diff --git a/.stats.yml b/.stats.yml index e550e0bd..19e9daeb 100644 --- a/.stats.yml +++ b/.stats.yml @@ -1,2 +1,2 @@ -configured_endpoints: 10 -openapi_spec_url: https://storage.googleapis.com/stainless-sdk-openapi-specs/anthropic-73443ebfebee64b8ec0ebbacd2521d6b6aa900e9526ec97abdcbcff0c0955d9b.yml +configured_endpoints: 19 +openapi_spec_url: https://storage.googleapis.com/stainless-sdk-openapi-specs/anthropic-be055148d227480fcacc9086c37ac8009dcb487731069ada51af35044f65bee4.yml diff --git a/api.md b/api.md index ba4507bf..773b5eb6 100644 --- a/api.md +++ b/api.md @@ -1,14 +1,35 @@ +# Shared Types + +```python +from anthropic.types import ( + APIErrorObject, + AuthenticationError, + BillingError, + ErrorObject, + ErrorResponse, + GatewayTimeoutError, + InvalidRequestError, + NotFoundError, + OverloadedError, + PermissionError, + RateLimitError, +) +``` + # Messages Types: ```python from anthropic.types import ( + Base64PDFSource, + CacheControlEphemeral, ContentBlock, ContentBlockDeltaEvent, ContentBlockParam, ContentBlockStartEvent, ContentBlockStopEvent, + DocumentBlockParam, ImageBlockParam, InputJSONDelta, Message, @@ -18,6 +39,7 @@ from anthropic.types import ( MessageStartEvent, MessageStopEvent, MessageStreamEvent, + MessageTokensCount, Metadata, Model, RawContentBlockDeltaEvent, @@ -44,7 +66,46 @@ from anthropic.types import ( Methods: -- client.messages.create(\*\*params) -> Message +- client.messages.create(\*\*params) -> Message +- client.messages.count_tokens(\*\*params) -> MessageTokensCount + +## Batches + +Types: + +```python +from anthropic.types.messages import ( + MessageBatch, + MessageBatchCanceledResult, + MessageBatchErroredResult, + MessageBatchExpiredResult, + MessageBatchIndividualResponse, + MessageBatchRequestCounts, + MessageBatchResult, + MessageBatchSucceededResult, +) +``` + +Methods: + +- client.messages.batches.create(\*\*params) -> MessageBatch +- client.messages.batches.retrieve(message_batch_id) -> MessageBatch +- client.messages.batches.list(\*\*params) -> SyncPage[MessageBatch] +- client.messages.batches.cancel(message_batch_id) -> MessageBatch +- client.messages.batches.results(message_batch_id) -> BinaryAPIResponse + +# Models + +Types: + +```python +from anthropic.types import ModelInfo +``` + +Methods: + +- client.models.retrieve(model_id) -> ModelInfo +- client.models.list(\*\*params) -> SyncPage[ModelInfo] # Beta @@ -55,8 +116,10 @@ from anthropic.types import ( AnthropicBeta, BetaAPIError, BetaAuthenticationError, + BetaBillingError, BetaError, BetaErrorResponse, + BetaGatewayTimeoutError, BetaInvalidRequestError, BetaNotFoundError, BetaOverloadedError, @@ -65,6 +128,19 @@ from anthropic.types import ( ) ``` +## Models + +Types: + +```python +from anthropic.types.beta import BetaModelInfo +``` + +Methods: + +- client.beta.models.retrieve(model_id) -> BetaModelInfo +- client.beta.models.list(\*\*params) -> SyncPage[BetaModelInfo] + ## Messages Types: @@ -138,29 +214,3 @@ Methods: - client.beta.messages.batches.list(\*\*params) -> SyncPage[BetaMessageBatch] - client.beta.messages.batches.cancel(message_batch_id) -> BetaMessageBatch - client.beta.messages.batches.results(message_batch_id) -> BinaryAPIResponse - -## PromptCaching - -### Messages - -Types: - -```python -from anthropic.types.beta.prompt_caching import ( - PromptCachingBetaCacheControlEphemeral, - PromptCachingBetaImageBlockParam, - PromptCachingBetaMessage, - PromptCachingBetaMessageParam, - PromptCachingBetaTextBlockParam, - PromptCachingBetaTool, - PromptCachingBetaToolResultBlockParam, - PromptCachingBetaToolUseBlockParam, - PromptCachingBetaUsage, - RawPromptCachingBetaMessageStartEvent, - RawPromptCachingBetaMessageStreamEvent, -) -``` - -Methods: - -- client.beta.prompt_caching.messages.create(\*\*params) -> PromptCachingBetaMessage diff --git a/src/anthropic/_client.py b/src/anthropic/_client.py index e2eb27c4..8bf77861 100644 --- a/src/anthropic/_client.py +++ b/src/anthropic/_client.py @@ -25,7 +25,7 @@ get_async_library, ) from ._version import __version__ -from .resources import messages, completions +from .resources import models, completions from ._streaming import Stream as Stream, AsyncStream as AsyncStream from ._exceptions import APIStatusError from ._base_client import ( @@ -34,6 +34,7 @@ AsyncAPIClient, ) from .resources.beta import beta +from .resources.messages import messages __all__ = [ "Timeout", @@ -50,6 +51,7 @@ class Anthropic(SyncAPIClient): completions: completions.Completions messages: messages.Messages + models: models.Models beta: beta.Beta with_raw_response: AnthropicWithRawResponse with_streaming_response: AnthropicWithStreamedResponse @@ -120,6 +122,7 @@ def __init__( self.completions = completions.Completions(self) self.messages = messages.Messages(self) + self.models = models.Models(self) self.beta = beta.Beta(self) self.with_raw_response = AnthropicWithRawResponse(self) self.with_streaming_response = AnthropicWithStreamedResponse(self) @@ -268,6 +271,7 @@ def _make_status_error( class AsyncAnthropic(AsyncAPIClient): completions: completions.AsyncCompletions messages: messages.AsyncMessages + models: models.AsyncModels beta: beta.AsyncBeta with_raw_response: AsyncAnthropicWithRawResponse with_streaming_response: AsyncAnthropicWithStreamedResponse @@ -338,6 +342,7 @@ def __init__( self.completions = completions.AsyncCompletions(self) self.messages = messages.AsyncMessages(self) + self.models = models.AsyncModels(self) self.beta = beta.AsyncBeta(self) self.with_raw_response = AsyncAnthropicWithRawResponse(self) self.with_streaming_response = AsyncAnthropicWithStreamedResponse(self) @@ -487,6 +492,7 @@ class AnthropicWithRawResponse: def __init__(self, client: Anthropic) -> None: self.completions = completions.CompletionsWithRawResponse(client.completions) self.messages = messages.MessagesWithRawResponse(client.messages) + self.models = models.ModelsWithRawResponse(client.models) self.beta = beta.BetaWithRawResponse(client.beta) @@ -494,6 +500,7 @@ class AsyncAnthropicWithRawResponse: def __init__(self, client: AsyncAnthropic) -> None: self.completions = completions.AsyncCompletionsWithRawResponse(client.completions) self.messages = messages.AsyncMessagesWithRawResponse(client.messages) + self.models = models.AsyncModelsWithRawResponse(client.models) self.beta = beta.AsyncBetaWithRawResponse(client.beta) @@ -501,6 +508,7 @@ class AnthropicWithStreamedResponse: def __init__(self, client: Anthropic) -> None: self.completions = completions.CompletionsWithStreamingResponse(client.completions) self.messages = messages.MessagesWithStreamingResponse(client.messages) + self.models = models.ModelsWithStreamingResponse(client.models) self.beta = beta.BetaWithStreamingResponse(client.beta) @@ -508,6 +516,7 @@ class AsyncAnthropicWithStreamedResponse: def __init__(self, client: AsyncAnthropic) -> None: self.completions = completions.AsyncCompletionsWithStreamingResponse(client.completions) self.messages = messages.AsyncMessagesWithStreamingResponse(client.messages) + self.models = models.AsyncModelsWithStreamingResponse(client.models) self.beta = beta.AsyncBetaWithStreamingResponse(client.beta) diff --git a/src/anthropic/resources/__init__.py b/src/anthropic/resources/__init__.py index 318d5cdd..ffff8855 100644 --- a/src/anthropic/resources/__init__.py +++ b/src/anthropic/resources/__init__.py @@ -8,6 +8,14 @@ BetaWithStreamingResponse, AsyncBetaWithStreamingResponse, ) +from .models import ( + Models, + AsyncModels, + ModelsWithRawResponse, + AsyncModelsWithRawResponse, + ModelsWithStreamingResponse, + AsyncModelsWithStreamingResponse, +) from .messages import ( Messages, AsyncMessages, @@ -38,6 +46,12 @@ "AsyncMessagesWithRawResponse", "MessagesWithStreamingResponse", "AsyncMessagesWithStreamingResponse", + "Models", + "AsyncModels", + "ModelsWithRawResponse", + "AsyncModelsWithRawResponse", + "ModelsWithStreamingResponse", + "AsyncModelsWithStreamingResponse", "Beta", "AsyncBeta", "BetaWithRawResponse", diff --git a/src/anthropic/resources/beta/__init__.py b/src/anthropic/resources/beta/__init__.py index d06a0802..82b343fa 100644 --- a/src/anthropic/resources/beta/__init__.py +++ b/src/anthropic/resources/beta/__init__.py @@ -8,6 +8,14 @@ BetaWithStreamingResponse, AsyncBetaWithStreamingResponse, ) +from .models import ( + Models, + AsyncModels, + ModelsWithRawResponse, + AsyncModelsWithRawResponse, + ModelsWithStreamingResponse, + AsyncModelsWithStreamingResponse, +) from .messages import ( Messages, AsyncMessages, @@ -16,28 +24,20 @@ MessagesWithStreamingResponse, AsyncMessagesWithStreamingResponse, ) -from .prompt_caching import ( - PromptCaching, - AsyncPromptCaching, - PromptCachingWithRawResponse, - AsyncPromptCachingWithRawResponse, - PromptCachingWithStreamingResponse, - AsyncPromptCachingWithStreamingResponse, -) __all__ = [ + "Models", + "AsyncModels", + "ModelsWithRawResponse", + "AsyncModelsWithRawResponse", + "ModelsWithStreamingResponse", + "AsyncModelsWithStreamingResponse", "Messages", "AsyncMessages", "MessagesWithRawResponse", "AsyncMessagesWithRawResponse", "MessagesWithStreamingResponse", "AsyncMessagesWithStreamingResponse", - "PromptCaching", - "AsyncPromptCaching", - "PromptCachingWithRawResponse", - "AsyncPromptCachingWithRawResponse", - "PromptCachingWithStreamingResponse", - "AsyncPromptCachingWithStreamingResponse", "Beta", "AsyncBeta", "BetaWithRawResponse", diff --git a/src/anthropic/resources/beta/beta.py b/src/anthropic/resources/beta/beta.py index fbff30fa..8293782d 100644 --- a/src/anthropic/resources/beta/beta.py +++ b/src/anthropic/resources/beta/beta.py @@ -2,6 +2,14 @@ from __future__ import annotations +from .models import ( + Models, + AsyncModels, + ModelsWithRawResponse, + AsyncModelsWithRawResponse, + ModelsWithStreamingResponse, + AsyncModelsWithStreamingResponse, +) from ..._compat import cached_property from ..._resource import SyncAPIResource, AsyncAPIResource from .messages.messages import ( @@ -12,26 +20,18 @@ MessagesWithStreamingResponse, AsyncMessagesWithStreamingResponse, ) -from .prompt_caching.prompt_caching import ( - PromptCaching, - AsyncPromptCaching, - PromptCachingWithRawResponse, - AsyncPromptCachingWithRawResponse, - PromptCachingWithStreamingResponse, - AsyncPromptCachingWithStreamingResponse, -) __all__ = ["Beta", "AsyncBeta"] class Beta(SyncAPIResource): @cached_property - def messages(self) -> Messages: - return Messages(self._client) + def models(self) -> Models: + return Models(self._client) @cached_property - def prompt_caching(self) -> PromptCaching: - return PromptCaching(self._client) + def messages(self) -> Messages: + return Messages(self._client) @cached_property def with_raw_response(self) -> BetaWithRawResponse: @@ -55,12 +55,12 @@ def with_streaming_response(self) -> BetaWithStreamingResponse: class AsyncBeta(AsyncAPIResource): @cached_property - def messages(self) -> AsyncMessages: - return AsyncMessages(self._client) + def models(self) -> AsyncModels: + return AsyncModels(self._client) @cached_property - def prompt_caching(self) -> AsyncPromptCaching: - return AsyncPromptCaching(self._client) + def messages(self) -> AsyncMessages: + return AsyncMessages(self._client) @cached_property def with_raw_response(self) -> AsyncBetaWithRawResponse: @@ -87,12 +87,12 @@ def __init__(self, beta: Beta) -> None: self._beta = beta @cached_property - def messages(self) -> MessagesWithRawResponse: - return MessagesWithRawResponse(self._beta.messages) + def models(self) -> ModelsWithRawResponse: + return ModelsWithRawResponse(self._beta.models) @cached_property - def prompt_caching(self) -> PromptCachingWithRawResponse: - return PromptCachingWithRawResponse(self._beta.prompt_caching) + def messages(self) -> MessagesWithRawResponse: + return MessagesWithRawResponse(self._beta.messages) class AsyncBetaWithRawResponse: @@ -100,12 +100,12 @@ def __init__(self, beta: AsyncBeta) -> None: self._beta = beta @cached_property - def messages(self) -> AsyncMessagesWithRawResponse: - return AsyncMessagesWithRawResponse(self._beta.messages) + def models(self) -> AsyncModelsWithRawResponse: + return AsyncModelsWithRawResponse(self._beta.models) @cached_property - def prompt_caching(self) -> AsyncPromptCachingWithRawResponse: - return AsyncPromptCachingWithRawResponse(self._beta.prompt_caching) + def messages(self) -> AsyncMessagesWithRawResponse: + return AsyncMessagesWithRawResponse(self._beta.messages) class BetaWithStreamingResponse: @@ -113,12 +113,12 @@ def __init__(self, beta: Beta) -> None: self._beta = beta @cached_property - def messages(self) -> MessagesWithStreamingResponse: - return MessagesWithStreamingResponse(self._beta.messages) + def models(self) -> ModelsWithStreamingResponse: + return ModelsWithStreamingResponse(self._beta.models) @cached_property - def prompt_caching(self) -> PromptCachingWithStreamingResponse: - return PromptCachingWithStreamingResponse(self._beta.prompt_caching) + def messages(self) -> MessagesWithStreamingResponse: + return MessagesWithStreamingResponse(self._beta.messages) class AsyncBetaWithStreamingResponse: @@ -126,9 +126,9 @@ def __init__(self, beta: AsyncBeta) -> None: self._beta = beta @cached_property - def messages(self) -> AsyncMessagesWithStreamingResponse: - return AsyncMessagesWithStreamingResponse(self._beta.messages) + def models(self) -> AsyncModelsWithStreamingResponse: + return AsyncModelsWithStreamingResponse(self._beta.models) @cached_property - def prompt_caching(self) -> AsyncPromptCachingWithStreamingResponse: - return AsyncPromptCachingWithStreamingResponse(self._beta.prompt_caching) + def messages(self) -> AsyncMessagesWithStreamingResponse: + return AsyncMessagesWithStreamingResponse(self._beta.messages) diff --git a/src/anthropic/resources/beta/messages/batches.py b/src/anthropic/resources/beta/messages/batches.py index 5253465f..e0268bb5 100644 --- a/src/anthropic/resources/beta/messages/batches.py +++ b/src/anthropic/resources/beta/messages/batches.py @@ -191,7 +191,7 @@ def list( limit: Number of items to return per page. - Defaults to `20`. Ranges from `1` to `100`. + Defaults to `20`. Ranges from `1` to `1000`. betas: Optional header to specify the beta version(s) you want to use. @@ -500,7 +500,7 @@ def list( limit: Number of items to return per page. - Defaults to `20`. Ranges from `1` to `100`. + Defaults to `20`. Ranges from `1` to `1000`. betas: Optional header to specify the beta version(s) you want to use. diff --git a/src/anthropic/resources/beta/models.py b/src/anthropic/resources/beta/models.py new file mode 100644 index 00000000..fdad3298 --- /dev/null +++ b/src/anthropic/resources/beta/models.py @@ -0,0 +1,300 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import maybe_transform +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ...pagination import SyncPage, AsyncPage +from ...types.beta import model_list_params +from ..._base_client import AsyncPaginator, make_request_options +from ...types.beta.beta_model_info import BetaModelInfo + +__all__ = ["Models", "AsyncModels"] + + +class Models(SyncAPIResource): + @cached_property + def with_raw_response(self) -> ModelsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers + """ + return ModelsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ModelsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response + """ + return ModelsWithStreamingResponse(self) + + def retrieve( + self, + model_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> BetaModelInfo: + """ + Get a specific model. + + The Models API response can be used to determine information about a specific + model or resolve a model alias to a model ID. + + Args: + model_id: Model identifier or alias. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model_id: + raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}") + return self._get( + f"/v1/models/{model_id}?beta=true", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=BetaModelInfo, + ) + + def list( + self, + *, + after_id: str | NotGiven = NOT_GIVEN, + before_id: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncPage[BetaModelInfo]: + """ + List available models. + + The Models API response can be used to determine which models are available for + use in the API. More recently released models are listed first. + + Args: + after_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately after this object. + + before_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately before this object. + + limit: Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/v1/models?beta=true", + page=SyncPage[BetaModelInfo], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after_id": after_id, + "before_id": before_id, + "limit": limit, + }, + model_list_params.ModelListParams, + ), + ), + model=BetaModelInfo, + ) + + +class AsyncModels(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncModelsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers + """ + return AsyncModelsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncModelsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response + """ + return AsyncModelsWithStreamingResponse(self) + + async def retrieve( + self, + model_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> BetaModelInfo: + """ + Get a specific model. + + The Models API response can be used to determine information about a specific + model or resolve a model alias to a model ID. + + Args: + model_id: Model identifier or alias. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model_id: + raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}") + return await self._get( + f"/v1/models/{model_id}?beta=true", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=BetaModelInfo, + ) + + def list( + self, + *, + after_id: str | NotGiven = NOT_GIVEN, + before_id: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[BetaModelInfo, AsyncPage[BetaModelInfo]]: + """ + List available models. + + The Models API response can be used to determine which models are available for + use in the API. More recently released models are listed first. + + Args: + after_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately after this object. + + before_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately before this object. + + limit: Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/v1/models?beta=true", + page=AsyncPage[BetaModelInfo], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after_id": after_id, + "before_id": before_id, + "limit": limit, + }, + model_list_params.ModelListParams, + ), + ), + model=BetaModelInfo, + ) + + +class ModelsWithRawResponse: + def __init__(self, models: Models) -> None: + self._models = models + + self.retrieve = _legacy_response.to_raw_response_wrapper( + models.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + models.list, + ) + + +class AsyncModelsWithRawResponse: + def __init__(self, models: AsyncModels) -> None: + self._models = models + + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + models.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + models.list, + ) + + +class ModelsWithStreamingResponse: + def __init__(self, models: Models) -> None: + self._models = models + + self.retrieve = to_streamed_response_wrapper( + models.retrieve, + ) + self.list = to_streamed_response_wrapper( + models.list, + ) + + +class AsyncModelsWithStreamingResponse: + def __init__(self, models: AsyncModels) -> None: + self._models = models + + self.retrieve = async_to_streamed_response_wrapper( + models.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + models.list, + ