
- ```
-
- And then asked the model "What's the S&P 500 at today?", the model might produce
- `tool_use` content blocks in the response like this:
-
- ```json
- [
- {
- "type": "tool_use",
- "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "name": "get_stock_price",
- "input": { "ticker": "^GSPC" }
- }
- ]
- ```
-
- You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
- input, and return the following back to the model in a subsequent `user`
- message:
-
- ```json
- [
- {
- "type": "tool_result",
- "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "content": "259.75 USD"
- }
- ]
- ```
-
- Tools can be used for workflows that include running client-side tools and
- functions, or more generally whenever you want the model to produce a particular
- JSON structure of output.
-
- See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
-
- top_k: Only sample from the top K options for each subsequent token.
-
- Used to remove "long tail" low probability responses.
- [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- top_p: Use nucleus sampling.
-
- In nucleus sampling, we compute the cumulative distribution over all the options
- for each subsequent token in decreasing probability order and cut it off once it
- reaches a particular probability specified by `top_p`. You should either alter
- `temperature` or `top_p`, but not both.
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- betas: Optional header to specify the beta version(s) you want to use.
-
- extra_headers: Send extra headers
-
- extra_query: Add additional query parameters to the request
-
- extra_body: Add additional JSON properties to the request
-
- timeout: Override the client-level default timeout for this request, in seconds
- """
- ...
-
- @overload
- def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- stream: Literal[True],
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> Stream[RawPromptCachingBetaMessageStreamEvent]:
- """
- Send a structured list of input messages with text and/or image content, and the
- model will generate the next message in the conversation.
-
- The Messages API can be used for either single queries or stateless multi-turn
- conversations.
-
- Args:
- max_tokens: The maximum number of tokens to generate before stopping.
-
- Note that our models may stop _before_ reaching this maximum. This parameter
- only specifies the absolute maximum number of tokens to generate.
-
- Different models have different maximum values for this parameter. See
- [models](https://docs.anthropic.com/en/docs/models-overview) for details.
-
- messages: Input messages.
-
- Our models are trained to operate on alternating `user` and `assistant`
- conversational turns. When creating a new `Message`, you specify the prior
- conversational turns with the `messages` parameter, and the model then generates
- the next `Message` in the conversation. Consecutive `user` or `assistant` turns
- in your request will be combined into a single turn.
-
- Each input message must be an object with a `role` and `content`. You can
- specify a single `user`-role message, or you can include multiple `user` and
- `assistant` messages.
-
- If the final message uses the `assistant` role, the response content will
- continue immediately from the content in that message. This can be used to
- constrain part of the model's response.
-
- Example with a single `user` message:
-
- ```json
- [{ "role": "user", "content": "Hello, Claude" }]
- ```
-
- Example with multiple conversational turns:
-
- ```json
- [
- { "role": "user", "content": "Hello there." },
- { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
- { "role": "user", "content": "Can you explain LLMs in plain English?" }
- ]
- ```
-
- Example with a partially-filled response from Claude:
-
- ```json
- [
- {
- "role": "user",
- "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
- },
- { "role": "assistant", "content": "The best answer is (" }
- ]
- ```
-
- Each input message `content` may be either a single `string` or an array of
- content blocks, where each block has a specific `type`. Using a `string` for
- `content` is shorthand for an array of one content block of type `"text"`. The
- following input messages are equivalent:
-
- ```json
- { "role": "user", "content": "Hello, Claude" }
- ```
-
- ```json
- { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
- ```
-
- Starting with Claude 3 models, you can also send image content blocks:
-
- ```json
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": "/9j/4AAQSkZJRg..."
- }
- },
- { "type": "text", "text": "What is in this image?" }
- ]
- }
- ```
-
- We currently support the `base64` source type for images, and the `image/jpeg`,
- `image/png`, `image/gif`, and `image/webp` media types.
-
- See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
- more input examples.
-
- Note that if you want to include a
- [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
- the top-level `system` parameter — there is no `"system"` role for input
- messages in the Messages API.
-
- model: The model that will complete your prompt.\n\nSee
- [models](https://docs.anthropic.com/en/docs/models-overview) for additional
- details and options.
-
- stream: Whether to incrementally stream the response using server-sent events.
-
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
-
- metadata: An object describing metadata about the request.
-
- stop_sequences: Custom text sequences that will cause the model to stop generating.
-
- Our models will normally stop when they have naturally completed their turn,
- which will result in a response `stop_reason` of `"end_turn"`.
-
- If you want the model to stop generating when it encounters custom strings of
- text, you can use the `stop_sequences` parameter. If the model encounters one of
- the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
- and the response `stop_sequence` value will contain the matched stop sequence.
-
- system: System prompt.
-
- A system prompt is a way of providing context and instructions to Claude, such
- as specifying a particular goal or role. See our
- [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
-
- temperature: Amount of randomness injected into the response.
-
- Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
- for analytical / multiple choice, and closer to `1.0` for creative and
- generative tasks.
-
- Note that even with `temperature` of `0.0`, the results will not be fully
- deterministic.
-
- tool_choice: How the model should use the provided tools. The model can use a specific tool,
- any available tool, or decide by itself.
-
- tools: Definitions of tools that the model may use.
-
- If you include `tools` in your API request, the model may return `tool_use`
- content blocks that represent the model's use of those tools. You can then run
- those tools using the tool input generated by the model and then optionally
- return results back to the model using `tool_result` content blocks.
-
- Each tool definition includes:
-
- - `name`: Name of the tool.
- - `description`: Optional, but strongly-recommended description of the tool.
- - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
- shape that the model will produce in `tool_use` output content blocks.
-
- For example, if you defined `tools` as:
-
- ```json
- [
- {
- "name": "get_stock_price",
- "description": "Get the current stock price for a given ticker symbol.",
- "input_schema": {
- "type": "object",
- "properties": {
- "ticker": {
- "type": "string",
- "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
- }
- },
- "required": ["ticker"]
- }
- }
- ]
- ```
-
- And then asked the model "What's the S&P 500 at today?", the model might produce
- `tool_use` content blocks in the response like this:
-
- ```json
- [
- {
- "type": "tool_use",
- "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "name": "get_stock_price",
- "input": { "ticker": "^GSPC" }
- }
- ]
- ```
-
- You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
- input, and return the following back to the model in a subsequent `user`
- message:
-
- ```json
- [
- {
- "type": "tool_result",
- "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "content": "259.75 USD"
- }
- ]
- ```
-
- Tools can be used for workflows that include running client-side tools and
- functions, or more generally whenever you want the model to produce a particular
- JSON structure of output.
-
- See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
-
- top_k: Only sample from the top K options for each subsequent token.
-
- Used to remove "long tail" low probability responses.
- [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- top_p: Use nucleus sampling.
-
- In nucleus sampling, we compute the cumulative distribution over all the options
- for each subsequent token in decreasing probability order and cut it off once it
- reaches a particular probability specified by `top_p`. You should either alter
- `temperature` or `top_p`, but not both.
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- betas: Optional header to specify the beta version(s) you want to use.
-
- extra_headers: Send extra headers
-
- extra_query: Add additional query parameters to the request
-
- extra_body: Add additional JSON properties to the request
-
- timeout: Override the client-level default timeout for this request, in seconds
- """
- ...
-
- @overload
- def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- stream: bool,
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> PromptCachingBetaMessage | Stream[RawPromptCachingBetaMessageStreamEvent]:
- """
- Send a structured list of input messages with text and/or image content, and the
- model will generate the next message in the conversation.
-
- The Messages API can be used for either single queries or stateless multi-turn
- conversations.
-
- Args:
- max_tokens: The maximum number of tokens to generate before stopping.
-
- Note that our models may stop _before_ reaching this maximum. This parameter
- only specifies the absolute maximum number of tokens to generate.
-
- Different models have different maximum values for this parameter. See
- [models](https://docs.anthropic.com/en/docs/models-overview) for details.
-
- messages: Input messages.
-
- Our models are trained to operate on alternating `user` and `assistant`
- conversational turns. When creating a new `Message`, you specify the prior
- conversational turns with the `messages` parameter, and the model then generates
- the next `Message` in the conversation. Consecutive `user` or `assistant` turns
- in your request will be combined into a single turn.
-
- Each input message must be an object with a `role` and `content`. You can
- specify a single `user`-role message, or you can include multiple `user` and
- `assistant` messages.
-
- If the final message uses the `assistant` role, the response content will
- continue immediately from the content in that message. This can be used to
- constrain part of the model's response.
-
- Example with a single `user` message:
-
- ```json
- [{ "role": "user", "content": "Hello, Claude" }]
- ```
-
- Example with multiple conversational turns:
-
- ```json
- [
- { "role": "user", "content": "Hello there." },
- { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
- { "role": "user", "content": "Can you explain LLMs in plain English?" }
- ]
- ```
-
- Example with a partially-filled response from Claude:
-
- ```json
- [
- {
- "role": "user",
- "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
- },
- { "role": "assistant", "content": "The best answer is (" }
- ]
- ```
-
- Each input message `content` may be either a single `string` or an array of
- content blocks, where each block has a specific `type`. Using a `string` for
- `content` is shorthand for an array of one content block of type `"text"`. The
- following input messages are equivalent:
-
- ```json
- { "role": "user", "content": "Hello, Claude" }
- ```
-
- ```json
- { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
- ```
-
- Starting with Claude 3 models, you can also send image content blocks:
-
- ```json
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": "/9j/4AAQSkZJRg..."
- }
- },
- { "type": "text", "text": "What is in this image?" }
- ]
- }
- ```
-
- We currently support the `base64` source type for images, and the `image/jpeg`,
- `image/png`, `image/gif`, and `image/webp` media types.
-
- See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
- more input examples.
-
- Note that if you want to include a
- [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
- the top-level `system` parameter — there is no `"system"` role for input
- messages in the Messages API.
-
- model: The model that will complete your prompt.\n\nSee
- [models](https://docs.anthropic.com/en/docs/models-overview) for additional
- details and options.
-
- stream: Whether to incrementally stream the response using server-sent events.
-
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
-
- metadata: An object describing metadata about the request.
-
- stop_sequences: Custom text sequences that will cause the model to stop generating.
-
- Our models will normally stop when they have naturally completed their turn,
- which will result in a response `stop_reason` of `"end_turn"`.
-
- If you want the model to stop generating when it encounters custom strings of
- text, you can use the `stop_sequences` parameter. If the model encounters one of
- the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
- and the response `stop_sequence` value will contain the matched stop sequence.
-
- system: System prompt.
-
- A system prompt is a way of providing context and instructions to Claude, such
- as specifying a particular goal or role. See our
- [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
-
- temperature: Amount of randomness injected into the response.
-
- Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
- for analytical / multiple choice, and closer to `1.0` for creative and
- generative tasks.
-
- Note that even with `temperature` of `0.0`, the results will not be fully
- deterministic.
-
- tool_choice: How the model should use the provided tools. The model can use a specific tool,
- any available tool, or decide by itself.
-
- tools: Definitions of tools that the model may use.
-
- If you include `tools` in your API request, the model may return `tool_use`
- content blocks that represent the model's use of those tools. You can then run
- those tools using the tool input generated by the model and then optionally
- return results back to the model using `tool_result` content blocks.
-
- Each tool definition includes:
-
- - `name`: Name of the tool.
- - `description`: Optional, but strongly-recommended description of the tool.
- - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
- shape that the model will produce in `tool_use` output content blocks.
-
- For example, if you defined `tools` as:
-
- ```json
- [
- {
- "name": "get_stock_price",
- "description": "Get the current stock price for a given ticker symbol.",
- "input_schema": {
- "type": "object",
- "properties": {
- "ticker": {
- "type": "string",
- "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
- }
- },
- "required": ["ticker"]
- }
- }
- ]
- ```
-
- And then asked the model "What's the S&P 500 at today?", the model might produce
- `tool_use` content blocks in the response like this:
-
- ```json
- [
- {
- "type": "tool_use",
- "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "name": "get_stock_price",
- "input": { "ticker": "^GSPC" }
- }
- ]
- ```
-
- You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
- input, and return the following back to the model in a subsequent `user`
- message:
-
- ```json
- [
- {
- "type": "tool_result",
- "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "content": "259.75 USD"
- }
- ]
- ```
-
- Tools can be used for workflows that include running client-side tools and
- functions, or more generally whenever you want the model to produce a particular
- JSON structure of output.
-
- See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
-
- top_k: Only sample from the top K options for each subsequent token.
-
- Used to remove "long tail" low probability responses.
- [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- top_p: Use nucleus sampling.
-
- In nucleus sampling, we compute the cumulative distribution over all the options
- for each subsequent token in decreasing probability order and cut it off once it
- reaches a particular probability specified by `top_p`. You should either alter
- `temperature` or `top_p`, but not both.
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- betas: Optional header to specify the beta version(s) you want to use.
-
- extra_headers: Send extra headers
-
- extra_query: Add additional query parameters to the request
-
- extra_body: Add additional JSON properties to the request
-
- timeout: Override the client-level default timeout for this request, in seconds
- """
- ...
-
- @required_args(["max_tokens", "messages", "model"], ["max_tokens", "messages", "model", "stream"])
- def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- stream: Literal[False] | Literal[True] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> PromptCachingBetaMessage | Stream[RawPromptCachingBetaMessageStreamEvent]:
- if not is_given(timeout) and self._client.timeout == DEFAULT_TIMEOUT:
- timeout = 600
- extra_headers = {
- **strip_not_given(
- {
- "anthropic-beta": ",".join(chain((str(e) for e in betas), ["prompt-caching-2024-07-31"]))
- if is_given(betas)
- else NOT_GIVEN
- }
- ),
- **(extra_headers or {}),
- }
- extra_headers = {"anthropic-beta": "prompt-caching-2024-07-31", **(extra_headers or {})}
- return self._post(
- "/v1/messages?beta=prompt_caching",
- body=maybe_transform(
- {
- "max_tokens": max_tokens,
- "messages": messages,
- "model": model,
- "metadata": metadata,
- "stop_sequences": stop_sequences,
- "stream": stream,
- "system": system,
- "temperature": temperature,
- "tool_choice": tool_choice,
- "tools": tools,
- "top_k": top_k,
- "top_p": top_p,
- },
- message_create_params.MessageCreateParams,
- ),
- options=make_request_options(
- extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
- ),
- cast_to=PromptCachingBetaMessage,
- stream=stream or False,
- stream_cls=Stream[RawPromptCachingBetaMessageStreamEvent],
- )
-
-
-class AsyncMessages(AsyncAPIResource):
- @cached_property
- def with_raw_response(self) -> AsyncMessagesWithRawResponse:
- """
- This property can be used as a prefix for any HTTP method call to return the
- the raw response object instead of the parsed content.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
- """
- return AsyncMessagesWithRawResponse(self)
-
- @cached_property
- def with_streaming_response(self) -> AsyncMessagesWithStreamingResponse:
- """
- An alternative to `.with_raw_response` that doesn't eagerly read the response body.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
- """
- return AsyncMessagesWithStreamingResponse(self)
-
- @overload
- async def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- stream: Literal[False] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> PromptCachingBetaMessage:
- """
- Send a structured list of input messages with text and/or image content, and the
- model will generate the next message in the conversation.
-
- The Messages API can be used for either single queries or stateless multi-turn
- conversations.
-
- Args:
- max_tokens: The maximum number of tokens to generate before stopping.
-
- Note that our models may stop _before_ reaching this maximum. This parameter
- only specifies the absolute maximum number of tokens to generate.
-
- Different models have different maximum values for this parameter. See
- [models](https://docs.anthropic.com/en/docs/models-overview) for details.
-
- messages: Input messages.
-
- Our models are trained to operate on alternating `user` and `assistant`
- conversational turns. When creating a new `Message`, you specify the prior
- conversational turns with the `messages` parameter, and the model then generates
- the next `Message` in the conversation. Consecutive `user` or `assistant` turns
- in your request will be combined into a single turn.
-
- Each input message must be an object with a `role` and `content`. You can
- specify a single `user`-role message, or you can include multiple `user` and
- `assistant` messages.
-
- If the final message uses the `assistant` role, the response content will
- continue immediately from the content in that message. This can be used to
- constrain part of the model's response.
-
- Example with a single `user` message:
-
- ```json
- [{ "role": "user", "content": "Hello, Claude" }]
- ```
-
- Example with multiple conversational turns:
-
- ```json
- [
- { "role": "user", "content": "Hello there." },
- { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
- { "role": "user", "content": "Can you explain LLMs in plain English?" }
- ]
- ```
-
- Example with a partially-filled response from Claude:
-
- ```json
- [
- {
- "role": "user",
- "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
- },
- { "role": "assistant", "content": "The best answer is (" }
- ]
- ```
-
- Each input message `content` may be either a single `string` or an array of
- content blocks, where each block has a specific `type`. Using a `string` for
- `content` is shorthand for an array of one content block of type `"text"`. The
- following input messages are equivalent:
-
- ```json
- { "role": "user", "content": "Hello, Claude" }
- ```
-
- ```json
- { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
- ```
-
- Starting with Claude 3 models, you can also send image content blocks:
-
- ```json
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": "/9j/4AAQSkZJRg..."
- }
- },
- { "type": "text", "text": "What is in this image?" }
- ]
- }
- ```
-
- We currently support the `base64` source type for images, and the `image/jpeg`,
- `image/png`, `image/gif`, and `image/webp` media types.
-
- See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
- more input examples.
-
- Note that if you want to include a
- [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
- the top-level `system` parameter — there is no `"system"` role for input
- messages in the Messages API.
-
- model: The model that will complete your prompt.\n\nSee
- [models](https://docs.anthropic.com/en/docs/models-overview) for additional
- details and options.
-
- metadata: An object describing metadata about the request.
-
- stop_sequences: Custom text sequences that will cause the model to stop generating.
-
- Our models will normally stop when they have naturally completed their turn,
- which will result in a response `stop_reason` of `"end_turn"`.
-
- If you want the model to stop generating when it encounters custom strings of
- text, you can use the `stop_sequences` parameter. If the model encounters one of
- the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
- and the response `stop_sequence` value will contain the matched stop sequence.
-
- stream: Whether to incrementally stream the response using server-sent events.
-
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
-
- system: System prompt.
-
- A system prompt is a way of providing context and instructions to Claude, such
- as specifying a particular goal or role. See our
- [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
-
- temperature: Amount of randomness injected into the response.
-
- Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
- for analytical / multiple choice, and closer to `1.0` for creative and
- generative tasks.
-
- Note that even with `temperature` of `0.0`, the results will not be fully
- deterministic.
-
- tool_choice: How the model should use the provided tools. The model can use a specific tool,
- any available tool, or decide by itself.
-
- tools: Definitions of tools that the model may use.
-
- If you include `tools` in your API request, the model may return `tool_use`
- content blocks that represent the model's use of those tools. You can then run
- those tools using the tool input generated by the model and then optionally
- return results back to the model using `tool_result` content blocks.
-
- Each tool definition includes:
-
- - `name`: Name of the tool.
- - `description`: Optional, but strongly-recommended description of the tool.
- - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
- shape that the model will produce in `tool_use` output content blocks.
-
- For example, if you defined `tools` as:
-
- ```json
- [
- {
- "name": "get_stock_price",
- "description": "Get the current stock price for a given ticker symbol.",
- "input_schema": {
- "type": "object",
- "properties": {
- "ticker": {
- "type": "string",
- "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
- }
- },
- "required": ["ticker"]
- }
- }
- ]
- ```
-
- And then asked the model "What's the S&P 500 at today?", the model might produce
- `tool_use` content blocks in the response like this:
-
- ```json
- [
- {
- "type": "tool_use",
- "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "name": "get_stock_price",
- "input": { "ticker": "^GSPC" }
- }
- ]
- ```
-
- You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
- input, and return the following back to the model in a subsequent `user`
- message:
-
- ```json
- [
- {
- "type": "tool_result",
- "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "content": "259.75 USD"
- }
- ]
- ```
-
- Tools can be used for workflows that include running client-side tools and
- functions, or more generally whenever you want the model to produce a particular
- JSON structure of output.
-
- See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
-
- top_k: Only sample from the top K options for each subsequent token.
-
- Used to remove "long tail" low probability responses.
- [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- top_p: Use nucleus sampling.
-
- In nucleus sampling, we compute the cumulative distribution over all the options
- for each subsequent token in decreasing probability order and cut it off once it
- reaches a particular probability specified by `top_p`. You should either alter
- `temperature` or `top_p`, but not both.
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- betas: Optional header to specify the beta version(s) you want to use.
-
- extra_headers: Send extra headers
-
- extra_query: Add additional query parameters to the request
-
- extra_body: Add additional JSON properties to the request
-
- timeout: Override the client-level default timeout for this request, in seconds
- """
- ...
-
- @overload
- async def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- stream: Literal[True],
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> AsyncStream[RawPromptCachingBetaMessageStreamEvent]:
- """
- Send a structured list of input messages with text and/or image content, and the
- model will generate the next message in the conversation.
-
- The Messages API can be used for either single queries or stateless multi-turn
- conversations.
-
- Args:
- max_tokens: The maximum number of tokens to generate before stopping.
-
- Note that our models may stop _before_ reaching this maximum. This parameter
- only specifies the absolute maximum number of tokens to generate.
-
- Different models have different maximum values for this parameter. See
- [models](https://docs.anthropic.com/en/docs/models-overview) for details.
-
- messages: Input messages.
-
- Our models are trained to operate on alternating `user` and `assistant`
- conversational turns. When creating a new `Message`, you specify the prior
- conversational turns with the `messages` parameter, and the model then generates
- the next `Message` in the conversation. Consecutive `user` or `assistant` turns
- in your request will be combined into a single turn.
-
- Each input message must be an object with a `role` and `content`. You can
- specify a single `user`-role message, or you can include multiple `user` and
- `assistant` messages.
-
- If the final message uses the `assistant` role, the response content will
- continue immediately from the content in that message. This can be used to
- constrain part of the model's response.
-
- Example with a single `user` message:
-
- ```json
- [{ "role": "user", "content": "Hello, Claude" }]
- ```
-
- Example with multiple conversational turns:
-
- ```json
- [
- { "role": "user", "content": "Hello there." },
- { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
- { "role": "user", "content": "Can you explain LLMs in plain English?" }
- ]
- ```
-
- Example with a partially-filled response from Claude:
-
- ```json
- [
- {
- "role": "user",
- "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
- },
- { "role": "assistant", "content": "The best answer is (" }
- ]
- ```
-
- Each input message `content` may be either a single `string` or an array of
- content blocks, where each block has a specific `type`. Using a `string` for
- `content` is shorthand for an array of one content block of type `"text"`. The
- following input messages are equivalent:
-
- ```json
- { "role": "user", "content": "Hello, Claude" }
- ```
-
- ```json
- { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
- ```
-
- Starting with Claude 3 models, you can also send image content blocks:
-
- ```json
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": "/9j/4AAQSkZJRg..."
- }
- },
- { "type": "text", "text": "What is in this image?" }
- ]
- }
- ```
-
- We currently support the `base64` source type for images, and the `image/jpeg`,
- `image/png`, `image/gif`, and `image/webp` media types.
-
- See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
- more input examples.
-
- Note that if you want to include a
- [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
- the top-level `system` parameter — there is no `"system"` role for input
- messages in the Messages API.
-
- model: The model that will complete your prompt.\n\nSee
- [models](https://docs.anthropic.com/en/docs/models-overview) for additional
- details and options.
-
- stream: Whether to incrementally stream the response using server-sent events.
-
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
-
- metadata: An object describing metadata about the request.
-
- stop_sequences: Custom text sequences that will cause the model to stop generating.
-
- Our models will normally stop when they have naturally completed their turn,
- which will result in a response `stop_reason` of `"end_turn"`.
-
- If you want the model to stop generating when it encounters custom strings of
- text, you can use the `stop_sequences` parameter. If the model encounters one of
- the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
- and the response `stop_sequence` value will contain the matched stop sequence.
-
- system: System prompt.
-
- A system prompt is a way of providing context and instructions to Claude, such
- as specifying a particular goal or role. See our
- [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
-
- temperature: Amount of randomness injected into the response.
-
- Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
- for analytical / multiple choice, and closer to `1.0` for creative and
- generative tasks.
-
- Note that even with `temperature` of `0.0`, the results will not be fully
- deterministic.
-
- tool_choice: How the model should use the provided tools. The model can use a specific tool,
- any available tool, or decide by itself.
-
- tools: Definitions of tools that the model may use.
-
- If you include `tools` in your API request, the model may return `tool_use`
- content blocks that represent the model's use of those tools. You can then run
- those tools using the tool input generated by the model and then optionally
- return results back to the model using `tool_result` content blocks.
-
- Each tool definition includes:
-
- - `name`: Name of the tool.
- - `description`: Optional, but strongly-recommended description of the tool.
- - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
- shape that the model will produce in `tool_use` output content blocks.
-
- For example, if you defined `tools` as:
-
- ```json
- [
- {
- "name": "get_stock_price",
- "description": "Get the current stock price for a given ticker symbol.",
- "input_schema": {
- "type": "object",
- "properties": {
- "ticker": {
- "type": "string",
- "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
- }
- },
- "required": ["ticker"]
- }
- }
- ]
- ```
-
- And then asked the model "What's the S&P 500 at today?", the model might produce
- `tool_use` content blocks in the response like this:
-
- ```json
- [
- {
- "type": "tool_use",
- "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "name": "get_stock_price",
- "input": { "ticker": "^GSPC" }
- }
- ]
- ```
-
- You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
- input, and return the following back to the model in a subsequent `user`
- message:
-
- ```json
- [
- {
- "type": "tool_result",
- "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "content": "259.75 USD"
- }
- ]
- ```
-
- Tools can be used for workflows that include running client-side tools and
- functions, or more generally whenever you want the model to produce a particular
- JSON structure of output.
-
- See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
-
- top_k: Only sample from the top K options for each subsequent token.
-
- Used to remove "long tail" low probability responses.
- [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- top_p: Use nucleus sampling.
-
- In nucleus sampling, we compute the cumulative distribution over all the options
- for each subsequent token in decreasing probability order and cut it off once it
- reaches a particular probability specified by `top_p`. You should either alter
- `temperature` or `top_p`, but not both.
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- betas: Optional header to specify the beta version(s) you want to use.
-
- extra_headers: Send extra headers
-
- extra_query: Add additional query parameters to the request
-
- extra_body: Add additional JSON properties to the request
-
- timeout: Override the client-level default timeout for this request, in seconds
- """
- ...
-
- @overload
- async def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- stream: bool,
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> PromptCachingBetaMessage | AsyncStream[RawPromptCachingBetaMessageStreamEvent]:
- """
- Send a structured list of input messages with text and/or image content, and the
- model will generate the next message in the conversation.
-
- The Messages API can be used for either single queries or stateless multi-turn
- conversations.
-
- Args:
- max_tokens: The maximum number of tokens to generate before stopping.
-
- Note that our models may stop _before_ reaching this maximum. This parameter
- only specifies the absolute maximum number of tokens to generate.
-
- Different models have different maximum values for this parameter. See
- [models](https://docs.anthropic.com/en/docs/models-overview) for details.
-
- messages: Input messages.
-
- Our models are trained to operate on alternating `user` and `assistant`
- conversational turns. When creating a new `Message`, you specify the prior
- conversational turns with the `messages` parameter, and the model then generates
- the next `Message` in the conversation. Consecutive `user` or `assistant` turns
- in your request will be combined into a single turn.
-
- Each input message must be an object with a `role` and `content`. You can
- specify a single `user`-role message, or you can include multiple `user` and
- `assistant` messages.
-
- If the final message uses the `assistant` role, the response content will
- continue immediately from the content in that message. This can be used to
- constrain part of the model's response.
-
- Example with a single `user` message:
-
- ```json
- [{ "role": "user", "content": "Hello, Claude" }]
- ```
-
- Example with multiple conversational turns:
-
- ```json
- [
- { "role": "user", "content": "Hello there." },
- { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
- { "role": "user", "content": "Can you explain LLMs in plain English?" }
- ]
- ```
-
- Example with a partially-filled response from Claude:
-
- ```json
- [
- {
- "role": "user",
- "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
- },
- { "role": "assistant", "content": "The best answer is (" }
- ]
- ```
-
- Each input message `content` may be either a single `string` or an array of
- content blocks, where each block has a specific `type`. Using a `string` for
- `content` is shorthand for an array of one content block of type `"text"`. The
- following input messages are equivalent:
-
- ```json
- { "role": "user", "content": "Hello, Claude" }
- ```
-
- ```json
- { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
- ```
-
- Starting with Claude 3 models, you can also send image content blocks:
-
- ```json
- {
- "role": "user",
- "content": [
- {
- "type": "image",
- "source": {
- "type": "base64",
- "media_type": "image/jpeg",
- "data": "/9j/4AAQSkZJRg..."
- }
- },
- { "type": "text", "text": "What is in this image?" }
- ]
- }
- ```
-
- We currently support the `base64` source type for images, and the `image/jpeg`,
- `image/png`, `image/gif`, and `image/webp` media types.
-
- See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
- more input examples.
-
- Note that if you want to include a
- [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
- the top-level `system` parameter — there is no `"system"` role for input
- messages in the Messages API.
-
- model: The model that will complete your prompt.\n\nSee
- [models](https://docs.anthropic.com/en/docs/models-overview) for additional
- details and options.
-
- stream: Whether to incrementally stream the response using server-sent events.
-
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
-
- metadata: An object describing metadata about the request.
-
- stop_sequences: Custom text sequences that will cause the model to stop generating.
-
- Our models will normally stop when they have naturally completed their turn,
- which will result in a response `stop_reason` of `"end_turn"`.
-
- If you want the model to stop generating when it encounters custom strings of
- text, you can use the `stop_sequences` parameter. If the model encounters one of
- the custom sequences, the response `stop_reason` value will be `"stop_sequence"`
- and the response `stop_sequence` value will contain the matched stop sequence.
-
- system: System prompt.
-
- A system prompt is a way of providing context and instructions to Claude, such
- as specifying a particular goal or role. See our
- [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
-
- temperature: Amount of randomness injected into the response.
-
- Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0`
- for analytical / multiple choice, and closer to `1.0` for creative and
- generative tasks.
-
- Note that even with `temperature` of `0.0`, the results will not be fully
- deterministic.
-
- tool_choice: How the model should use the provided tools. The model can use a specific tool,
- any available tool, or decide by itself.
-
- tools: Definitions of tools that the model may use.
-
- If you include `tools` in your API request, the model may return `tool_use`
- content blocks that represent the model's use of those tools. You can then run
- those tools using the tool input generated by the model and then optionally
- return results back to the model using `tool_result` content blocks.
-
- Each tool definition includes:
-
- - `name`: Name of the tool.
- - `description`: Optional, but strongly-recommended description of the tool.
- - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
- shape that the model will produce in `tool_use` output content blocks.
-
- For example, if you defined `tools` as:
-
- ```json
- [
- {
- "name": "get_stock_price",
- "description": "Get the current stock price for a given ticker symbol.",
- "input_schema": {
- "type": "object",
- "properties": {
- "ticker": {
- "type": "string",
- "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
- }
- },
- "required": ["ticker"]
- }
- }
- ]
- ```
-
- And then asked the model "What's the S&P 500 at today?", the model might produce
- `tool_use` content blocks in the response like this:
-
- ```json
- [
- {
- "type": "tool_use",
- "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "name": "get_stock_price",
- "input": { "ticker": "^GSPC" }
- }
- ]
- ```
-
- You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
- input, and return the following back to the model in a subsequent `user`
- message:
-
- ```json
- [
- {
- "type": "tool_result",
- "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
- "content": "259.75 USD"
- }
- ]
- ```
-
- Tools can be used for workflows that include running client-side tools and
- functions, or more generally whenever you want the model to produce a particular
- JSON structure of output.
-
- See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
-
- top_k: Only sample from the top K options for each subsequent token.
-
- Used to remove "long tail" low probability responses.
- [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277).
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- top_p: Use nucleus sampling.
-
- In nucleus sampling, we compute the cumulative distribution over all the options
- for each subsequent token in decreasing probability order and cut it off once it
- reaches a particular probability specified by `top_p`. You should either alter
- `temperature` or `top_p`, but not both.
-
- Recommended for advanced use cases only. You usually only need to use
- `temperature`.
-
- betas: Optional header to specify the beta version(s) you want to use.
-
- extra_headers: Send extra headers
-
- extra_query: Add additional query parameters to the request
-
- extra_body: Add additional JSON properties to the request
-
- timeout: Override the client-level default timeout for this request, in seconds
- """
- ...
-
- @required_args(["max_tokens", "messages", "model"], ["max_tokens", "messages", "model", "stream"])
- async def create(
- self,
- *,
- max_tokens: int,
- messages: Iterable[PromptCachingBetaMessageParam],
- model: ModelParam,
- metadata: MetadataParam | NotGiven = NOT_GIVEN,
- stop_sequences: List[str] | NotGiven = NOT_GIVEN,
- stream: Literal[False] | Literal[True] | NotGiven = NOT_GIVEN,
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN,
- temperature: float | NotGiven = NOT_GIVEN,
- tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
- tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN,
- top_k: int | NotGiven = NOT_GIVEN,
- top_p: float | NotGiven = NOT_GIVEN,
- betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN,
- # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
- # The extra values given here take precedence over values defined on the client or passed to this method.
- extra_headers: Headers | None = None,
- extra_query: Query | None = None,
- extra_body: Body | None = None,
- timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
- ) -> PromptCachingBetaMessage | AsyncStream[RawPromptCachingBetaMessageStreamEvent]:
- if not is_given(timeout) and self._client.timeout == DEFAULT_TIMEOUT:
- timeout = 600
- extra_headers = {
- **strip_not_given(
- {
- "anthropic-beta": ",".join(chain((str(e) for e in betas), ["prompt-caching-2024-07-31"]))
- if is_given(betas)
- else NOT_GIVEN
- }
- ),
- **(extra_headers or {}),
- }
- extra_headers = {"anthropic-beta": "prompt-caching-2024-07-31", **(extra_headers or {})}
- return await self._post(
- "/v1/messages?beta=prompt_caching",
- body=await async_maybe_transform(
- {
- "max_tokens": max_tokens,
- "messages": messages,
- "model": model,
- "metadata": metadata,
- "stop_sequences": stop_sequences,
- "stream": stream,
- "system": system,
- "temperature": temperature,
- "tool_choice": tool_choice,
- "tools": tools,
- "top_k": top_k,
- "top_p": top_p,
- },
- message_create_params.MessageCreateParams,
- ),
- options=make_request_options(
- extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
- ),
- cast_to=PromptCachingBetaMessage,
- stream=stream or False,
- stream_cls=AsyncStream[RawPromptCachingBetaMessageStreamEvent],
- )
-
-
-class MessagesWithRawResponse:
- def __init__(self, messages: Messages) -> None:
- self._messages = messages
-
- self.create = _legacy_response.to_raw_response_wrapper(
- messages.create,
- )
-
-
-class AsyncMessagesWithRawResponse:
- def __init__(self, messages: AsyncMessages) -> None:
- self._messages = messages
-
- self.create = _legacy_response.async_to_raw_response_wrapper(
- messages.create,
- )
-
-
-class MessagesWithStreamingResponse:
- def __init__(self, messages: Messages) -> None:
- self._messages = messages
-
- self.create = to_streamed_response_wrapper(
- messages.create,
- )
-
-
-class AsyncMessagesWithStreamingResponse:
- def __init__(self, messages: AsyncMessages) -> None:
- self._messages = messages
-
- self.create = async_to_streamed_response_wrapper(
- messages.create,
- )
diff --git a/src/anthropic/resources/beta/prompt_caching/prompt_caching.py b/src/anthropic/resources/beta/prompt_caching/prompt_caching.py
deleted file mode 100644
index 0154a0d3..00000000
--- a/src/anthropic/resources/beta/prompt_caching/prompt_caching.py
+++ /dev/null
@@ -1,102 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from .messages import (
- Messages,
- AsyncMessages,
- MessagesWithRawResponse,
- AsyncMessagesWithRawResponse,
- MessagesWithStreamingResponse,
- AsyncMessagesWithStreamingResponse,
-)
-from ...._compat import cached_property
-from ...._resource import SyncAPIResource, AsyncAPIResource
-
-__all__ = ["PromptCaching", "AsyncPromptCaching"]
-
-
-class PromptCaching(SyncAPIResource):
- @cached_property
- def messages(self) -> Messages:
- return Messages(self._client)
-
- @cached_property
- def with_raw_response(self) -> PromptCachingWithRawResponse:
- """
- This property can be used as a prefix for any HTTP method call to return the
- the raw response object instead of the parsed content.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
- """
- return PromptCachingWithRawResponse(self)
-
- @cached_property
- def with_streaming_response(self) -> PromptCachingWithStreamingResponse:
- """
- An alternative to `.with_raw_response` that doesn't eagerly read the response body.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
- """
- return PromptCachingWithStreamingResponse(self)
-
-
-class AsyncPromptCaching(AsyncAPIResource):
- @cached_property
- def messages(self) -> AsyncMessages:
- return AsyncMessages(self._client)
-
- @cached_property
- def with_raw_response(self) -> AsyncPromptCachingWithRawResponse:
- """
- This property can be used as a prefix for any HTTP method call to return the
- the raw response object instead of the parsed content.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
- """
- return AsyncPromptCachingWithRawResponse(self)
-
- @cached_property
- def with_streaming_response(self) -> AsyncPromptCachingWithStreamingResponse:
- """
- An alternative to `.with_raw_response` that doesn't eagerly read the response body.
-
- For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
- """
- return AsyncPromptCachingWithStreamingResponse(self)
-
-
-class PromptCachingWithRawResponse:
- def __init__(self, prompt_caching: PromptCaching) -> None:
- self._prompt_caching = prompt_caching
-
- @cached_property
- def messages(self) -> MessagesWithRawResponse:
- return MessagesWithRawResponse(self._prompt_caching.messages)
-
-
-class AsyncPromptCachingWithRawResponse:
- def __init__(self, prompt_caching: AsyncPromptCaching) -> None:
- self._prompt_caching = prompt_caching
-
- @cached_property
- def messages(self) -> AsyncMessagesWithRawResponse:
- return AsyncMessagesWithRawResponse(self._prompt_caching.messages)
-
-
-class PromptCachingWithStreamingResponse:
- def __init__(self, prompt_caching: PromptCaching) -> None:
- self._prompt_caching = prompt_caching
-
- @cached_property
- def messages(self) -> MessagesWithStreamingResponse:
- return MessagesWithStreamingResponse(self._prompt_caching.messages)
-
-
-class AsyncPromptCachingWithStreamingResponse:
- def __init__(self, prompt_caching: AsyncPromptCaching) -> None:
- self._prompt_caching = prompt_caching
-
- @cached_property
- def messages(self) -> AsyncMessagesWithStreamingResponse:
- return AsyncMessagesWithStreamingResponse(self._prompt_caching.messages)
diff --git a/src/anthropic/resources/beta/prompt_caching/__init__.py b/src/anthropic/resources/messages/__init__.py
similarity index 52%
rename from src/anthropic/resources/beta/prompt_caching/__init__.py
rename to src/anthropic/resources/messages/__init__.py
index ccf0b0a8..34b0a923 100644
--- a/src/anthropic/resources/beta/prompt_caching/__init__.py
+++ b/src/anthropic/resources/messages/__init__.py
@@ -1,5 +1,13 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+from .batches import (
+ Batches,
+ AsyncBatches,
+ BatchesWithRawResponse,
+ AsyncBatchesWithRawResponse,
+ BatchesWithStreamingResponse,
+ AsyncBatchesWithStreamingResponse,
+)
from .messages import (
Messages,
AsyncMessages,
@@ -8,26 +16,18 @@
MessagesWithStreamingResponse,
AsyncMessagesWithStreamingResponse,
)
-from .prompt_caching import (
- PromptCaching,
- AsyncPromptCaching,
- PromptCachingWithRawResponse,
- AsyncPromptCachingWithRawResponse,
- PromptCachingWithStreamingResponse,
- AsyncPromptCachingWithStreamingResponse,
-)
__all__ = [
+ "Batches",
+ "AsyncBatches",
+ "BatchesWithRawResponse",
+ "AsyncBatchesWithRawResponse",
+ "BatchesWithStreamingResponse",
+ "AsyncBatchesWithStreamingResponse",
"Messages",
"AsyncMessages",
"MessagesWithRawResponse",
"AsyncMessagesWithRawResponse",
"MessagesWithStreamingResponse",
"AsyncMessagesWithStreamingResponse",
- "PromptCaching",
- "AsyncPromptCaching",
- "PromptCachingWithRawResponse",
- "AsyncPromptCachingWithRawResponse",
- "PromptCachingWithStreamingResponse",
- "AsyncPromptCachingWithStreamingResponse",
]
diff --git a/src/anthropic/resources/messages/batches.py b/src/anthropic/resources/messages/batches.py
new file mode 100644
index 00000000..8e4add91
--- /dev/null
+++ b/src/anthropic/resources/messages/batches.py
@@ -0,0 +1,600 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from typing import Iterable
+
+import httpx
+
+from ... import _legacy_response
+from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven
+from ..._utils import (
+ maybe_transform,
+ async_maybe_transform,
+)
+from ..._compat import cached_property
+from ..._resource import SyncAPIResource, AsyncAPIResource
+from ..._response import (
+ BinaryAPIResponse,
+ AsyncBinaryAPIResponse,
+ StreamedBinaryAPIResponse,
+ AsyncStreamedBinaryAPIResponse,
+ to_streamed_response_wrapper,
+ to_custom_raw_response_wrapper,
+ async_to_streamed_response_wrapper,
+ to_custom_streamed_response_wrapper,
+ async_to_custom_raw_response_wrapper,
+ async_to_custom_streamed_response_wrapper,
+)
+from ...pagination import SyncPage, AsyncPage
+from ..._base_client import AsyncPaginator, make_request_options
+from ...types.messages import batch_list_params, batch_create_params
+from ...types.messages.message_batch import MessageBatch
+
+__all__ = ["Batches", "AsyncBatches"]
+
+
+class Batches(SyncAPIResource):
+ @cached_property
+ def with_raw_response(self) -> BatchesWithRawResponse:
+ """
+ This property can be used as a prefix for any HTTP method call to return the
+ the raw response object instead of the parsed content.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
+ """
+ return BatchesWithRawResponse(self)
+
+ @cached_property
+ def with_streaming_response(self) -> BatchesWithStreamingResponse:
+ """
+ An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
+ """
+ return BatchesWithStreamingResponse(self)
+
+ def create(
+ self,
+ *,
+ requests: Iterable[batch_create_params.Request],
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageBatch:
+ """
+ Send a batch of Message creation requests.
+
+ The Message Batches API can be used to process multiple Messages API requests at
+ once. Once a Message Batch is created, it begins processing immediately. Batches
+ can take up to 24 hours to complete.
+
+ Args:
+ requests: List of requests for prompt completion. Each is an individual request to create
+ a Message.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._post(
+ "/v1/messages/batches",
+ body=maybe_transform({"requests": requests}, batch_create_params.BatchCreateParams),
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageBatch,
+ )
+
+ def retrieve(
+ self,
+ message_batch_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageBatch:
+ """This endpoint is idempotent and can be used to poll for Message Batch
+ completion.
+
+ To access the results of a Message Batch, make a request to the
+ `results_url` field in the response.
+
+ Args:
+ message_batch_id: ID of the Message Batch.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not message_batch_id:
+ raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}")
+ return self._get(
+ f"/v1/messages/batches/{message_batch_id}",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageBatch,
+ )
+
+ def list(
+ self,
+ *,
+ after_id: str | NotGiven = NOT_GIVEN,
+ before_id: str | NotGiven = NOT_GIVEN,
+ limit: int | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> SyncPage[MessageBatch]:
+ """List all Message Batches within a Workspace.
+
+ Most recently created batches are
+ returned first.
+
+ Args:
+ after_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately after this object.
+
+ before_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately before this object.
+
+ limit: Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._get_api_list(
+ "/v1/messages/batches",
+ page=SyncPage[MessageBatch],
+ options=make_request_options(
+ extra_headers=extra_headers,
+ extra_query=extra_query,
+ extra_body=extra_body,
+ timeout=timeout,
+ query=maybe_transform(
+ {
+ "after_id": after_id,
+ "before_id": before_id,
+ "limit": limit,
+ },
+ batch_list_params.BatchListParams,
+ ),
+ ),
+ model=MessageBatch,
+ )
+
+ def cancel(
+ self,
+ message_batch_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageBatch:
+ """Batches may be canceled any time before processing ends.
+
+ Once cancellation is
+ initiated, the batch enters a `canceling` state, at which time the system may
+ complete any in-progress, non-interruptible requests before finalizing
+ cancellation.
+
+ The number of canceled requests is specified in `request_counts`. To determine
+ which requests were canceled, check the individual results within the batch.
+ Note that cancellation may not result in any canceled requests if they were
+ non-interruptible.
+
+ Args:
+ message_batch_id: ID of the Message Batch.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not message_batch_id:
+ raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}")
+ return self._post(
+ f"/v1/messages/batches/{message_batch_id}/cancel",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageBatch,
+ )
+
+ def results(
+ self,
+ message_batch_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> BinaryAPIResponse:
+ """
+ Streams the results of a Message Batch as a `.jsonl` file.
+
+ Each line in the file is a JSON object containing the result of a single request
+ in the Message Batch. Results are not guaranteed to be in the same order as
+ requests. Use the `custom_id` field to match results to requests.
+
+ Args:
+ message_batch_id: ID of the Message Batch.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not message_batch_id:
+ raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}")
+ extra_headers = {"Accept": "application/binary", **(extra_headers or {})}
+ return self._get(
+ f"/v1/messages/batches/{message_batch_id}/results",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=BinaryAPIResponse,
+ )
+
+
+class AsyncBatches(AsyncAPIResource):
+ @cached_property
+ def with_raw_response(self) -> AsyncBatchesWithRawResponse:
+ """
+ This property can be used as a prefix for any HTTP method call to return the
+ the raw response object instead of the parsed content.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
+ """
+ return AsyncBatchesWithRawResponse(self)
+
+ @cached_property
+ def with_streaming_response(self) -> AsyncBatchesWithStreamingResponse:
+ """
+ An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
+ """
+ return AsyncBatchesWithStreamingResponse(self)
+
+ async def create(
+ self,
+ *,
+ requests: Iterable[batch_create_params.Request],
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageBatch:
+ """
+ Send a batch of Message creation requests.
+
+ The Message Batches API can be used to process multiple Messages API requests at
+ once. Once a Message Batch is created, it begins processing immediately. Batches
+ can take up to 24 hours to complete.
+
+ Args:
+ requests: List of requests for prompt completion. Each is an individual request to create
+ a Message.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return await self._post(
+ "/v1/messages/batches",
+ body=await async_maybe_transform({"requests": requests}, batch_create_params.BatchCreateParams),
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageBatch,
+ )
+
+ async def retrieve(
+ self,
+ message_batch_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageBatch:
+ """This endpoint is idempotent and can be used to poll for Message Batch
+ completion.
+
+ To access the results of a Message Batch, make a request to the
+ `results_url` field in the response.
+
+ Args:
+ message_batch_id: ID of the Message Batch.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not message_batch_id:
+ raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}")
+ return await self._get(
+ f"/v1/messages/batches/{message_batch_id}",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageBatch,
+ )
+
+ def list(
+ self,
+ *,
+ after_id: str | NotGiven = NOT_GIVEN,
+ before_id: str | NotGiven = NOT_GIVEN,
+ limit: int | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> AsyncPaginator[MessageBatch, AsyncPage[MessageBatch]]:
+ """List all Message Batches within a Workspace.
+
+ Most recently created batches are
+ returned first.
+
+ Args:
+ after_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately after this object.
+
+ before_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately before this object.
+
+ limit: Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._get_api_list(
+ "/v1/messages/batches",
+ page=AsyncPage[MessageBatch],
+ options=make_request_options(
+ extra_headers=extra_headers,
+ extra_query=extra_query,
+ extra_body=extra_body,
+ timeout=timeout,
+ query=maybe_transform(
+ {
+ "after_id": after_id,
+ "before_id": before_id,
+ "limit": limit,
+ },
+ batch_list_params.BatchListParams,
+ ),
+ ),
+ model=MessageBatch,
+ )
+
+ async def cancel(
+ self,
+ message_batch_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageBatch:
+ """Batches may be canceled any time before processing ends.
+
+ Once cancellation is
+ initiated, the batch enters a `canceling` state, at which time the system may
+ complete any in-progress, non-interruptible requests before finalizing
+ cancellation.
+
+ The number of canceled requests is specified in `request_counts`. To determine
+ which requests were canceled, check the individual results within the batch.
+ Note that cancellation may not result in any canceled requests if they were
+ non-interruptible.
+
+ Args:
+ message_batch_id: ID of the Message Batch.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not message_batch_id:
+ raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}")
+ return await self._post(
+ f"/v1/messages/batches/{message_batch_id}/cancel",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageBatch,
+ )
+
+ async def results(
+ self,
+ message_batch_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> AsyncBinaryAPIResponse:
+ """
+ Streams the results of a Message Batch as a `.jsonl` file.
+
+ Each line in the file is a JSON object containing the result of a single request
+ in the Message Batch. Results are not guaranteed to be in the same order as
+ requests. Use the `custom_id` field to match results to requests.
+
+ Args:
+ message_batch_id: ID of the Message Batch.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not message_batch_id:
+ raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}")
+ extra_headers = {"Accept": "application/binary", **(extra_headers or {})}
+ return await self._get(
+ f"/v1/messages/batches/{message_batch_id}/results",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=AsyncBinaryAPIResponse,
+ )
+
+
+class BatchesWithRawResponse:
+ def __init__(self, batches: Batches) -> None:
+ self._batches = batches
+
+ self.create = _legacy_response.to_raw_response_wrapper(
+ batches.create,
+ )
+ self.retrieve = _legacy_response.to_raw_response_wrapper(
+ batches.retrieve,
+ )
+ self.list = _legacy_response.to_raw_response_wrapper(
+ batches.list,
+ )
+ self.cancel = _legacy_response.to_raw_response_wrapper(
+ batches.cancel,
+ )
+ self.results = to_custom_raw_response_wrapper(
+ batches.results,
+ BinaryAPIResponse,
+ )
+
+
+class AsyncBatchesWithRawResponse:
+ def __init__(self, batches: AsyncBatches) -> None:
+ self._batches = batches
+
+ self.create = _legacy_response.async_to_raw_response_wrapper(
+ batches.create,
+ )
+ self.retrieve = _legacy_response.async_to_raw_response_wrapper(
+ batches.retrieve,
+ )
+ self.list = _legacy_response.async_to_raw_response_wrapper(
+ batches.list,
+ )
+ self.cancel = _legacy_response.async_to_raw_response_wrapper(
+ batches.cancel,
+ )
+ self.results = async_to_custom_raw_response_wrapper(
+ batches.results,
+ AsyncBinaryAPIResponse,
+ )
+
+
+class BatchesWithStreamingResponse:
+ def __init__(self, batches: Batches) -> None:
+ self._batches = batches
+
+ self.create = to_streamed_response_wrapper(
+ batches.create,
+ )
+ self.retrieve = to_streamed_response_wrapper(
+ batches.retrieve,
+ )
+ self.list = to_streamed_response_wrapper(
+ batches.list,
+ )
+ self.cancel = to_streamed_response_wrapper(
+ batches.cancel,
+ )
+ self.results = to_custom_streamed_response_wrapper(
+ batches.results,
+ StreamedBinaryAPIResponse,
+ )
+
+
+class AsyncBatchesWithStreamingResponse:
+ def __init__(self, batches: AsyncBatches) -> None:
+ self._batches = batches
+
+ self.create = async_to_streamed_response_wrapper(
+ batches.create,
+ )
+ self.retrieve = async_to_streamed_response_wrapper(
+ batches.retrieve,
+ )
+ self.list = async_to_streamed_response_wrapper(
+ batches.list,
+ )
+ self.cancel = async_to_streamed_response_wrapper(
+ batches.cancel,
+ )
+ self.results = async_to_custom_streamed_response_wrapper(
+ batches.results,
+ AsyncStreamedBinaryAPIResponse,
+ )
diff --git a/src/anthropic/resources/messages.py b/src/anthropic/resources/messages/messages.py
similarity index 78%
rename from src/anthropic/resources/messages.py
rename to src/anthropic/resources/messages/messages.py
index fbb0c68c..d19caf22 100644
--- a/src/anthropic/resources/messages.py
+++ b/src/anthropic/resources/messages/messages.py
@@ -7,34 +7,47 @@
import httpx
-from .. import _legacy_response
-from ..types import message_create_params
-from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
-from .._utils import (
+from ... import _legacy_response
+from ...types import message_create_params, message_count_tokens_params
+from .batches import (
+ Batches,
+ AsyncBatches,
+ BatchesWithRawResponse,
+ AsyncBatchesWithRawResponse,
+ BatchesWithStreamingResponse,
+ AsyncBatchesWithStreamingResponse,
+)
+from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven
+from ..._utils import (
is_given,
required_args,
maybe_transform,
async_maybe_transform,
)
-from .._compat import cached_property
-from .._resource import SyncAPIResource, AsyncAPIResource
-from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
-from .._constants import DEFAULT_TIMEOUT
-from .._streaming import Stream, AsyncStream
-from .._base_client import make_request_options
-from ..types.message import Message
-from ..types.tool_param import ToolParam
-from ..types.model_param import ModelParam
-from ..types.message_param import MessageParam
-from ..types.metadata_param import MetadataParam
-from ..types.text_block_param import TextBlockParam
-from ..types.tool_choice_param import ToolChoiceParam
-from ..types.raw_message_stream_event import RawMessageStreamEvent
+from ..._compat import cached_property
+from ..._resource import SyncAPIResource, AsyncAPIResource
+from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
+from ..._constants import DEFAULT_TIMEOUT
+from ..._streaming import Stream, AsyncStream
+from ..._base_client import make_request_options
+from ...types.message import Message
+from ...types.tool_param import ToolParam
+from ...types.model_param import ModelParam
+from ...types.message_param import MessageParam
+from ...types.metadata_param import MetadataParam
+from ...types.text_block_param import TextBlockParam
+from ...types.tool_choice_param import ToolChoiceParam
+from ...types.message_tokens_count import MessageTokensCount
+from ...types.raw_message_stream_event import RawMessageStreamEvent
__all__ = ["Messages", "AsyncMessages"]
class Messages(SyncAPIResource):
+ @cached_property
+ def batches(self) -> Batches:
+ return Batches(self._client)
+
@cached_property
def with_raw_response(self) -> MessagesWithRawResponse:
"""
@@ -892,8 +905,229 @@ def create(
stream_cls=Stream[RawMessageStreamEvent],
)
+ def count_tokens(
+ self,
+ *,
+ messages: Iterable[MessageParam],
+ model: ModelParam,
+ system: Union[str, Iterable[TextBlockParam]] | NotGiven = NOT_GIVEN,
+ tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
+ tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageTokensCount:
+ """
+ Count the number of tokens in a Message.
+
+ The Token Count API can be used to count the number of tokens in a Message,
+ including tools, images, and documents, without creating it.
+
+ Args:
+ messages: Input messages.
+
+ Our models are trained to operate on alternating `user` and `assistant`
+ conversational turns. When creating a new `Message`, you specify the prior
+ conversational turns with the `messages` parameter, and the model then generates
+ the next `Message` in the conversation. Consecutive `user` or `assistant` turns
+ in your request will be combined into a single turn.
+
+ Each input message must be an object with a `role` and `content`. You can
+ specify a single `user`-role message, or you can include multiple `user` and
+ `assistant` messages.
+
+ If the final message uses the `assistant` role, the response content will
+ continue immediately from the content in that message. This can be used to
+ constrain part of the model's response.
+
+ Example with a single `user` message:
+
+ ```json
+ [{ "role": "user", "content": "Hello, Claude" }]
+ ```
+
+ Example with multiple conversational turns:
+
+ ```json
+ [
+ { "role": "user", "content": "Hello there." },
+ { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
+ { "role": "user", "content": "Can you explain LLMs in plain English?" }
+ ]
+ ```
+
+ Example with a partially-filled response from Claude:
+
+ ```json
+ [
+ {
+ "role": "user",
+ "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
+ },
+ { "role": "assistant", "content": "The best answer is (" }
+ ]
+ ```
+
+ Each input message `content` may be either a single `string` or an array of
+ content blocks, where each block has a specific `type`. Using a `string` for
+ `content` is shorthand for an array of one content block of type `"text"`. The
+ following input messages are equivalent:
+
+ ```json
+ { "role": "user", "content": "Hello, Claude" }
+ ```
+
+ ```json
+ { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
+ ```
+
+ Starting with Claude 3 models, you can also send image content blocks:
+
+ ```json
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "image",
+ "source": {
+ "type": "base64",
+ "media_type": "image/jpeg",
+ "data": "/9j/4AAQSkZJRg..."
+ }
+ },
+ { "type": "text", "text": "What is in this image?" }
+ ]
+ }
+ ```
+
+ We currently support the `base64` source type for images, and the `image/jpeg`,
+ `image/png`, `image/gif`, and `image/webp` media types.
+
+ See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
+ more input examples.
+
+ Note that if you want to include a
+ [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
+ the top-level `system` parameter — there is no `"system"` role for input
+ messages in the Messages API.
+
+ model: The model that will complete your prompt.\n\nSee
+ [models](https://docs.anthropic.com/en/docs/models-overview) for additional
+ details and options.
+
+ system: System prompt.
+
+ A system prompt is a way of providing context and instructions to Claude, such
+ as specifying a particular goal or role. See our
+ [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
+
+ tool_choice: How the model should use the provided tools. The model can use a specific tool,
+ any available tool, or decide by itself.
+
+ tools: Definitions of tools that the model may use.
+
+ If you include `tools` in your API request, the model may return `tool_use`
+ content blocks that represent the model's use of those tools. You can then run
+ those tools using the tool input generated by the model and then optionally
+ return results back to the model using `tool_result` content blocks.
+
+ Each tool definition includes:
+
+ - `name`: Name of the tool.
+ - `description`: Optional, but strongly-recommended description of the tool.
+ - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
+ shape that the model will produce in `tool_use` output content blocks.
+
+ For example, if you defined `tools` as:
+
+ ```json
+ [
+ {
+ "name": "get_stock_price",
+ "description": "Get the current stock price for a given ticker symbol.",
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "ticker": {
+ "type": "string",
+ "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
+ }
+ },
+ "required": ["ticker"]
+ }
+ }
+ ]
+ ```
+
+ And then asked the model "What's the S&P 500 at today?", the model might produce
+ `tool_use` content blocks in the response like this:
+
+ ```json
+ [
+ {
+ "type": "tool_use",
+ "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
+ "name": "get_stock_price",
+ "input": { "ticker": "^GSPC" }
+ }
+ ]
+ ```
+
+ You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
+ input, and return the following back to the model in a subsequent `user`
+ message:
+
+ ```json
+ [
+ {
+ "type": "tool_result",
+ "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
+ "content": "259.75 USD"
+ }
+ ]
+ ```
+
+ Tools can be used for workflows that include running client-side tools and
+ functions, or more generally whenever you want the model to produce a particular
+ JSON structure of output.
+
+ See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._post(
+ "/v1/messages/count_tokens",
+ body=maybe_transform(
+ {
+ "messages": messages,
+ "model": model,
+ "system": system,
+ "tool_choice": tool_choice,
+ "tools": tools,
+ },
+ message_count_tokens_params.MessageCountTokensParams,
+ ),
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageTokensCount,
+ )
+
class AsyncMessages(AsyncAPIResource):
+ @cached_property
+ def batches(self) -> AsyncBatches:
+ return AsyncBatches(self._client)
+
@cached_property
def with_raw_response(self) -> AsyncMessagesWithRawResponse:
"""
@@ -1751,6 +1985,223 @@ async def create(
stream_cls=AsyncStream[RawMessageStreamEvent],
)
+ async def count_tokens(
+ self,
+ *,
+ messages: Iterable[MessageParam],
+ model: ModelParam,
+ system: Union[str, Iterable[TextBlockParam]] | NotGiven = NOT_GIVEN,
+ tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN,
+ tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> MessageTokensCount:
+ """
+ Count the number of tokens in a Message.
+
+ The Token Count API can be used to count the number of tokens in a Message,
+ including tools, images, and documents, without creating it.
+
+ Args:
+ messages: Input messages.
+
+ Our models are trained to operate on alternating `user` and `assistant`
+ conversational turns. When creating a new `Message`, you specify the prior
+ conversational turns with the `messages` parameter, and the model then generates
+ the next `Message` in the conversation. Consecutive `user` or `assistant` turns
+ in your request will be combined into a single turn.
+
+ Each input message must be an object with a `role` and `content`. You can
+ specify a single `user`-role message, or you can include multiple `user` and
+ `assistant` messages.
+
+ If the final message uses the `assistant` role, the response content will
+ continue immediately from the content in that message. This can be used to
+ constrain part of the model's response.
+
+ Example with a single `user` message:
+
+ ```json
+ [{ "role": "user", "content": "Hello, Claude" }]
+ ```
+
+ Example with multiple conversational turns:
+
+ ```json
+ [
+ { "role": "user", "content": "Hello there." },
+ { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
+ { "role": "user", "content": "Can you explain LLMs in plain English?" }
+ ]
+ ```
+
+ Example with a partially-filled response from Claude:
+
+ ```json
+ [
+ {
+ "role": "user",
+ "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
+ },
+ { "role": "assistant", "content": "The best answer is (" }
+ ]
+ ```
+
+ Each input message `content` may be either a single `string` or an array of
+ content blocks, where each block has a specific `type`. Using a `string` for
+ `content` is shorthand for an array of one content block of type `"text"`. The
+ following input messages are equivalent:
+
+ ```json
+ { "role": "user", "content": "Hello, Claude" }
+ ```
+
+ ```json
+ { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
+ ```
+
+ Starting with Claude 3 models, you can also send image content blocks:
+
+ ```json
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "image",
+ "source": {
+ "type": "base64",
+ "media_type": "image/jpeg",
+ "data": "/9j/4AAQSkZJRg..."
+ }
+ },
+ { "type": "text", "text": "What is in this image?" }
+ ]
+ }
+ ```
+
+ We currently support the `base64` source type for images, and the `image/jpeg`,
+ `image/png`, `image/gif`, and `image/webp` media types.
+
+ See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
+ more input examples.
+
+ Note that if you want to include a
+ [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
+ the top-level `system` parameter — there is no `"system"` role for input
+ messages in the Messages API.
+
+ model: The model that will complete your prompt.\n\nSee
+ [models](https://docs.anthropic.com/en/docs/models-overview) for additional
+ details and options.
+
+ system: System prompt.
+
+ A system prompt is a way of providing context and instructions to Claude, such
+ as specifying a particular goal or role. See our
+ [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
+
+ tool_choice: How the model should use the provided tools. The model can use a specific tool,
+ any available tool, or decide by itself.
+
+ tools: Definitions of tools that the model may use.
+
+ If you include `tools` in your API request, the model may return `tool_use`
+ content blocks that represent the model's use of those tools. You can then run
+ those tools using the tool input generated by the model and then optionally
+ return results back to the model using `tool_result` content blocks.
+
+ Each tool definition includes:
+
+ - `name`: Name of the tool.
+ - `description`: Optional, but strongly-recommended description of the tool.
+ - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
+ shape that the model will produce in `tool_use` output content blocks.
+
+ For example, if you defined `tools` as:
+
+ ```json
+ [
+ {
+ "name": "get_stock_price",
+ "description": "Get the current stock price for a given ticker symbol.",
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "ticker": {
+ "type": "string",
+ "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
+ }
+ },
+ "required": ["ticker"]
+ }
+ }
+ ]
+ ```
+
+ And then asked the model "What's the S&P 500 at today?", the model might produce
+ `tool_use` content blocks in the response like this:
+
+ ```json
+ [
+ {
+ "type": "tool_use",
+ "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
+ "name": "get_stock_price",
+ "input": { "ticker": "^GSPC" }
+ }
+ ]
+ ```
+
+ You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
+ input, and return the following back to the model in a subsequent `user`
+ message:
+
+ ```json
+ [
+ {
+ "type": "tool_result",
+ "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
+ "content": "259.75 USD"
+ }
+ ]
+ ```
+
+ Tools can be used for workflows that include running client-side tools and
+ functions, or more generally whenever you want the model to produce a particular
+ JSON structure of output.
+
+ See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return await self._post(
+ "/v1/messages/count_tokens",
+ body=await async_maybe_transform(
+ {
+ "messages": messages,
+ "model": model,
+ "system": system,
+ "tool_choice": tool_choice,
+ "tools": tools,
+ },
+ message_count_tokens_params.MessageCountTokensParams,
+ ),
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=MessageTokensCount,
+ )
+
class MessagesWithRawResponse:
def __init__(self, messages: Messages) -> None:
@@ -1759,6 +2210,13 @@ def __init__(self, messages: Messages) -> None:
self.create = _legacy_response.to_raw_response_wrapper(
messages.create,
)
+ self.count_tokens = _legacy_response.to_raw_response_wrapper(
+ messages.count_tokens,
+ )
+
+ @cached_property
+ def batches(self) -> BatchesWithRawResponse:
+ return BatchesWithRawResponse(self._messages.batches)
class AsyncMessagesWithRawResponse:
@@ -1768,6 +2226,13 @@ def __init__(self, messages: AsyncMessages) -> None:
self.create = _legacy_response.async_to_raw_response_wrapper(
messages.create,
)
+ self.count_tokens = _legacy_response.async_to_raw_response_wrapper(
+ messages.count_tokens,
+ )
+
+ @cached_property
+ def batches(self) -> AsyncBatchesWithRawResponse:
+ return AsyncBatchesWithRawResponse(self._messages.batches)
class MessagesWithStreamingResponse:
@@ -1777,6 +2242,13 @@ def __init__(self, messages: Messages) -> None:
self.create = to_streamed_response_wrapper(
messages.create,
)
+ self.count_tokens = to_streamed_response_wrapper(
+ messages.count_tokens,
+ )
+
+ @cached_property
+ def batches(self) -> BatchesWithStreamingResponse:
+ return BatchesWithStreamingResponse(self._messages.batches)
class AsyncMessagesWithStreamingResponse:
@@ -1786,3 +2258,10 @@ def __init__(self, messages: AsyncMessages) -> None:
self.create = async_to_streamed_response_wrapper(
messages.create,
)
+ self.count_tokens = async_to_streamed_response_wrapper(
+ messages.count_tokens,
+ )
+
+ @cached_property
+ def batches(self) -> AsyncBatchesWithStreamingResponse:
+ return AsyncBatchesWithStreamingResponse(self._messages.batches)
diff --git a/src/anthropic/resources/models.py b/src/anthropic/resources/models.py
new file mode 100644
index 00000000..aec102bf
--- /dev/null
+++ b/src/anthropic/resources/models.py
@@ -0,0 +1,300 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+import httpx
+
+from .. import _legacy_response
+from ..types import model_list_params
+from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
+from .._utils import maybe_transform
+from .._compat import cached_property
+from .._resource import SyncAPIResource, AsyncAPIResource
+from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
+from ..pagination import SyncPage, AsyncPage
+from .._base_client import AsyncPaginator, make_request_options
+from ..types.model_info import ModelInfo
+
+__all__ = ["Models", "AsyncModels"]
+
+
+class Models(SyncAPIResource):
+ @cached_property
+ def with_raw_response(self) -> ModelsWithRawResponse:
+ """
+ This property can be used as a prefix for any HTTP method call to return the
+ the raw response object instead of the parsed content.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
+ """
+ return ModelsWithRawResponse(self)
+
+ @cached_property
+ def with_streaming_response(self) -> ModelsWithStreamingResponse:
+ """
+ An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
+ """
+ return ModelsWithStreamingResponse(self)
+
+ def retrieve(
+ self,
+ model_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> ModelInfo:
+ """
+ Get a specific model.
+
+ The Models API response can be used to determine information about a specific
+ model or resolve a model alias to a model ID.
+
+ Args:
+ model_id: Model identifier or alias.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not model_id:
+ raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}")
+ return self._get(
+ f"/v1/models/{model_id}",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=ModelInfo,
+ )
+
+ def list(
+ self,
+ *,
+ after_id: str | NotGiven = NOT_GIVEN,
+ before_id: str | NotGiven = NOT_GIVEN,
+ limit: int | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> SyncPage[ModelInfo]:
+ """
+ List available models.
+
+ The Models API response can be used to determine which models are available for
+ use in the API. More recently released models are listed first.
+
+ Args:
+ after_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately after this object.
+
+ before_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately before this object.
+
+ limit: Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._get_api_list(
+ "/v1/models",
+ page=SyncPage[ModelInfo],
+ options=make_request_options(
+ extra_headers=extra_headers,
+ extra_query=extra_query,
+ extra_body=extra_body,
+ timeout=timeout,
+ query=maybe_transform(
+ {
+ "after_id": after_id,
+ "before_id": before_id,
+ "limit": limit,
+ },
+ model_list_params.ModelListParams,
+ ),
+ ),
+ model=ModelInfo,
+ )
+
+
+class AsyncModels(AsyncAPIResource):
+ @cached_property
+ def with_raw_response(self) -> AsyncModelsWithRawResponse:
+ """
+ This property can be used as a prefix for any HTTP method call to return the
+ the raw response object instead of the parsed content.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers
+ """
+ return AsyncModelsWithRawResponse(self)
+
+ @cached_property
+ def with_streaming_response(self) -> AsyncModelsWithStreamingResponse:
+ """
+ An alternative to `.with_raw_response` that doesn't eagerly read the response body.
+
+ For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response
+ """
+ return AsyncModelsWithStreamingResponse(self)
+
+ async def retrieve(
+ self,
+ model_id: str,
+ *,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> ModelInfo:
+ """
+ Get a specific model.
+
+ The Models API response can be used to determine information about a specific
+ model or resolve a model alias to a model ID.
+
+ Args:
+ model_id: Model identifier or alias.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ if not model_id:
+ raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}")
+ return await self._get(
+ f"/v1/models/{model_id}",
+ options=make_request_options(
+ extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
+ ),
+ cast_to=ModelInfo,
+ )
+
+ def list(
+ self,
+ *,
+ after_id: str | NotGiven = NOT_GIVEN,
+ before_id: str | NotGiven = NOT_GIVEN,
+ limit: int | NotGiven = NOT_GIVEN,
+ # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
+ # The extra values given here take precedence over values defined on the client or passed to this method.
+ extra_headers: Headers | None = None,
+ extra_query: Query | None = None,
+ extra_body: Body | None = None,
+ timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
+ ) -> AsyncPaginator[ModelInfo, AsyncPage[ModelInfo]]:
+ """
+ List available models.
+
+ The Models API response can be used to determine which models are available for
+ use in the API. More recently released models are listed first.
+
+ Args:
+ after_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately after this object.
+
+ before_id: ID of the object to use as a cursor for pagination. When provided, returns the
+ page of results immediately before this object.
+
+ limit: Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+
+ extra_headers: Send extra headers
+
+ extra_query: Add additional query parameters to the request
+
+ extra_body: Add additional JSON properties to the request
+
+ timeout: Override the client-level default timeout for this request, in seconds
+ """
+ return self._get_api_list(
+ "/v1/models",
+ page=AsyncPage[ModelInfo],
+ options=make_request_options(
+ extra_headers=extra_headers,
+ extra_query=extra_query,
+ extra_body=extra_body,
+ timeout=timeout,
+ query=maybe_transform(
+ {
+ "after_id": after_id,
+ "before_id": before_id,
+ "limit": limit,
+ },
+ model_list_params.ModelListParams,
+ ),
+ ),
+ model=ModelInfo,
+ )
+
+
+class ModelsWithRawResponse:
+ def __init__(self, models: Models) -> None:
+ self._models = models
+
+ self.retrieve = _legacy_response.to_raw_response_wrapper(
+ models.retrieve,
+ )
+ self.list = _legacy_response.to_raw_response_wrapper(
+ models.list,
+ )
+
+
+class AsyncModelsWithRawResponse:
+ def __init__(self, models: AsyncModels) -> None:
+ self._models = models
+
+ self.retrieve = _legacy_response.async_to_raw_response_wrapper(
+ models.retrieve,
+ )
+ self.list = _legacy_response.async_to_raw_response_wrapper(
+ models.list,
+ )
+
+
+class ModelsWithStreamingResponse:
+ def __init__(self, models: Models) -> None:
+ self._models = models
+
+ self.retrieve = to_streamed_response_wrapper(
+ models.retrieve,
+ )
+ self.list = to_streamed_response_wrapper(
+ models.list,
+ )
+
+
+class AsyncModelsWithStreamingResponse:
+ def __init__(self, models: AsyncModels) -> None:
+ self._models = models
+
+ self.retrieve = async_to_streamed_response_wrapper(
+ models.retrieve,
+ )
+ self.list = async_to_streamed_response_wrapper(
+ models.list,
+ )
diff --git a/src/anthropic/types/__init__.py b/src/anthropic/types/__init__.py
index 0125a215..a880b827 100644
--- a/src/anthropic/types/__init__.py
+++ b/src/anthropic/types/__init__.py
@@ -4,9 +4,23 @@
from .model import Model as Model
from .usage import Usage as Usage
+from .shared import (
+ ErrorObject as ErrorObject,
+ BillingError as BillingError,
+ ErrorResponse as ErrorResponse,
+ NotFoundError as NotFoundError,
+ APIErrorObject as APIErrorObject,
+ RateLimitError as RateLimitError,
+ OverloadedError as OverloadedError,
+ PermissionError as PermissionError,
+ AuthenticationError as AuthenticationError,
+ GatewayTimeoutError as GatewayTimeoutError,
+ InvalidRequestError as InvalidRequestError,
+)
from .message import Message as Message
from .beta_error import BetaError as BetaError
from .completion import Completion as Completion
+from .model_info import ModelInfo as ModelInfo
from .text_block import TextBlock as TextBlock
from .text_delta import TextDelta as TextDelta
from .tool_param import ToolParam as ToolParam
@@ -19,7 +33,9 @@
from .input_json_delta import InputJSONDelta as InputJSONDelta
from .text_block_param import TextBlockParam as TextBlockParam
from .image_block_param import ImageBlockParam as ImageBlockParam
+from .model_list_params import ModelListParams as ModelListParams
from .tool_choice_param import ToolChoiceParam as ToolChoiceParam
+from .beta_billing_error import BetaBillingError as BetaBillingError
from .message_stop_event import MessageStopEvent as MessageStopEvent
from .beta_error_response import BetaErrorResponse as BetaErrorResponse
from .content_block_param import ContentBlockParam as ContentBlockParam
@@ -28,7 +44,9 @@
from .message_start_event import MessageStartEvent as MessageStartEvent
from .anthropic_beta_param import AnthropicBetaParam as AnthropicBetaParam
from .beta_not_found_error import BetaNotFoundError as BetaNotFoundError
+from .document_block_param import DocumentBlockParam as DocumentBlockParam
from .message_stream_event import MessageStreamEvent as MessageStreamEvent
+from .message_tokens_count import MessageTokensCount as MessageTokensCount
from .tool_use_block_param import ToolUseBlockParam as ToolUseBlockParam
from .beta_overloaded_error import BetaOverloadedError as BetaOverloadedError
from .beta_permission_error import BetaPermissionError as BetaPermissionError
@@ -38,6 +56,7 @@
from .raw_message_stop_event import RawMessageStopEvent as RawMessageStopEvent
from .tool_choice_auto_param import ToolChoiceAutoParam as ToolChoiceAutoParam
from .tool_choice_tool_param import ToolChoiceToolParam as ToolChoiceToolParam
+from .base64_pdf_source_param import Base64PDFSourceParam as Base64PDFSourceParam
from .raw_message_delta_event import RawMessageDeltaEvent as RawMessageDeltaEvent
from .raw_message_start_event import RawMessageStartEvent as RawMessageStartEvent
from .tool_result_block_param import ToolResultBlockParam as ToolResultBlockParam
@@ -47,7 +66,10 @@
from .beta_authentication_error import BetaAuthenticationError as BetaAuthenticationError
from .content_block_delta_event import ContentBlockDeltaEvent as ContentBlockDeltaEvent
from .content_block_start_event import ContentBlockStartEvent as ContentBlockStartEvent
+from .beta_gateway_timeout_error import BetaGatewayTimeoutError as BetaGatewayTimeoutError
from .beta_invalid_request_error import BetaInvalidRequestError as BetaInvalidRequestError
+from .message_count_tokens_params import MessageCountTokensParams as MessageCountTokensParams
from .raw_content_block_stop_event import RawContentBlockStopEvent as RawContentBlockStopEvent
+from .cache_control_ephemeral_param import CacheControlEphemeralParam as CacheControlEphemeralParam
from .raw_content_block_delta_event import RawContentBlockDeltaEvent as RawContentBlockDeltaEvent
from .raw_content_block_start_event import RawContentBlockStartEvent as RawContentBlockStartEvent
diff --git a/src/anthropic/types/base64_pdf_source_param.py b/src/anthropic/types/base64_pdf_source_param.py
new file mode 100644
index 00000000..ac247a19
--- /dev/null
+++ b/src/anthropic/types/base64_pdf_source_param.py
@@ -0,0 +1,23 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from typing import Union
+from typing_extensions import Literal, Required, Annotated, TypedDict
+
+from .._types import Base64FileInput
+from .._utils import PropertyInfo
+from .._models import set_pydantic_config
+
+__all__ = ["Base64PDFSourceParam"]
+
+
+class Base64PDFSourceParam(TypedDict, total=False):
+ data: Required[Annotated[Union[str, Base64FileInput], PropertyInfo(format="base64")]]
+
+ media_type: Required[Literal["application/pdf"]]
+
+ type: Required[Literal["base64"]]
+
+
+set_pydantic_config(Base64PDFSourceParam, {"arbitrary_types_allowed": True})
diff --git a/src/anthropic/types/beta/__init__.py b/src/anthropic/types/beta/__init__.py
index cf5fd496..c233d9c7 100644
--- a/src/anthropic/types/beta/__init__.py
+++ b/src/anthropic/types/beta/__init__.py
@@ -4,9 +4,11 @@
from .beta_usage import BetaUsage as BetaUsage
from .beta_message import BetaMessage as BetaMessage
+from .beta_model_info import BetaModelInfo as BetaModelInfo
from .beta_text_block import BetaTextBlock as BetaTextBlock
from .beta_text_delta import BetaTextDelta as BetaTextDelta
from .beta_tool_param import BetaToolParam as BetaToolParam
+from .model_list_params import ModelListParams as ModelListParams
from .beta_content_block import BetaContentBlock as BetaContentBlock
from .beta_message_param import BetaMessageParam as BetaMessageParam
from .beta_metadata_param import BetaMetadataParam as BetaMetadataParam
diff --git a/src/anthropic/types/beta/beta_model_info.py b/src/anthropic/types/beta/beta_model_info.py
new file mode 100644
index 00000000..6ea50d9f
--- /dev/null
+++ b/src/anthropic/types/beta/beta_model_info.py
@@ -0,0 +1,28 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from datetime import datetime
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["BetaModelInfo"]
+
+
+class BetaModelInfo(BaseModel):
+ id: str
+ """Unique model identifier."""
+
+ created_at: datetime
+ """RFC 3339 datetime string representing the time at which the model was released.
+
+ May be set to an epoch value if the release date is unknown.
+ """
+
+ display_name: str
+ """A human-readable name for the model."""
+
+ type: Literal["model"]
+ """Object type.
+
+ For Models, this is always `"model"`.
+ """
diff --git a/src/anthropic/types/beta/beta_raw_content_block_delta_event.py b/src/anthropic/types/beta/beta_raw_content_block_delta_event.py
index 9e26688c..03ce6557 100644
--- a/src/anthropic/types/beta/beta_raw_content_block_delta_event.py
+++ b/src/anthropic/types/beta/beta_raw_content_block_delta_event.py
@@ -1,16 +1,15 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from typing import Union
-from typing_extensions import Literal, Annotated, TypeAlias
+from typing_extensions import Literal, TypeAlias
-from ..._utils import PropertyInfo
from ..._models import BaseModel
from .beta_text_delta import BetaTextDelta
from .beta_input_json_delta import BetaInputJSONDelta
__all__ = ["BetaRawContentBlockDeltaEvent", "Delta"]
-Delta: TypeAlias = Annotated[Union[BetaTextDelta, BetaInputJSONDelta], PropertyInfo(discriminator="type")]
+Delta: TypeAlias = Union[BetaTextDelta, BetaInputJSONDelta]
class BetaRawContentBlockDeltaEvent(BaseModel):
diff --git a/src/anthropic/types/beta/messages/batch_list_params.py b/src/anthropic/types/beta/messages/batch_list_params.py
index b75cd931..3f406251 100644
--- a/src/anthropic/types/beta/messages/batch_list_params.py
+++ b/src/anthropic/types/beta/messages/batch_list_params.py
@@ -27,7 +27,7 @@ class BatchListParams(TypedDict, total=False):
limit: int
"""Number of items to return per page.
- Defaults to `20`. Ranges from `1` to `100`.
+ Defaults to `20`. Ranges from `1` to `1000`.
"""
betas: Annotated[List[AnthropicBetaParam], PropertyInfo(alias="anthropic-beta")]
diff --git a/src/anthropic/types/beta/model_list_params.py b/src/anthropic/types/beta/model_list_params.py
new file mode 100644
index 00000000..b16d22a3
--- /dev/null
+++ b/src/anthropic/types/beta/model_list_params.py
@@ -0,0 +1,27 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from typing_extensions import TypedDict
+
+__all__ = ["ModelListParams"]
+
+
+class ModelListParams(TypedDict, total=False):
+ after_id: str
+ """ID of the object to use as a cursor for pagination.
+
+ When provided, returns the page of results immediately after this object.
+ """
+
+ before_id: str
+ """ID of the object to use as a cursor for pagination.
+
+ When provided, returns the page of results immediately before this object.
+ """
+
+ limit: int
+ """Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+ """
diff --git a/src/anthropic/types/beta/prompt_caching/__init__.py b/src/anthropic/types/beta/prompt_caching/__init__.py
deleted file mode 100644
index 3b4004fc..00000000
--- a/src/anthropic/types/beta/prompt_caching/__init__.py
+++ /dev/null
@@ -1,26 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from .message_create_params import MessageCreateParams as MessageCreateParams
-from .prompt_caching_beta_usage import PromptCachingBetaUsage as PromptCachingBetaUsage
-from .prompt_caching_beta_message import PromptCachingBetaMessage as PromptCachingBetaMessage
-from .prompt_caching_beta_tool_param import PromptCachingBetaToolParam as PromptCachingBetaToolParam
-from .prompt_caching_beta_message_param import PromptCachingBetaMessageParam as PromptCachingBetaMessageParam
-from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam as PromptCachingBetaTextBlockParam
-from .prompt_caching_beta_image_block_param import PromptCachingBetaImageBlockParam as PromptCachingBetaImageBlockParam
-from .prompt_caching_beta_tool_use_block_param import (
- PromptCachingBetaToolUseBlockParam as PromptCachingBetaToolUseBlockParam,
-)
-from .prompt_caching_beta_tool_result_block_param import (
- PromptCachingBetaToolResultBlockParam as PromptCachingBetaToolResultBlockParam,
-)
-from .raw_prompt_caching_beta_message_start_event import (
- RawPromptCachingBetaMessageStartEvent as RawPromptCachingBetaMessageStartEvent,
-)
-from .raw_prompt_caching_beta_message_stream_event import (
- RawPromptCachingBetaMessageStreamEvent as RawPromptCachingBetaMessageStreamEvent,
-)
-from .prompt_caching_beta_cache_control_ephemeral_param import (
- PromptCachingBetaCacheControlEphemeralParam as PromptCachingBetaCacheControlEphemeralParam,
-)
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_image_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_image_block_param.py
deleted file mode 100644
index 02dfb0bc..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_image_block_param.py
+++ /dev/null
@@ -1,32 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from typing import Union, Optional
-from typing_extensions import Literal, Required, Annotated, TypedDict
-
-from ...._types import Base64FileInput
-from ...._utils import PropertyInfo
-from ...._models import set_pydantic_config
-from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam
-
-__all__ = ["PromptCachingBetaImageBlockParam", "Source"]
-
-
-class Source(TypedDict, total=False):
- data: Required[Annotated[Union[str, Base64FileInput], PropertyInfo(format="base64")]]
-
- media_type: Required[Literal["image/jpeg", "image/png", "image/gif", "image/webp"]]
-
- type: Required[Literal["base64"]]
-
-
-set_pydantic_config(Source, {"arbitrary_types_allowed": True})
-
-
-class PromptCachingBetaImageBlockParam(TypedDict, total=False):
- source: Required[Source]
-
- type: Required[Literal["image"]]
-
- cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam]
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message.py
deleted file mode 100644
index 2cc49a2c..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message.py
+++ /dev/null
@@ -1,109 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from typing import List, Optional
-from typing_extensions import Literal
-
-from ...model import Model
-from ...._models import BaseModel
-from ...content_block import ContentBlock
-from .prompt_caching_beta_usage import PromptCachingBetaUsage
-
-__all__ = ["PromptCachingBetaMessage"]
-
-
-class PromptCachingBetaMessage(BaseModel):
- id: str
- """Unique object identifier.
-
- The format and length of IDs may change over time.
- """
-
- content: List[ContentBlock]
- """Content generated by the model.
-
- This is an array of content blocks, each of which has a `type` that determines
- its shape.
-
- Example:
-
- ```json
- [{ "type": "text", "text": "Hi, I'm Claude." }]
- ```
-
- If the request input `messages` ended with an `assistant` turn, then the
- response `content` will continue directly from that last turn. You can use this
- to constrain the model's output.
-
- For example, if the input `messages` were:
-
- ```json
- [
- {
- "role": "user",
- "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
- },
- { "role": "assistant", "content": "The best answer is (" }
- ]
- ```
-
- Then the response `content` might be:
-
- ```json
- [{ "type": "text", "text": "B)" }]
- ```
- """
-
- model: Model
- """
- The model that will complete your prompt.\n\nSee
- [models](https://docs.anthropic.com/en/docs/models-overview) for additional
- details and options.
- """
-
- role: Literal["assistant"]
- """Conversational role of the generated message.
-
- This will always be `"assistant"`.
- """
-
- stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = None
- """The reason that we stopped.
-
- This may be one the following values:
-
- - `"end_turn"`: the model reached a natural stopping point
- - `"max_tokens"`: we exceeded the requested `max_tokens` or the model's maximum
- - `"stop_sequence"`: one of your provided custom `stop_sequences` was generated
- - `"tool_use"`: the model invoked one or more tools
-
- In non-streaming mode this value is always non-null. In streaming mode, it is
- null in the `message_start` event and non-null otherwise.
- """
-
- stop_sequence: Optional[str] = None
- """Which custom stop sequence was generated, if any.
-
- This value will be a non-null string if one of your custom stop sequences was
- generated.
- """
-
- type: Literal["message"]
- """Object type.
-
- For Messages, this is always `"message"`.
- """
-
- usage: PromptCachingBetaUsage
- """Billing and rate-limit usage.
-
- Anthropic's API bills and rate-limits by token counts, as tokens represent the
- underlying cost to our systems.
-
- Under the hood, the API transforms requests into a format suitable for the
- model. The model's output then goes through a parsing stage before becoming an
- API response. As a result, the token counts in `usage` will not match one-to-one
- with the exact visible content of an API request or response.
-
- For example, `output_tokens` will be non-zero, even for an empty string response
- from Claude.
- """
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message_param.py
deleted file mode 100644
index f88093e2..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message_param.py
+++ /dev/null
@@ -1,33 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from typing import Union, Iterable
-from typing_extensions import Literal, Required, TypedDict
-
-from ...content_block import ContentBlock
-from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam
-from .prompt_caching_beta_image_block_param import PromptCachingBetaImageBlockParam
-from .prompt_caching_beta_tool_use_block_param import PromptCachingBetaToolUseBlockParam
-from .prompt_caching_beta_tool_result_block_param import PromptCachingBetaToolResultBlockParam
-
-__all__ = ["PromptCachingBetaMessageParam"]
-
-
-class PromptCachingBetaMessageParam(TypedDict, total=False):
- content: Required[
- Union[
- str,
- Iterable[
- Union[
- PromptCachingBetaTextBlockParam,
- PromptCachingBetaImageBlockParam,
- PromptCachingBetaToolUseBlockParam,
- PromptCachingBetaToolResultBlockParam,
- ContentBlock,
- ]
- ],
- ]
- ]
-
- role: Required[Literal["user", "assistant"]]
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_text_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_text_block_param.py
deleted file mode 100644
index cbb463d2..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_text_block_param.py
+++ /dev/null
@@ -1,18 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from typing import Optional
-from typing_extensions import Literal, Required, TypedDict
-
-from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam
-
-__all__ = ["PromptCachingBetaTextBlockParam"]
-
-
-class PromptCachingBetaTextBlockParam(TypedDict, total=False):
- text: Required[str]
-
- type: Required[Literal["text"]]
-
- cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam]
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_param.py
deleted file mode 100644
index cfd9f8aa..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_param.py
+++ /dev/null
@@ -1,45 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from typing import Dict, Union, Optional
-from typing_extensions import Literal, Required, TypeAlias, TypedDict
-
-from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam
-
-__all__ = ["PromptCachingBetaToolParam", "InputSchema"]
-
-
-class InputSchemaTyped(TypedDict, total=False):
- type: Required[Literal["object"]]
-
- properties: Optional[object]
-
-
-InputSchema: TypeAlias = Union[InputSchemaTyped, Dict[str, object]]
-
-
-class PromptCachingBetaToolParam(TypedDict, total=False):
- input_schema: Required[InputSchema]
- """[JSON schema](https://json-schema.org/) for this tool's input.
-
- This defines the shape of the `input` that your tool accepts and that the model
- will produce.
- """
-
- name: Required[str]
- """Name of the tool.
-
- This is how the tool will be called by the model and in tool_use blocks.
- """
-
- cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam]
-
- description: str
- """Description of what this tool does.
-
- Tool descriptions should be as detailed as possible. The more information that
- the model has about what the tool is and how to use it, the better it will
- perform. You can use natural language descriptions to reinforce important
- aspects of the tool input JSON schema.
- """
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_result_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_result_block_param.py
deleted file mode 100644
index 6c1ca718..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_result_block_param.py
+++ /dev/null
@@ -1,26 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from typing import Union, Iterable, Optional
-from typing_extensions import Literal, Required, TypeAlias, TypedDict
-
-from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam
-from .prompt_caching_beta_image_block_param import PromptCachingBetaImageBlockParam
-from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam
-
-__all__ = ["PromptCachingBetaToolResultBlockParam", "Content"]
-
-Content: TypeAlias = Union[PromptCachingBetaTextBlockParam, PromptCachingBetaImageBlockParam]
-
-
-class PromptCachingBetaToolResultBlockParam(TypedDict, total=False):
- tool_use_id: Required[str]
-
- type: Required[Literal["tool_result"]]
-
- cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam]
-
- content: Union[str, Iterable[Content]]
-
- is_error: bool
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_use_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_use_block_param.py
deleted file mode 100644
index 35ccf446..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_use_block_param.py
+++ /dev/null
@@ -1,22 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-from typing import Optional
-from typing_extensions import Literal, Required, TypedDict
-
-from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam
-
-__all__ = ["PromptCachingBetaToolUseBlockParam"]
-
-
-class PromptCachingBetaToolUseBlockParam(TypedDict, total=False):
- id: Required[str]
-
- input: Required[object]
-
- name: Required[str]
-
- type: Required[Literal["tool_use"]]
-
- cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam]
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_usage.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_usage.py
deleted file mode 100644
index 20d23004..00000000
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_usage.py
+++ /dev/null
@@ -1,21 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from typing import Optional
-
-from ...._models import BaseModel
-
-__all__ = ["PromptCachingBetaUsage"]
-
-
-class PromptCachingBetaUsage(BaseModel):
- cache_creation_input_tokens: Optional[int] = None
- """The number of input tokens used to create the cache entry."""
-
- cache_read_input_tokens: Optional[int] = None
- """The number of input tokens read from the cache."""
-
- input_tokens: int
- """The number of input tokens which were used."""
-
- output_tokens: int
- """The number of output tokens which were used."""
diff --git a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_start_event.py b/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_start_event.py
deleted file mode 100644
index 9d055e22..00000000
--- a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_start_event.py
+++ /dev/null
@@ -1,14 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from typing_extensions import Literal
-
-from ...._models import BaseModel
-from .prompt_caching_beta_message import PromptCachingBetaMessage
-
-__all__ = ["RawPromptCachingBetaMessageStartEvent"]
-
-
-class RawPromptCachingBetaMessageStartEvent(BaseModel):
- message: PromptCachingBetaMessage
-
- type: Literal["message_start"]
diff --git a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_stream_event.py b/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_stream_event.py
deleted file mode 100644
index 58099baf..00000000
--- a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_stream_event.py
+++ /dev/null
@@ -1,26 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from typing import Union
-from typing_extensions import Annotated, TypeAlias
-
-from ...._utils import PropertyInfo
-from ...raw_message_stop_event import RawMessageStopEvent
-from ...raw_message_delta_event import RawMessageDeltaEvent
-from ...raw_content_block_stop_event import RawContentBlockStopEvent
-from ...raw_content_block_delta_event import RawContentBlockDeltaEvent
-from ...raw_content_block_start_event import RawContentBlockStartEvent
-from .raw_prompt_caching_beta_message_start_event import RawPromptCachingBetaMessageStartEvent
-
-__all__ = ["RawPromptCachingBetaMessageStreamEvent"]
-
-RawPromptCachingBetaMessageStreamEvent: TypeAlias = Annotated[
- Union[
- RawPromptCachingBetaMessageStartEvent,
- RawMessageDeltaEvent,
- RawMessageStopEvent,
- RawContentBlockStartEvent,
- RawContentBlockDeltaEvent,
- RawContentBlockStopEvent,
- ],
- PropertyInfo(discriminator="type"),
-]
diff --git a/src/anthropic/types/beta_billing_error.py b/src/anthropic/types/beta_billing_error.py
new file mode 100644
index 00000000..1ab37614
--- /dev/null
+++ b/src/anthropic/types/beta_billing_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from .._models import BaseModel
+
+__all__ = ["BetaBillingError"]
+
+
+class BetaBillingError(BaseModel):
+ message: str
+
+ type: Literal["billing_error"]
diff --git a/src/anthropic/types/beta_error.py b/src/anthropic/types/beta_error.py
index 4d870ff4..029d80dc 100644
--- a/src/anthropic/types/beta_error.py
+++ b/src/anthropic/types/beta_error.py
@@ -5,11 +5,13 @@
from .._utils import PropertyInfo
from .beta_api_error import BetaAPIError
+from .beta_billing_error import BetaBillingError
from .beta_not_found_error import BetaNotFoundError
from .beta_overloaded_error import BetaOverloadedError
from .beta_permission_error import BetaPermissionError
from .beta_rate_limit_error import BetaRateLimitError
from .beta_authentication_error import BetaAuthenticationError
+from .beta_gateway_timeout_error import BetaGatewayTimeoutError
from .beta_invalid_request_error import BetaInvalidRequestError
__all__ = ["BetaError"]
@@ -18,9 +20,11 @@
Union[
BetaInvalidRequestError,
BetaAuthenticationError,
+ BetaBillingError,
BetaPermissionError,
BetaNotFoundError,
BetaRateLimitError,
+ BetaGatewayTimeoutError,
BetaAPIError,
BetaOverloadedError,
],
diff --git a/src/anthropic/types/beta_gateway_timeout_error.py b/src/anthropic/types/beta_gateway_timeout_error.py
new file mode 100644
index 00000000..9a29705b
--- /dev/null
+++ b/src/anthropic/types/beta_gateway_timeout_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from .._models import BaseModel
+
+__all__ = ["BetaGatewayTimeoutError"]
+
+
+class BetaGatewayTimeoutError(BaseModel):
+ message: str
+
+ type: Literal["timeout_error"]
diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_cache_control_ephemeral_param.py b/src/anthropic/types/cache_control_ephemeral_param.py
similarity index 62%
rename from src/anthropic/types/beta/prompt_caching/prompt_caching_beta_cache_control_ephemeral_param.py
rename to src/anthropic/types/cache_control_ephemeral_param.py
index 8370b938..8900071e 100644
--- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_cache_control_ephemeral_param.py
+++ b/src/anthropic/types/cache_control_ephemeral_param.py
@@ -4,8 +4,8 @@
from typing_extensions import Literal, Required, TypedDict
-__all__ = ["PromptCachingBetaCacheControlEphemeralParam"]
+__all__ = ["CacheControlEphemeralParam"]
-class PromptCachingBetaCacheControlEphemeralParam(TypedDict, total=False):
+class CacheControlEphemeralParam(TypedDict, total=False):
type: Required[Literal["ephemeral"]]
diff --git a/src/anthropic/types/content_block_param.py b/src/anthropic/types/content_block_param.py
index 65e9bd4a..836a5e19 100644
--- a/src/anthropic/types/content_block_param.py
+++ b/src/anthropic/types/content_block_param.py
@@ -7,9 +7,12 @@
from .text_block_param import TextBlockParam
from .image_block_param import ImageBlockParam
+from .document_block_param import DocumentBlockParam
from .tool_use_block_param import ToolUseBlockParam
from .tool_result_block_param import ToolResultBlockParam
__all__ = ["ContentBlockParam"]
-ContentBlockParam: TypeAlias = Union[TextBlockParam, ImageBlockParam, ToolUseBlockParam, ToolResultBlockParam]
+ContentBlockParam: TypeAlias = Union[
+ TextBlockParam, ImageBlockParam, ToolUseBlockParam, ToolResultBlockParam, DocumentBlockParam
+]
diff --git a/src/anthropic/types/document_block_param.py b/src/anthropic/types/document_block_param.py
new file mode 100644
index 00000000..57522e93
--- /dev/null
+++ b/src/anthropic/types/document_block_param.py
@@ -0,0 +1,19 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from typing import Optional
+from typing_extensions import Literal, Required, TypedDict
+
+from .base64_pdf_source_param import Base64PDFSourceParam
+from .cache_control_ephemeral_param import CacheControlEphemeralParam
+
+__all__ = ["DocumentBlockParam"]
+
+
+class DocumentBlockParam(TypedDict, total=False):
+ source: Required[Base64PDFSourceParam]
+
+ type: Required[Literal["document"]]
+
+ cache_control: Optional[CacheControlEphemeralParam]
diff --git a/src/anthropic/types/image_block_param.py b/src/anthropic/types/image_block_param.py
index d7f46fa9..bfd8c18e 100644
--- a/src/anthropic/types/image_block_param.py
+++ b/src/anthropic/types/image_block_param.py
@@ -2,12 +2,13 @@
from __future__ import annotations
-from typing import Union
+from typing import Union, Optional
from typing_extensions import Literal, Required, Annotated, TypedDict
from .._types import Base64FileInput
from .._utils import PropertyInfo
from .._models import set_pydantic_config
+from .cache_control_ephemeral_param import CacheControlEphemeralParam
__all__ = ["ImageBlockParam", "Source"]
@@ -27,3 +28,5 @@ class ImageBlockParam(TypedDict, total=False):
source: Required[Source]
type: Required[Literal["image"]]
+
+ cache_control: Optional[CacheControlEphemeralParam]
diff --git a/src/anthropic/types/message_count_tokens_params.py b/src/anthropic/types/message_count_tokens_params.py
new file mode 100644
index 00000000..c3afbf36
--- /dev/null
+++ b/src/anthropic/types/message_count_tokens_params.py
@@ -0,0 +1,197 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from typing import Union, Iterable
+from typing_extensions import Required, TypedDict
+
+from .tool_param import ToolParam
+from .model_param import ModelParam
+from .message_param import MessageParam
+from .text_block_param import TextBlockParam
+from .tool_choice_param import ToolChoiceParam
+
+__all__ = ["MessageCountTokensParams"]
+
+
+class MessageCountTokensParams(TypedDict, total=False):
+ messages: Required[Iterable[MessageParam]]
+ """Input messages.
+
+ Our models are trained to operate on alternating `user` and `assistant`
+ conversational turns. When creating a new `Message`, you specify the prior
+ conversational turns with the `messages` parameter, and the model then generates
+ the next `Message` in the conversation. Consecutive `user` or `assistant` turns
+ in your request will be combined into a single turn.
+
+ Each input message must be an object with a `role` and `content`. You can
+ specify a single `user`-role message, or you can include multiple `user` and
+ `assistant` messages.
+
+ If the final message uses the `assistant` role, the response content will
+ continue immediately from the content in that message. This can be used to
+ constrain part of the model's response.
+
+ Example with a single `user` message:
+
+ ```json
+ [{ "role": "user", "content": "Hello, Claude" }]
+ ```
+
+ Example with multiple conversational turns:
+
+ ```json
+ [
+ { "role": "user", "content": "Hello there." },
+ { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" },
+ { "role": "user", "content": "Can you explain LLMs in plain English?" }
+ ]
+ ```
+
+ Example with a partially-filled response from Claude:
+
+ ```json
+ [
+ {
+ "role": "user",
+ "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun"
+ },
+ { "role": "assistant", "content": "The best answer is (" }
+ ]
+ ```
+
+ Each input message `content` may be either a single `string` or an array of
+ content blocks, where each block has a specific `type`. Using a `string` for
+ `content` is shorthand for an array of one content block of type `"text"`. The
+ following input messages are equivalent:
+
+ ```json
+ { "role": "user", "content": "Hello, Claude" }
+ ```
+
+ ```json
+ { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] }
+ ```
+
+ Starting with Claude 3 models, you can also send image content blocks:
+
+ ```json
+ {
+ "role": "user",
+ "content": [
+ {
+ "type": "image",
+ "source": {
+ "type": "base64",
+ "media_type": "image/jpeg",
+ "data": "/9j/4AAQSkZJRg..."
+ }
+ },
+ { "type": "text", "text": "What is in this image?" }
+ ]
+ }
+ ```
+
+ We currently support the `base64` source type for images, and the `image/jpeg`,
+ `image/png`, `image/gif`, and `image/webp` media types.
+
+ See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for
+ more input examples.
+
+ Note that if you want to include a
+ [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use
+ the top-level `system` parameter — there is no `"system"` role for input
+ messages in the Messages API.
+ """
+
+ model: Required[ModelParam]
+ """
+ The model that will complete your prompt.\n\nSee
+ [models](https://docs.anthropic.com/en/docs/models-overview) for additional
+ details and options.
+ """
+
+ system: Union[str, Iterable[TextBlockParam]]
+ """System prompt.
+
+ A system prompt is a way of providing context and instructions to Claude, such
+ as specifying a particular goal or role. See our
+ [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts).
+ """
+
+ tool_choice: ToolChoiceParam
+ """How the model should use the provided tools.
+
+ The model can use a specific tool, any available tool, or decide by itself.
+ """
+
+ tools: Iterable[ToolParam]
+ """Definitions of tools that the model may use.
+
+ If you include `tools` in your API request, the model may return `tool_use`
+ content blocks that represent the model's use of those tools. You can then run
+ those tools using the tool input generated by the model and then optionally
+ return results back to the model using `tool_result` content blocks.
+
+ Each tool definition includes:
+
+ - `name`: Name of the tool.
+ - `description`: Optional, but strongly-recommended description of the tool.
+ - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input`
+ shape that the model will produce in `tool_use` output content blocks.
+
+ For example, if you defined `tools` as:
+
+ ```json
+ [
+ {
+ "name": "get_stock_price",
+ "description": "Get the current stock price for a given ticker symbol.",
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "ticker": {
+ "type": "string",
+ "description": "The stock ticker symbol, e.g. AAPL for Apple Inc."
+ }
+ },
+ "required": ["ticker"]
+ }
+ }
+ ]
+ ```
+
+ And then asked the model "What's the S&P 500 at today?", the model might produce
+ `tool_use` content blocks in the response like this:
+
+ ```json
+ [
+ {
+ "type": "tool_use",
+ "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
+ "name": "get_stock_price",
+ "input": { "ticker": "^GSPC" }
+ }
+ ]
+ ```
+
+ You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an
+ input, and return the following back to the model in a subsequent `user`
+ message:
+
+ ```json
+ [
+ {
+ "type": "tool_result",
+ "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV",
+ "content": "259.75 USD"
+ }
+ ]
+ ```
+
+ Tools can be used for workflows that include running client-side tools and
+ functions, or more generally whenever you want the model to produce a particular
+ JSON structure of output.
+
+ See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details.
+ """
diff --git a/src/anthropic/types/message_param.py b/src/anthropic/types/message_param.py
index 89921c61..811fc7b5 100644
--- a/src/anthropic/types/message_param.py
+++ b/src/anthropic/types/message_param.py
@@ -8,6 +8,7 @@
from .content_block import ContentBlock
from .text_block_param import TextBlockParam
from .image_block_param import ImageBlockParam
+from .document_block_param import DocumentBlockParam
from .tool_use_block_param import ToolUseBlockParam
from .tool_result_block_param import ToolResultBlockParam
@@ -17,7 +18,17 @@
class MessageParam(TypedDict, total=False):
content: Required[
Union[
- str, Iterable[Union[TextBlockParam, ImageBlockParam, ToolUseBlockParam, ToolResultBlockParam, ContentBlock]]
+ str,
+ Iterable[
+ Union[
+ TextBlockParam,
+ ImageBlockParam,
+ ToolUseBlockParam,
+ ToolResultBlockParam,
+ DocumentBlockParam,
+ ContentBlock,
+ ]
+ ],
]
]
diff --git a/src/anthropic/types/message_tokens_count.py b/src/anthropic/types/message_tokens_count.py
new file mode 100644
index 00000000..d570019f
--- /dev/null
+++ b/src/anthropic/types/message_tokens_count.py
@@ -0,0 +1,14 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+
+from .._models import BaseModel
+
+__all__ = ["MessageTokensCount"]
+
+
+class MessageTokensCount(BaseModel):
+ input_tokens: int
+ """
+ The total number of tokens across the provided list of messages, system prompt,
+ and tools.
+ """
diff --git a/src/anthropic/types/messages/__init__.py b/src/anthropic/types/messages/__init__.py
new file mode 100644
index 00000000..c316f0ec
--- /dev/null
+++ b/src/anthropic/types/messages/__init__.py
@@ -0,0 +1,14 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from .message_batch import MessageBatch as MessageBatch
+from .batch_list_params import BatchListParams as BatchListParams
+from .batch_create_params import BatchCreateParams as BatchCreateParams
+from .message_batch_result import MessageBatchResult as MessageBatchResult
+from .message_batch_errored_result import MessageBatchErroredResult as MessageBatchErroredResult
+from .message_batch_expired_result import MessageBatchExpiredResult as MessageBatchExpiredResult
+from .message_batch_request_counts import MessageBatchRequestCounts as MessageBatchRequestCounts
+from .message_batch_canceled_result import MessageBatchCanceledResult as MessageBatchCanceledResult
+from .message_batch_succeeded_result import MessageBatchSucceededResult as MessageBatchSucceededResult
+from .message_batch_individual_response import MessageBatchIndividualResponse as MessageBatchIndividualResponse
diff --git a/src/anthropic/types/beta/prompt_caching/message_create_params.py b/src/anthropic/types/messages/batch_create_params.py
similarity index 84%
rename from src/anthropic/types/beta/prompt_caching/message_create_params.py
rename to src/anthropic/types/messages/batch_create_params.py
index b7330b71..c361a90e 100644
--- a/src/anthropic/types/beta/prompt_caching/message_create_params.py
+++ b/src/anthropic/types/messages/batch_create_params.py
@@ -3,21 +3,27 @@
from __future__ import annotations
from typing import List, Union, Iterable
-from typing_extensions import Literal, Required, Annotated, TypedDict
+from typing_extensions import Required, TypedDict
-from ...._utils import PropertyInfo
-from ...model_param import ModelParam
-from ...metadata_param import MetadataParam
-from ...tool_choice_param import ToolChoiceParam
-from ...anthropic_beta_param import AnthropicBetaParam
-from .prompt_caching_beta_tool_param import PromptCachingBetaToolParam
-from .prompt_caching_beta_message_param import PromptCachingBetaMessageParam
-from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam
+from ..tool_param import ToolParam
+from ..model_param import ModelParam
+from ..message_param import MessageParam
+from ..metadata_param import MetadataParam
+from ..text_block_param import TextBlockParam
+from ..tool_choice_param import ToolChoiceParam
-__all__ = ["MessageCreateParamsBase", "MessageCreateParamsNonStreaming", "MessageCreateParamsStreaming"]
+__all__ = ["BatchCreateParams", "Request", "RequestParams"]
-class MessageCreateParamsBase(TypedDict, total=False):
+class BatchCreateParams(TypedDict, total=False):
+ requests: Required[Iterable[Request]]
+ """List of requests for prompt completion.
+
+ Each is an individual request to create a Message.
+ """
+
+
+class RequestParams(TypedDict, total=False):
max_tokens: Required[int]
"""The maximum number of tokens to generate before stopping.
@@ -28,7 +34,7 @@ class MessageCreateParamsBase(TypedDict, total=False):
[models](https://docs.anthropic.com/en/docs/models-overview) for details.
"""
- messages: Required[Iterable[PromptCachingBetaMessageParam]]
+ messages: Required[Iterable[MessageParam]]
"""Input messages.
Our models are trained to operate on alternating `user` and `assistant`
@@ -139,7 +145,14 @@ class MessageCreateParamsBase(TypedDict, total=False):
and the response `stop_sequence` value will contain the matched stop sequence.
"""
- system: Union[str, Iterable[PromptCachingBetaTextBlockParam]]
+ stream: bool
+ """Whether to incrementally stream the response using server-sent events.
+
+ See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
+ details.
+ """
+
+ system: Union[str, Iterable[TextBlockParam]]
"""System prompt.
A system prompt is a way of providing context and instructions to Claude, such
@@ -164,7 +177,7 @@ class MessageCreateParamsBase(TypedDict, total=False):
The model can use a specific tool, any available tool, or decide by itself.
"""
- tools: Iterable[PromptCachingBetaToolParam]
+ tools: Iterable[ToolParam]
"""Definitions of tools that the model may use.
If you include `tools` in your API request, the model may return `tool_use`
@@ -257,26 +270,20 @@ class MessageCreateParamsBase(TypedDict, total=False):
`temperature`.
"""
- betas: Annotated[List[AnthropicBetaParam], PropertyInfo(alias="anthropic-beta")]
- """Optional header to specify the beta version(s) you want to use."""
+class Request(TypedDict, total=False):
+ custom_id: Required[str]
+ """Developer-provided ID created for each request in a Message Batch.
-class MessageCreateParamsNonStreaming(MessageCreateParamsBase, total=False):
- stream: Literal[False]
- """Whether to incrementally stream the response using server-sent events.
+ Useful for matching results to requests, as results may be given out of request
+ order.
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
+ Must be unique for each request within the Message Batch.
"""
+ params: Required[RequestParams]
+ """Messages API creation parameters for the individual request.
-class MessageCreateParamsStreaming(MessageCreateParamsBase):
- stream: Required[Literal[True]]
- """Whether to incrementally stream the response using server-sent events.
-
- See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for
- details.
+ See the [Messages API reference](/en/api/messages) for full documentation on
+ available parameters.
"""
-
-
-MessageCreateParams = Union[MessageCreateParamsNonStreaming, MessageCreateParamsStreaming]
diff --git a/src/anthropic/types/messages/batch_list_params.py b/src/anthropic/types/messages/batch_list_params.py
new file mode 100644
index 00000000..7b290a77
--- /dev/null
+++ b/src/anthropic/types/messages/batch_list_params.py
@@ -0,0 +1,27 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from typing_extensions import TypedDict
+
+__all__ = ["BatchListParams"]
+
+
+class BatchListParams(TypedDict, total=False):
+ after_id: str
+ """ID of the object to use as a cursor for pagination.
+
+ When provided, returns the page of results immediately after this object.
+ """
+
+ before_id: str
+ """ID of the object to use as a cursor for pagination.
+
+ When provided, returns the page of results immediately before this object.
+ """
+
+ limit: int
+ """Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+ """
diff --git a/src/anthropic/types/messages/message_batch.py b/src/anthropic/types/messages/message_batch.py
new file mode 100644
index 00000000..a03e73e1
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch.py
@@ -0,0 +1,77 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing import Optional
+from datetime import datetime
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+from .message_batch_request_counts import MessageBatchRequestCounts
+
+__all__ = ["MessageBatch"]
+
+
+class MessageBatch(BaseModel):
+ id: str
+ """Unique object identifier.
+
+ The format and length of IDs may change over time.
+ """
+
+ archived_at: Optional[datetime] = None
+ """
+ RFC 3339 datetime string representing the time at which the Message Batch was
+ archived and its results became unavailable.
+ """
+
+ cancel_initiated_at: Optional[datetime] = None
+ """
+ RFC 3339 datetime string representing the time at which cancellation was
+ initiated for the Message Batch. Specified only if cancellation was initiated.
+ """
+
+ created_at: datetime
+ """
+ RFC 3339 datetime string representing the time at which the Message Batch was
+ created.
+ """
+
+ ended_at: Optional[datetime] = None
+ """
+ RFC 3339 datetime string representing the time at which processing for the
+ Message Batch ended. Specified only once processing ends.
+
+ Processing ends when every request in a Message Batch has either succeeded,
+ errored, canceled, or expired.
+ """
+
+ expires_at: datetime
+ """
+ RFC 3339 datetime string representing the time at which the Message Batch will
+ expire and end processing, which is 24 hours after creation.
+ """
+
+ processing_status: Literal["in_progress", "canceling", "ended"]
+ """Processing status of the Message Batch."""
+
+ request_counts: MessageBatchRequestCounts
+ """Tallies requests within the Message Batch, categorized by their status.
+
+ Requests start as `processing` and move to one of the other statuses only once
+ processing of the entire batch ends. The sum of all values always matches the
+ total number of requests in the batch.
+ """
+
+ results_url: Optional[str] = None
+ """URL to a `.jsonl` file containing the results of the Message Batch requests.
+
+ Specified only once processing ends.
+
+ Results in the file are not guaranteed to be in the same order as requests. Use
+ the `custom_id` field to match results to requests.
+ """
+
+ type: Literal["message_batch"]
+ """Object type.
+
+ For Message Batches, this is always `"message_batch"`.
+ """
diff --git a/src/anthropic/types/messages/message_batch_canceled_result.py b/src/anthropic/types/messages/message_batch_canceled_result.py
new file mode 100644
index 00000000..9826aa91
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch_canceled_result.py
@@ -0,0 +1,11 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["MessageBatchCanceledResult"]
+
+
+class MessageBatchCanceledResult(BaseModel):
+ type: Literal["canceled"]
diff --git a/src/anthropic/types/messages/message_batch_errored_result.py b/src/anthropic/types/messages/message_batch_errored_result.py
new file mode 100644
index 00000000..5f890bfd
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch_errored_result.py
@@ -0,0 +1,14 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+from ..shared.error_response import ErrorResponse
+
+__all__ = ["MessageBatchErroredResult"]
+
+
+class MessageBatchErroredResult(BaseModel):
+ error: ErrorResponse
+
+ type: Literal["errored"]
diff --git a/src/anthropic/types/messages/message_batch_expired_result.py b/src/anthropic/types/messages/message_batch_expired_result.py
new file mode 100644
index 00000000..ab9964e7
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch_expired_result.py
@@ -0,0 +1,11 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["MessageBatchExpiredResult"]
+
+
+class MessageBatchExpiredResult(BaseModel):
+ type: Literal["expired"]
diff --git a/src/anthropic/types/messages/message_batch_individual_response.py b/src/anthropic/types/messages/message_batch_individual_response.py
new file mode 100644
index 00000000..19d4f090
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch_individual_response.py
@@ -0,0 +1,26 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+
+from ..._models import BaseModel
+from .message_batch_result import MessageBatchResult
+
+__all__ = ["MessageBatchIndividualResponse"]
+
+
+class MessageBatchIndividualResponse(BaseModel):
+ custom_id: str
+ """Developer-provided ID created for each request in a Message Batch.
+
+ Useful for matching results to requests, as results may be given out of request
+ order.
+
+ Must be unique for each request within the Message Batch.
+ """
+
+ result: MessageBatchResult
+ """Processing result for this request.
+
+ Contains a Message output if processing was successful, an error response if
+ processing failed, or the reason why processing was not attempted, such as
+ cancellation or expiration.
+ """
diff --git a/src/anthropic/types/messages/message_batch_request_counts.py b/src/anthropic/types/messages/message_batch_request_counts.py
new file mode 100644
index 00000000..04edc3c3
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch_request_counts.py
@@ -0,0 +1,35 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+
+from ..._models import BaseModel
+
+__all__ = ["MessageBatchRequestCounts"]
+
+
+class MessageBatchRequestCounts(BaseModel):
+ canceled: int
+ """Number of requests in the Message Batch that have been canceled.
+
+ This is zero until processing of the entire Message Batch has ended.
+ """
+
+ errored: int
+ """Number of requests in the Message Batch that encountered an error.
+
+ This is zero until processing of the entire Message Batch has ended.
+ """
+
+ expired: int
+ """Number of requests in the Message Batch that have expired.
+
+ This is zero until processing of the entire Message Batch has ended.
+ """
+
+ processing: int
+ """Number of requests in the Message Batch that are processing."""
+
+ succeeded: int
+ """Number of requests in the Message Batch that have completed successfully.
+
+ This is zero until processing of the entire Message Batch has ended.
+ """
diff --git a/src/anthropic/types/messages/message_batch_result.py b/src/anthropic/types/messages/message_batch_result.py
new file mode 100644
index 00000000..3186f2aa
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch_result.py
@@ -0,0 +1,19 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing import Union
+from typing_extensions import Annotated, TypeAlias
+
+from ..._utils import PropertyInfo
+from .message_batch_errored_result import MessageBatchErroredResult
+from .message_batch_expired_result import MessageBatchExpiredResult
+from .message_batch_canceled_result import MessageBatchCanceledResult
+from .message_batch_succeeded_result import MessageBatchSucceededResult
+
+__all__ = ["MessageBatchResult"]
+
+MessageBatchResult: TypeAlias = Annotated[
+ Union[
+ MessageBatchSucceededResult, MessageBatchErroredResult, MessageBatchCanceledResult, MessageBatchExpiredResult
+ ],
+ PropertyInfo(discriminator="type"),
+]
diff --git a/src/anthropic/types/messages/message_batch_succeeded_result.py b/src/anthropic/types/messages/message_batch_succeeded_result.py
new file mode 100644
index 00000000..1cc454a4
--- /dev/null
+++ b/src/anthropic/types/messages/message_batch_succeeded_result.py
@@ -0,0 +1,14 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..message import Message
+from ..._models import BaseModel
+
+__all__ = ["MessageBatchSucceededResult"]
+
+
+class MessageBatchSucceededResult(BaseModel):
+ message: Message
+
+ type: Literal["succeeded"]
diff --git a/src/anthropic/types/model_info.py b/src/anthropic/types/model_info.py
new file mode 100644
index 00000000..0e3945fe
--- /dev/null
+++ b/src/anthropic/types/model_info.py
@@ -0,0 +1,28 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from datetime import datetime
+from typing_extensions import Literal
+
+from .._models import BaseModel
+
+__all__ = ["ModelInfo"]
+
+
+class ModelInfo(BaseModel):
+ id: str
+ """Unique model identifier."""
+
+ created_at: datetime
+ """RFC 3339 datetime string representing the time at which the model was released.
+
+ May be set to an epoch value if the release date is unknown.
+ """
+
+ display_name: str
+ """A human-readable name for the model."""
+
+ type: Literal["model"]
+ """Object type.
+
+ For Models, this is always `"model"`.
+ """
diff --git a/src/anthropic/types/model_list_params.py b/src/anthropic/types/model_list_params.py
new file mode 100644
index 00000000..b16d22a3
--- /dev/null
+++ b/src/anthropic/types/model_list_params.py
@@ -0,0 +1,27 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+from typing_extensions import TypedDict
+
+__all__ = ["ModelListParams"]
+
+
+class ModelListParams(TypedDict, total=False):
+ after_id: str
+ """ID of the object to use as a cursor for pagination.
+
+ When provided, returns the page of results immediately after this object.
+ """
+
+ before_id: str
+ """ID of the object to use as a cursor for pagination.
+
+ When provided, returns the page of results immediately before this object.
+ """
+
+ limit: int
+ """Number of items to return per page.
+
+ Defaults to `20`. Ranges from `1` to `1000`.
+ """
diff --git a/src/anthropic/types/raw_content_block_delta_event.py b/src/anthropic/types/raw_content_block_delta_event.py
index b384fbd3..8785197f 100644
--- a/src/anthropic/types/raw_content_block_delta_event.py
+++ b/src/anthropic/types/raw_content_block_delta_event.py
@@ -1,16 +1,15 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from typing import Union
-from typing_extensions import Literal, Annotated, TypeAlias
+from typing_extensions import Literal, TypeAlias
-from .._utils import PropertyInfo
from .._models import BaseModel
from .text_delta import TextDelta
from .input_json_delta import InputJSONDelta
__all__ = ["RawContentBlockDeltaEvent", "Delta"]
-Delta: TypeAlias = Annotated[Union[TextDelta, InputJSONDelta], PropertyInfo(discriminator="type")]
+Delta: TypeAlias = Union[TextDelta, InputJSONDelta]
class RawContentBlockDeltaEvent(BaseModel):
diff --git a/src/anthropic/types/shared/__init__.py b/src/anthropic/types/shared/__init__.py
new file mode 100644
index 00000000..178643b6
--- /dev/null
+++ b/src/anthropic/types/shared/__init__.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from .error_object import ErrorObject as ErrorObject
+from .billing_error import BillingError as BillingError
+from .error_response import ErrorResponse as ErrorResponse
+from .not_found_error import NotFoundError as NotFoundError
+from .api_error_object import APIErrorObject as APIErrorObject
+from .overloaded_error import OverloadedError as OverloadedError
+from .permission_error import PermissionError as PermissionError
+from .rate_limit_error import RateLimitError as RateLimitError
+from .authentication_error import AuthenticationError as AuthenticationError
+from .gateway_timeout_error import GatewayTimeoutError as GatewayTimeoutError
+from .invalid_request_error import InvalidRequestError as InvalidRequestError
diff --git a/src/anthropic/types/shared/api_error_object.py b/src/anthropic/types/shared/api_error_object.py
new file mode 100644
index 00000000..dd92bead
--- /dev/null
+++ b/src/anthropic/types/shared/api_error_object.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["APIErrorObject"]
+
+
+class APIErrorObject(BaseModel):
+ message: str
+
+ type: Literal["api_error"]
diff --git a/src/anthropic/types/shared/authentication_error.py b/src/anthropic/types/shared/authentication_error.py
new file mode 100644
index 00000000..f777f5c8
--- /dev/null
+++ b/src/anthropic/types/shared/authentication_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["AuthenticationError"]
+
+
+class AuthenticationError(BaseModel):
+ message: str
+
+ type: Literal["authentication_error"]
diff --git a/src/anthropic/types/shared/billing_error.py b/src/anthropic/types/shared/billing_error.py
new file mode 100644
index 00000000..26be12bb
--- /dev/null
+++ b/src/anthropic/types/shared/billing_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["BillingError"]
+
+
+class BillingError(BaseModel):
+ message: str
+
+ type: Literal["billing_error"]
diff --git a/src/anthropic/types/shared/error_object.py b/src/anthropic/types/shared/error_object.py
new file mode 100644
index 00000000..086db503
--- /dev/null
+++ b/src/anthropic/types/shared/error_object.py
@@ -0,0 +1,32 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing import Union
+from typing_extensions import Annotated, TypeAlias
+
+from ..._utils import PropertyInfo
+from .billing_error import BillingError
+from .not_found_error import NotFoundError
+from .api_error_object import APIErrorObject
+from .overloaded_error import OverloadedError
+from .permission_error import PermissionError
+from .rate_limit_error import RateLimitError
+from .authentication_error import AuthenticationError
+from .gateway_timeout_error import GatewayTimeoutError
+from .invalid_request_error import InvalidRequestError
+
+__all__ = ["ErrorObject"]
+
+ErrorObject: TypeAlias = Annotated[
+ Union[
+ InvalidRequestError,
+ AuthenticationError,
+ BillingError,
+ PermissionError,
+ NotFoundError,
+ RateLimitError,
+ GatewayTimeoutError,
+ APIErrorObject,
+ OverloadedError,
+ ],
+ PropertyInfo(discriminator="type"),
+]
diff --git a/src/anthropic/types/shared/error_response.py b/src/anthropic/types/shared/error_response.py
new file mode 100644
index 00000000..97034923
--- /dev/null
+++ b/src/anthropic/types/shared/error_response.py
@@ -0,0 +1,14 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+from .error_object import ErrorObject
+
+__all__ = ["ErrorResponse"]
+
+
+class ErrorResponse(BaseModel):
+ error: ErrorObject
+
+ type: Literal["error"]
diff --git a/src/anthropic/types/shared/gateway_timeout_error.py b/src/anthropic/types/shared/gateway_timeout_error.py
new file mode 100644
index 00000000..908aa12f
--- /dev/null
+++ b/src/anthropic/types/shared/gateway_timeout_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["GatewayTimeoutError"]
+
+
+class GatewayTimeoutError(BaseModel):
+ message: str
+
+ type: Literal["timeout_error"]
diff --git a/src/anthropic/types/shared/invalid_request_error.py b/src/anthropic/types/shared/invalid_request_error.py
new file mode 100644
index 00000000..ee5befc0
--- /dev/null
+++ b/src/anthropic/types/shared/invalid_request_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["InvalidRequestError"]
+
+
+class InvalidRequestError(BaseModel):
+ message: str
+
+ type: Literal["invalid_request_error"]
diff --git a/src/anthropic/types/shared/not_found_error.py b/src/anthropic/types/shared/not_found_error.py
new file mode 100644
index 00000000..43e826fb
--- /dev/null
+++ b/src/anthropic/types/shared/not_found_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["NotFoundError"]
+
+
+class NotFoundError(BaseModel):
+ message: str
+
+ type: Literal["not_found_error"]
diff --git a/src/anthropic/types/shared/overloaded_error.py b/src/anthropic/types/shared/overloaded_error.py
new file mode 100644
index 00000000..74ee8373
--- /dev/null
+++ b/src/anthropic/types/shared/overloaded_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["OverloadedError"]
+
+
+class OverloadedError(BaseModel):
+ message: str
+
+ type: Literal["overloaded_error"]
diff --git a/src/anthropic/types/shared/permission_error.py b/src/anthropic/types/shared/permission_error.py
new file mode 100644
index 00000000..48eb3546
--- /dev/null
+++ b/src/anthropic/types/shared/permission_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["PermissionError"]
+
+
+class PermissionError(BaseModel):
+ message: str
+
+ type: Literal["permission_error"]
diff --git a/src/anthropic/types/shared/rate_limit_error.py b/src/anthropic/types/shared/rate_limit_error.py
new file mode 100644
index 00000000..3fa065ac
--- /dev/null
+++ b/src/anthropic/types/shared/rate_limit_error.py
@@ -0,0 +1,13 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from typing_extensions import Literal
+
+from ..._models import BaseModel
+
+__all__ = ["RateLimitError"]
+
+
+class RateLimitError(BaseModel):
+ message: str
+
+ type: Literal["rate_limit_error"]
diff --git a/src/anthropic/types/text_block_param.py b/src/anthropic/types/text_block_param.py
index 825d1660..0b27ee2b 100644
--- a/src/anthropic/types/text_block_param.py
+++ b/src/anthropic/types/text_block_param.py
@@ -2,8 +2,11 @@
from __future__ import annotations
+from typing import Optional
from typing_extensions import Literal, Required, TypedDict
+from .cache_control_ephemeral_param import CacheControlEphemeralParam
+
__all__ = ["TextBlockParam"]
@@ -11,3 +14,5 @@ class TextBlockParam(TypedDict, total=False):
text: Required[str]
type: Required[Literal["text"]]
+
+ cache_control: Optional[CacheControlEphemeralParam]
diff --git a/src/anthropic/types/tool_param.py b/src/anthropic/types/tool_param.py
index 35a95516..3a6ab1dd 100644
--- a/src/anthropic/types/tool_param.py
+++ b/src/anthropic/types/tool_param.py
@@ -5,6 +5,8 @@
from typing import Dict, Union, Optional
from typing_extensions import Literal, Required, TypeAlias, TypedDict
+from .cache_control_ephemeral_param import CacheControlEphemeralParam
+
__all__ = ["ToolParam", "InputSchema"]
@@ -31,6 +33,8 @@ class ToolParam(TypedDict, total=False):
This is how the tool will be called by the model and in tool_use blocks.
"""
+ cache_control: Optional[CacheControlEphemeralParam]
+
description: str
"""Description of what this tool does.
diff --git a/src/anthropic/types/tool_result_block_param.py b/src/anthropic/types/tool_result_block_param.py
index 7c212e19..b6ca8aa9 100644
--- a/src/anthropic/types/tool_result_block_param.py
+++ b/src/anthropic/types/tool_result_block_param.py
@@ -2,11 +2,12 @@
from __future__ import annotations
-from typing import Union, Iterable
+from typing import Union, Iterable, Optional
from typing_extensions import Literal, Required, TypeAlias, TypedDict
from .text_block_param import TextBlockParam
from .image_block_param import ImageBlockParam
+from .cache_control_ephemeral_param import CacheControlEphemeralParam
__all__ = ["ToolResultBlockParam", "Content"]
@@ -18,6 +19,8 @@ class ToolResultBlockParam(TypedDict, total=False):
type: Required[Literal["tool_result"]]
+ cache_control: Optional[CacheControlEphemeralParam]
+
content: Union[str, Iterable[Content]]
is_error: bool
diff --git a/src/anthropic/types/tool_use_block_param.py b/src/anthropic/types/tool_use_block_param.py
index e0218476..cc285079 100644
--- a/src/anthropic/types/tool_use_block_param.py
+++ b/src/anthropic/types/tool_use_block_param.py
@@ -2,8 +2,11 @@
from __future__ import annotations
+from typing import Optional
from typing_extensions import Literal, Required, TypedDict
+from .cache_control_ephemeral_param import CacheControlEphemeralParam
+
__all__ = ["ToolUseBlockParam"]
@@ -15,3 +18,5 @@ class ToolUseBlockParam(TypedDict, total=False):
name: Required[str]
type: Required[Literal["tool_use"]]
+
+ cache_control: Optional[CacheControlEphemeralParam]
diff --git a/src/anthropic/types/usage.py b/src/anthropic/types/usage.py
index 88f1ec84..b4f817bd 100644
--- a/src/anthropic/types/usage.py
+++ b/src/anthropic/types/usage.py
@@ -1,5 +1,6 @@
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+from typing import Optional
from .._models import BaseModel
@@ -7,6 +8,12 @@
class Usage(BaseModel):
+ cache_creation_input_tokens: Optional[int] = None
+ """The number of input tokens used to create the cache entry."""
+
+ cache_read_input_tokens: Optional[int] = None
+ """The number of input tokens read from the cache."""
+
input_tokens: int
"""The number of input tokens which were used."""
diff --git a/tests/api_resources/beta/prompt_caching/test_messages.py b/tests/api_resources/beta/prompt_caching/test_messages.py
deleted file mode 100644
index 4ecb1624..00000000
--- a/tests/api_resources/beta/prompt_caching/test_messages.py
+++ /dev/null
@@ -1,442 +0,0 @@
-# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
-
-from __future__ import annotations
-
-import os
-from typing import Any, cast
-
-import pytest
-
-from anthropic import Anthropic, AsyncAnthropic
-from tests.utils import assert_matches_type
-from anthropic.types.beta.prompt_caching import PromptCachingBetaMessage
-
-base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010")
-
-
-class TestMessages:
- parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"])
-
- @parametrize
- def test_method_create_overload_1(self, client: Anthropic) -> None:
- message = client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- )
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- @parametrize
- def test_method_create_with_all_params_overload_1(self, client: Anthropic) -> None:
- message = client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"},
- stop_sequences=["string"],
- stream=False,
- system=[
- {
- "text": "Today's date is 2024-06-01.",
- "type": "text",
- "cache_control": {"type": "ephemeral"},
- }
- ],
- temperature=1,
- tool_choice={
- "type": "auto",
- "disable_parallel_tool_use": True,
- },
- tools=[
- {
- "input_schema": {
- "type": "object",
- "properties": {
- "location": {
- "description": "The city and state, e.g. San Francisco, CA",
- "type": "string",
- },
- "unit": {
- "description": "Unit for the output - one of (celsius, fahrenheit)",
- "type": "string",
- },
- },
- },
- "name": "x",
- "cache_control": {"type": "ephemeral"},
- "description": "Get the current weather in a given location",
- }
- ],
- top_k=5,
- top_p=0.7,
- betas=["string"],
- )
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- @parametrize
- def test_raw_response_create_overload_1(self, client: Anthropic) -> None:
- response = client.beta.prompt_caching.messages.with_raw_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- )
-
- assert response.is_closed is True
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
- message = response.parse()
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- @parametrize
- def test_streaming_response_create_overload_1(self, client: Anthropic) -> None:
- with client.beta.prompt_caching.messages.with_streaming_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- ) as response:
- assert not response.is_closed
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
-
- message = response.parse()
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- assert cast(Any, response.is_closed) is True
-
- @parametrize
- def test_method_create_overload_2(self, client: Anthropic) -> None:
- message_stream = client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- )
- message_stream.response.close()
-
- @parametrize
- def test_method_create_with_all_params_overload_2(self, client: Anthropic) -> None:
- message_stream = client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"},
- stop_sequences=["string"],
- system=[
- {
- "text": "Today's date is 2024-06-01.",
- "type": "text",
- "cache_control": {"type": "ephemeral"},
- }
- ],
- temperature=1,
- tool_choice={
- "type": "auto",
- "disable_parallel_tool_use": True,
- },
- tools=[
- {
- "input_schema": {
- "type": "object",
- "properties": {
- "location": {
- "description": "The city and state, e.g. San Francisco, CA",
- "type": "string",
- },
- "unit": {
- "description": "Unit for the output - one of (celsius, fahrenheit)",
- "type": "string",
- },
- },
- },
- "name": "x",
- "cache_control": {"type": "ephemeral"},
- "description": "Get the current weather in a given location",
- }
- ],
- top_k=5,
- top_p=0.7,
- betas=["string"],
- )
- message_stream.response.close()
-
- @parametrize
- def test_raw_response_create_overload_2(self, client: Anthropic) -> None:
- response = client.beta.prompt_caching.messages.with_raw_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- )
-
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
- stream = response.parse()
- stream.close()
-
- @parametrize
- def test_streaming_response_create_overload_2(self, client: Anthropic) -> None:
- with client.beta.prompt_caching.messages.with_streaming_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- ) as response:
- assert not response.is_closed
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
-
- stream = response.parse()
- stream.close()
-
- assert cast(Any, response.is_closed) is True
-
-
-class TestAsyncMessages:
- parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"])
-
- @parametrize
- async def test_method_create_overload_1(self, async_client: AsyncAnthropic) -> None:
- message = await async_client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- )
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- @parametrize
- async def test_method_create_with_all_params_overload_1(self, async_client: AsyncAnthropic) -> None:
- message = await async_client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"},
- stop_sequences=["string"],
- stream=False,
- system=[
- {
- "text": "Today's date is 2024-06-01.",
- "type": "text",
- "cache_control": {"type": "ephemeral"},
- }
- ],
- temperature=1,
- tool_choice={
- "type": "auto",
- "disable_parallel_tool_use": True,
- },
- tools=[
- {
- "input_schema": {
- "type": "object",
- "properties": {
- "location": {
- "description": "The city and state, e.g. San Francisco, CA",
- "type": "string",
- },
- "unit": {
- "description": "Unit for the output - one of (celsius, fahrenheit)",
- "type": "string",
- },
- },
- },
- "name": "x",
- "cache_control": {"type": "ephemeral"},
- "description": "Get the current weather in a given location",
- }
- ],
- top_k=5,
- top_p=0.7,
- betas=["string"],
- )
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- @parametrize
- async def test_raw_response_create_overload_1(self, async_client: AsyncAnthropic) -> None:
- response = await async_client.beta.prompt_caching.messages.with_raw_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- )
-
- assert response.is_closed is True
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
- message = response.parse()
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- @parametrize
- async def test_streaming_response_create_overload_1(self, async_client: AsyncAnthropic) -> None:
- async with async_client.beta.prompt_caching.messages.with_streaming_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- ) as response:
- assert not response.is_closed
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
-
- message = await response.parse()
- assert_matches_type(PromptCachingBetaMessage, message, path=["response"])
-
- assert cast(Any, response.is_closed) is True
-
- @parametrize
- async def test_method_create_overload_2(self, async_client: AsyncAnthropic) -> None:
- message_stream = await async_client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- )
- await message_stream.response.aclose()
-
- @parametrize
- async def test_method_create_with_all_params_overload_2(self, async_client: AsyncAnthropic) -> None:
- message_stream = await async_client.beta.prompt_caching.messages.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"},
- stop_sequences=["string"],
- system=[
- {
- "text": "Today's date is 2024-06-01.",
- "type": "text",
- "cache_control": {"type": "ephemeral"},
- }
- ],
- temperature=1,
- tool_choice={
- "type": "auto",
- "disable_parallel_tool_use": True,
- },
- tools=[
- {
- "input_schema": {
- "type": "object",
- "properties": {
- "location": {
- "description": "The city and state, e.g. San Francisco, CA",
- "type": "string",
- },
- "unit": {
- "description": "Unit for the output - one of (celsius, fahrenheit)",
- "type": "string",
- },
- },
- },
- "name": "x",
- "cache_control": {"type": "ephemeral"},
- "description": "Get the current weather in a given location",
- }
- ],
- top_k=5,
- top_p=0.7,
- betas=["string"],
- )
- await message_stream.response.aclose()
-
- @parametrize
- async def test_raw_response_create_overload_2(self, async_client: AsyncAnthropic) -> None:
- response = await async_client.beta.prompt_caching.messages.with_raw_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- )
-
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
- stream = response.parse()
- await stream.close()
-
- @parametrize
- async def test_streaming_response_create_overload_2(self, async_client: AsyncAnthropic) -> None:
- async with async_client.beta.prompt_caching.messages.with_streaming_response.create(
- max_tokens=1024,
- messages=[
- {
- "content": "Hello, world",
- "role": "user",
- }
- ],
- model="claude-3-5-sonnet-20241022",
- stream=True,
- ) as response:
- assert not response.is_closed
- assert response.http_request.headers.get("X-Stainless-Lang") == "python"
-
- stream = await response.parse()
- await stream.close()
-
- assert cast(Any, response.is_closed) is True
diff --git a/tests/api_resources/beta/test_models.py b/tests/api_resources/beta/test_models.py
new file mode 100644
index 00000000..17ffd939
--- /dev/null
+++ b/tests/api_resources/beta/test_models.py
@@ -0,0 +1,167 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+import os
+from typing import Any, cast
+
+import pytest
+
+from anthropic import Anthropic, AsyncAnthropic
+from tests.utils import assert_matches_type
+from anthropic.pagination import SyncPage, AsyncPage
+from anthropic.types.beta import BetaModelInfo
+
+base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010")
+
+
+class TestModels:
+ parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"])
+
+ @parametrize
+ def test_method_retrieve(self, client: Anthropic) -> None:
+ model = client.beta.models.retrieve(
+ "model_id",
+ )
+ assert_matches_type(BetaModelInfo, model, path=["response"])
+
+ @parametrize
+ def test_raw_response_retrieve(self, client: Anthropic) -> None:
+ response = client.beta.models.with_raw_response.retrieve(
+ "model_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(BetaModelInfo, model, path=["response"])
+
+ @parametrize
+ def test_streaming_response_retrieve(self, client: Anthropic) -> None:
+ with client.beta.models.with_streaming_response.retrieve(
+ "model_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = response.parse()
+ assert_matches_type(BetaModelInfo, model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ def test_path_params_retrieve(self, client: Anthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"):
+ client.beta.models.with_raw_response.retrieve(
+ "",
+ )
+
+ @parametrize
+ def test_method_list(self, client: Anthropic) -> None:
+ model = client.beta.models.list()
+ assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"])
+
+ @parametrize
+ def test_method_list_with_all_params(self, client: Anthropic) -> None:
+ model = client.beta.models.list(
+ after_id="after_id",
+ before_id="before_id",
+ limit=1,
+ )
+ assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"])
+
+ @parametrize
+ def test_raw_response_list(self, client: Anthropic) -> None:
+ response = client.beta.models.with_raw_response.list()
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"])
+
+ @parametrize
+ def test_streaming_response_list(self, client: Anthropic) -> None:
+ with client.beta.models.with_streaming_response.list() as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = response.parse()
+ assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+
+class TestAsyncModels:
+ parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"])
+
+ @parametrize
+ async def test_method_retrieve(self, async_client: AsyncAnthropic) -> None:
+ model = await async_client.beta.models.retrieve(
+ "model_id",
+ )
+ assert_matches_type(BetaModelInfo, model, path=["response"])
+
+ @parametrize
+ async def test_raw_response_retrieve(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.beta.models.with_raw_response.retrieve(
+ "model_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(BetaModelInfo, model, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_retrieve(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.beta.models.with_streaming_response.retrieve(
+ "model_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = await response.parse()
+ assert_matches_type(BetaModelInfo, model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ async def test_path_params_retrieve(self, async_client: AsyncAnthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"):
+ await async_client.beta.models.with_raw_response.retrieve(
+ "",
+ )
+
+ @parametrize
+ async def test_method_list(self, async_client: AsyncAnthropic) -> None:
+ model = await async_client.beta.models.list()
+ assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"])
+
+ @parametrize
+ async def test_method_list_with_all_params(self, async_client: AsyncAnthropic) -> None:
+ model = await async_client.beta.models.list(
+ after_id="after_id",
+ before_id="before_id",
+ limit=1,
+ )
+ assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"])
+
+ @parametrize
+ async def test_raw_response_list(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.beta.models.with_raw_response.list()
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_list(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.beta.models.with_streaming_response.list() as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = await response.parse()
+ assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
diff --git a/tests/api_resources/beta/prompt_caching/__init__.py b/tests/api_resources/messages/__init__.py
similarity index 100%
rename from tests/api_resources/beta/prompt_caching/__init__.py
rename to tests/api_resources/messages/__init__.py
diff --git a/tests/api_resources/messages/test_batches.py b/tests/api_resources/messages/test_batches.py
new file mode 100644
index 00000000..89ec66c8
--- /dev/null
+++ b/tests/api_resources/messages/test_batches.py
@@ -0,0 +1,511 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+import os
+from typing import Any, cast
+
+import httpx
+import pytest
+from respx import MockRouter
+
+from anthropic import Anthropic, AsyncAnthropic
+from tests.utils import assert_matches_type
+from anthropic._response import (
+ BinaryAPIResponse,
+ AsyncBinaryAPIResponse,
+ StreamedBinaryAPIResponse,
+ AsyncStreamedBinaryAPIResponse,
+)
+from anthropic.pagination import SyncPage, AsyncPage
+from anthropic.types.messages import MessageBatch
+
+# pyright: reportDeprecated=false
+
+base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010")
+
+
+class TestBatches:
+ parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"])
+
+ @parametrize
+ def test_method_create(self, client: Anthropic) -> None:
+ batch = client.messages.batches.create(
+ requests=[
+ {
+ "custom_id": "my-custom-id-1",
+ "params": {
+ "max_tokens": 1024,
+ "messages": [
+ {
+ "content": "Hello, world",
+ "role": "user",
+ }
+ ],
+ "model": "claude-3-5-sonnet-20241022",
+ },
+ }
+ ],
+ )
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ def test_raw_response_create(self, client: Anthropic) -> None:
+ response = client.messages.batches.with_raw_response.create(
+ requests=[
+ {
+ "custom_id": "my-custom-id-1",
+ "params": {
+ "max_tokens": 1024,
+ "messages": [
+ {
+ "content": "Hello, world",
+ "role": "user",
+ }
+ ],
+ "model": "claude-3-5-sonnet-20241022",
+ },
+ }
+ ],
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ def test_streaming_response_create(self, client: Anthropic) -> None:
+ with client.messages.batches.with_streaming_response.create(
+ requests=[
+ {
+ "custom_id": "my-custom-id-1",
+ "params": {
+ "max_tokens": 1024,
+ "messages": [
+ {
+ "content": "Hello, world",
+ "role": "user",
+ }
+ ],
+ "model": "claude-3-5-sonnet-20241022",
+ },
+ }
+ ],
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ def test_method_retrieve(self, client: Anthropic) -> None:
+ batch = client.messages.batches.retrieve(
+ "message_batch_id",
+ )
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ def test_raw_response_retrieve(self, client: Anthropic) -> None:
+ response = client.messages.batches.with_raw_response.retrieve(
+ "message_batch_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ def test_streaming_response_retrieve(self, client: Anthropic) -> None:
+ with client.messages.batches.with_streaming_response.retrieve(
+ "message_batch_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ def test_path_params_retrieve(self, client: Anthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"):
+ client.messages.batches.with_raw_response.retrieve(
+ "",
+ )
+
+ @parametrize
+ def test_method_list(self, client: Anthropic) -> None:
+ batch = client.messages.batches.list()
+ assert_matches_type(SyncPage[MessageBatch], batch, path=["response"])
+
+ @parametrize
+ def test_method_list_with_all_params(self, client: Anthropic) -> None:
+ batch = client.messages.batches.list(
+ after_id="after_id",
+ before_id="before_id",
+ limit=1,
+ )
+ assert_matches_type(SyncPage[MessageBatch], batch, path=["response"])
+
+ @parametrize
+ def test_raw_response_list(self, client: Anthropic) -> None:
+ response = client.messages.batches.with_raw_response.list()
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(SyncPage[MessageBatch], batch, path=["response"])
+
+ @parametrize
+ def test_streaming_response_list(self, client: Anthropic) -> None:
+ with client.messages.batches.with_streaming_response.list() as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = response.parse()
+ assert_matches_type(SyncPage[MessageBatch], batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ def test_method_cancel(self, client: Anthropic) -> None:
+ batch = client.messages.batches.cancel(
+ "message_batch_id",
+ )
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ def test_raw_response_cancel(self, client: Anthropic) -> None:
+ response = client.messages.batches.with_raw_response.cancel(
+ "message_batch_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ def test_streaming_response_cancel(self, client: Anthropic) -> None:
+ with client.messages.batches.with_streaming_response.cancel(
+ "message_batch_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ def test_path_params_cancel(self, client: Anthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"):
+ client.messages.batches.with_raw_response.cancel(
+ "",
+ )
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ def test_method_results(self, client: Anthropic, respx_mock: MockRouter) -> None:
+ respx_mock.get("/v1/messages/batches/message_batch_id/results").mock(
+ return_value=httpx.Response(200, json={"foo": "bar"})
+ )
+ batch = client.messages.batches.results(
+ "message_batch_id",
+ )
+ assert batch.is_closed
+ assert batch.json() == {"foo": "bar"}
+ assert cast(Any, batch.is_closed) is True
+ assert isinstance(batch, BinaryAPIResponse)
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ def test_raw_response_results(self, client: Anthropic, respx_mock: MockRouter) -> None:
+ respx_mock.get("/v1/messages/batches/message_batch_id/results").mock(
+ return_value=httpx.Response(200, json={"foo": "bar"})
+ )
+
+ batch = client.messages.batches.with_raw_response.results(
+ "message_batch_id",
+ )
+
+ assert batch.is_closed is True
+ assert batch.http_request.headers.get("X-Stainless-Lang") == "python"
+ assert batch.json() == {"foo": "bar"}
+ assert isinstance(batch, BinaryAPIResponse)
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ def test_streaming_response_results(self, client: Anthropic, respx_mock: MockRouter) -> None:
+ respx_mock.get("/v1/messages/batches/message_batch_id/results").mock(
+ return_value=httpx.Response(200, json={"foo": "bar"})
+ )
+ with client.messages.batches.with_streaming_response.results(
+ "message_batch_id",
+ ) as batch:
+ assert not batch.is_closed
+ assert batch.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ assert batch.json() == {"foo": "bar"}
+ assert cast(Any, batch.is_closed) is True
+ assert isinstance(batch, StreamedBinaryAPIResponse)
+
+ assert cast(Any, batch.is_closed) is True
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ def test_path_params_results(self, client: Anthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"):
+ client.messages.batches.with_raw_response.results(
+ "",
+ )
+
+
+class TestAsyncBatches:
+ parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"])
+
+ @parametrize
+ async def test_method_create(self, async_client: AsyncAnthropic) -> None:
+ batch = await async_client.messages.batches.create(
+ requests=[
+ {
+ "custom_id": "my-custom-id-1",
+ "params": {
+ "max_tokens": 1024,
+ "messages": [
+ {
+ "content": "Hello, world",
+ "role": "user",
+ }
+ ],
+ "model": "claude-3-5-sonnet-20241022",
+ },
+ }
+ ],
+ )
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ async def test_raw_response_create(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.messages.batches.with_raw_response.create(
+ requests=[
+ {
+ "custom_id": "my-custom-id-1",
+ "params": {
+ "max_tokens": 1024,
+ "messages": [
+ {
+ "content": "Hello, world",
+ "role": "user",
+ }
+ ],
+ "model": "claude-3-5-sonnet-20241022",
+ },
+ }
+ ],
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_create(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.messages.batches.with_streaming_response.create(
+ requests=[
+ {
+ "custom_id": "my-custom-id-1",
+ "params": {
+ "max_tokens": 1024,
+ "messages": [
+ {
+ "content": "Hello, world",
+ "role": "user",
+ }
+ ],
+ "model": "claude-3-5-sonnet-20241022",
+ },
+ }
+ ],
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = await response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ async def test_method_retrieve(self, async_client: AsyncAnthropic) -> None:
+ batch = await async_client.messages.batches.retrieve(
+ "message_batch_id",
+ )
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ async def test_raw_response_retrieve(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.messages.batches.with_raw_response.retrieve(
+ "message_batch_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_retrieve(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.messages.batches.with_streaming_response.retrieve(
+ "message_batch_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = await response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ async def test_path_params_retrieve(self, async_client: AsyncAnthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"):
+ await async_client.messages.batches.with_raw_response.retrieve(
+ "",
+ )
+
+ @parametrize
+ async def test_method_list(self, async_client: AsyncAnthropic) -> None:
+ batch = await async_client.messages.batches.list()
+ assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"])
+
+ @parametrize
+ async def test_method_list_with_all_params(self, async_client: AsyncAnthropic) -> None:
+ batch = await async_client.messages.batches.list(
+ after_id="after_id",
+ before_id="before_id",
+ limit=1,
+ )
+ assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"])
+
+ @parametrize
+ async def test_raw_response_list(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.messages.batches.with_raw_response.list()
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_list(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.messages.batches.with_streaming_response.list() as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = await response.parse()
+ assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ async def test_method_cancel(self, async_client: AsyncAnthropic) -> None:
+ batch = await async_client.messages.batches.cancel(
+ "message_batch_id",
+ )
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ async def test_raw_response_cancel(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.messages.batches.with_raw_response.cancel(
+ "message_batch_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ batch = response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_cancel(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.messages.batches.with_streaming_response.cancel(
+ "message_batch_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ batch = await response.parse()
+ assert_matches_type(MessageBatch, batch, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ async def test_path_params_cancel(self, async_client: AsyncAnthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"):
+ await async_client.messages.batches.with_raw_response.cancel(
+ "",
+ )
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ async def test_method_results(self, async_client: AsyncAnthropic, respx_mock: MockRouter) -> None:
+ respx_mock.get("/v1/messages/batches/message_batch_id/results").mock(
+ return_value=httpx.Response(200, json={"foo": "bar"})
+ )
+ batch = await async_client.messages.batches.results(
+ "message_batch_id",
+ )
+ assert batch.is_closed
+ assert await batch.json() == {"foo": "bar"}
+ assert cast(Any, batch.is_closed) is True
+ assert isinstance(batch, AsyncBinaryAPIResponse)
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ async def test_raw_response_results(self, async_client: AsyncAnthropic, respx_mock: MockRouter) -> None:
+ respx_mock.get("/v1/messages/batches/message_batch_id/results").mock(
+ return_value=httpx.Response(200, json={"foo": "bar"})
+ )
+
+ batch = await async_client.messages.batches.with_raw_response.results(
+ "message_batch_id",
+ )
+
+ assert batch.is_closed is True
+ assert batch.http_request.headers.get("X-Stainless-Lang") == "python"
+ assert await batch.json() == {"foo": "bar"}
+ assert isinstance(batch, AsyncBinaryAPIResponse)
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ async def test_streaming_response_results(self, async_client: AsyncAnthropic, respx_mock: MockRouter) -> None:
+ respx_mock.get("/v1/messages/batches/message_batch_id/results").mock(
+ return_value=httpx.Response(200, json={"foo": "bar"})
+ )
+ async with async_client.messages.batches.with_streaming_response.results(
+ "message_batch_id",
+ ) as batch:
+ assert not batch.is_closed
+ assert batch.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ assert await batch.json() == {"foo": "bar"}
+ assert cast(Any, batch.is_closed) is True
+ assert isinstance(batch, AsyncStreamedBinaryAPIResponse)
+
+ assert cast(Any, batch.is_closed) is True
+
+ @parametrize
+ @pytest.mark.respx(base_url=base_url)
+ async def test_path_params_results(self, async_client: AsyncAnthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"):
+ await async_client.messages.batches.with_raw_response.results(
+ "",
+ )
diff --git a/tests/api_resources/test_messages.py b/tests/api_resources/test_messages.py
index 9e1f91c5..dc5b2396 100644
--- a/tests/api_resources/test_messages.py
+++ b/tests/api_resources/test_messages.py
@@ -9,7 +9,10 @@
from anthropic import Anthropic, AsyncAnthropic
from tests.utils import assert_matches_type
-from anthropic.types import Message
+from anthropic.types import (
+ Message,
+ MessageTokensCount,
+)
base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010")
@@ -49,6 +52,7 @@ def test_method_create_with_all_params_overload_1(self, client: Anthropic) -> No
{
"text": "Today's date is 2024-06-01.",
"type": "text",
+ "cache_control": {"type": "ephemeral"},
}
],
temperature=1,
@@ -72,6 +76,7 @@ def test_method_create_with_all_params_overload_1(self, client: Anthropic) -> No
},
},
"name": "x",
+ "cache_control": {"type": "ephemeral"},
"description": "Get the current weather in a given location",
}
],
@@ -151,6 +156,7 @@ def test_method_create_with_all_params_overload_2(self, client: Anthropic) -> No
{
"text": "Today's date is 2024-06-01.",
"type": "text",
+ "cache_control": {"type": "ephemeral"},
}
],
temperature=1,
@@ -174,6 +180,7 @@ def test_method_create_with_all_params_overload_2(self, client: Anthropic) -> No
},
},
"name": "x",
+ "cache_control": {"type": "ephemeral"},
"description": "Get the current weather in a given location",
}
],
@@ -221,6 +228,99 @@ def test_streaming_response_create_overload_2(self, client: Anthropic) -> None:
assert cast(Any, response.is_closed) is True
+ @parametrize
+ def test_method_count_tokens(self, client: Anthropic) -> None:
+ message = client.messages.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ )
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ @parametrize
+ def test_method_count_tokens_with_all_params(self, client: Anthropic) -> None:
+ message = client.messages.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ system=[
+ {
+ "text": "Today's date is 2024-06-01.",
+ "type": "text",
+ "cache_control": {"type": "ephemeral"},
+ }
+ ],
+ tool_choice={
+ "type": "auto",
+ "disable_parallel_tool_use": True,
+ },
+ tools=[
+ {
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "location": {
+ "description": "The city and state, e.g. San Francisco, CA",
+ "type": "string",
+ },
+ "unit": {
+ "description": "Unit for the output - one of (celsius, fahrenheit)",
+ "type": "string",
+ },
+ },
+ },
+ "name": "x",
+ "cache_control": {"type": "ephemeral"},
+ "description": "Get the current weather in a given location",
+ }
+ ],
+ )
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ @parametrize
+ def test_raw_response_count_tokens(self, client: Anthropic) -> None:
+ response = client.messages.with_raw_response.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ message = response.parse()
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ @parametrize
+ def test_streaming_response_count_tokens(self, client: Anthropic) -> None:
+ with client.messages.with_streaming_response.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ message = response.parse()
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
class TestAsyncMessages:
parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"])
@@ -257,6 +357,7 @@ async def test_method_create_with_all_params_overload_1(self, async_client: Asyn
{
"text": "Today's date is 2024-06-01.",
"type": "text",
+ "cache_control": {"type": "ephemeral"},
}
],
temperature=1,
@@ -280,6 +381,7 @@ async def test_method_create_with_all_params_overload_1(self, async_client: Asyn
},
},
"name": "x",
+ "cache_control": {"type": "ephemeral"},
"description": "Get the current weather in a given location",
}
],
@@ -359,6 +461,7 @@ async def test_method_create_with_all_params_overload_2(self, async_client: Asyn
{
"text": "Today's date is 2024-06-01.",
"type": "text",
+ "cache_control": {"type": "ephemeral"},
}
],
temperature=1,
@@ -382,6 +485,7 @@ async def test_method_create_with_all_params_overload_2(self, async_client: Asyn
},
},
"name": "x",
+ "cache_control": {"type": "ephemeral"},
"description": "Get the current weather in a given location",
}
],
@@ -428,3 +532,96 @@ async def test_streaming_response_create_overload_2(self, async_client: AsyncAnt
await stream.close()
assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ async def test_method_count_tokens(self, async_client: AsyncAnthropic) -> None:
+ message = await async_client.messages.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ )
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ @parametrize
+ async def test_method_count_tokens_with_all_params(self, async_client: AsyncAnthropic) -> None:
+ message = await async_client.messages.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ system=[
+ {
+ "text": "Today's date is 2024-06-01.",
+ "type": "text",
+ "cache_control": {"type": "ephemeral"},
+ }
+ ],
+ tool_choice={
+ "type": "auto",
+ "disable_parallel_tool_use": True,
+ },
+ tools=[
+ {
+ "input_schema": {
+ "type": "object",
+ "properties": {
+ "location": {
+ "description": "The city and state, e.g. San Francisco, CA",
+ "type": "string",
+ },
+ "unit": {
+ "description": "Unit for the output - one of (celsius, fahrenheit)",
+ "type": "string",
+ },
+ },
+ },
+ "name": "x",
+ "cache_control": {"type": "ephemeral"},
+ "description": "Get the current weather in a given location",
+ }
+ ],
+ )
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ @parametrize
+ async def test_raw_response_count_tokens(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.messages.with_raw_response.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ message = response.parse()
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_count_tokens(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.messages.with_streaming_response.count_tokens(
+ messages=[
+ {
+ "content": "string",
+ "role": "user",
+ }
+ ],
+ model="string",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ message = await response.parse()
+ assert_matches_type(MessageTokensCount, message, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
diff --git a/tests/api_resources/test_models.py b/tests/api_resources/test_models.py
new file mode 100644
index 00000000..34b4961a
--- /dev/null
+++ b/tests/api_resources/test_models.py
@@ -0,0 +1,167 @@
+# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
+
+from __future__ import annotations
+
+import os
+from typing import Any, cast
+
+import pytest
+
+from anthropic import Anthropic, AsyncAnthropic
+from tests.utils import assert_matches_type
+from anthropic.types import ModelInfo
+from anthropic.pagination import SyncPage, AsyncPage
+
+base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010")
+
+
+class TestModels:
+ parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"])
+
+ @parametrize
+ def test_method_retrieve(self, client: Anthropic) -> None:
+ model = client.models.retrieve(
+ "model_id",
+ )
+ assert_matches_type(ModelInfo, model, path=["response"])
+
+ @parametrize
+ def test_raw_response_retrieve(self, client: Anthropic) -> None:
+ response = client.models.with_raw_response.retrieve(
+ "model_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(ModelInfo, model, path=["response"])
+
+ @parametrize
+ def test_streaming_response_retrieve(self, client: Anthropic) -> None:
+ with client.models.with_streaming_response.retrieve(
+ "model_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = response.parse()
+ assert_matches_type(ModelInfo, model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ def test_path_params_retrieve(self, client: Anthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"):
+ client.models.with_raw_response.retrieve(
+ "",
+ )
+
+ @parametrize
+ def test_method_list(self, client: Anthropic) -> None:
+ model = client.models.list()
+ assert_matches_type(SyncPage[ModelInfo], model, path=["response"])
+
+ @parametrize
+ def test_method_list_with_all_params(self, client: Anthropic) -> None:
+ model = client.models.list(
+ after_id="after_id",
+ before_id="before_id",
+ limit=1,
+ )
+ assert_matches_type(SyncPage[ModelInfo], model, path=["response"])
+
+ @parametrize
+ def test_raw_response_list(self, client: Anthropic) -> None:
+ response = client.models.with_raw_response.list()
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(SyncPage[ModelInfo], model, path=["response"])
+
+ @parametrize
+ def test_streaming_response_list(self, client: Anthropic) -> None:
+ with client.models.with_streaming_response.list() as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = response.parse()
+ assert_matches_type(SyncPage[ModelInfo], model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+
+class TestAsyncModels:
+ parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"])
+
+ @parametrize
+ async def test_method_retrieve(self, async_client: AsyncAnthropic) -> None:
+ model = await async_client.models.retrieve(
+ "model_id",
+ )
+ assert_matches_type(ModelInfo, model, path=["response"])
+
+ @parametrize
+ async def test_raw_response_retrieve(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.models.with_raw_response.retrieve(
+ "model_id",
+ )
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(ModelInfo, model, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_retrieve(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.models.with_streaming_response.retrieve(
+ "model_id",
+ ) as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = await response.parse()
+ assert_matches_type(ModelInfo, model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True
+
+ @parametrize
+ async def test_path_params_retrieve(self, async_client: AsyncAnthropic) -> None:
+ with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"):
+ await async_client.models.with_raw_response.retrieve(
+ "",
+ )
+
+ @parametrize
+ async def test_method_list(self, async_client: AsyncAnthropic) -> None:
+ model = await async_client.models.list()
+ assert_matches_type(AsyncPage[ModelInfo], model, path=["response"])
+
+ @parametrize
+ async def test_method_list_with_all_params(self, async_client: AsyncAnthropic) -> None:
+ model = await async_client.models.list(
+ after_id="after_id",
+ before_id="before_id",
+ limit=1,
+ )
+ assert_matches_type(AsyncPage[ModelInfo], model, path=["response"])
+
+ @parametrize
+ async def test_raw_response_list(self, async_client: AsyncAnthropic) -> None:
+ response = await async_client.models.with_raw_response.list()
+
+ assert response.is_closed is True
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+ model = response.parse()
+ assert_matches_type(AsyncPage[ModelInfo], model, path=["response"])
+
+ @parametrize
+ async def test_streaming_response_list(self, async_client: AsyncAnthropic) -> None:
+ async with async_client.models.with_streaming_response.list() as response:
+ assert not response.is_closed
+ assert response.http_request.headers.get("X-Stainless-Lang") == "python"
+
+ model = await response.parse()
+ assert_matches_type(AsyncPage[ModelInfo], model, path=["response"])
+
+ assert cast(Any, response.is_closed) is True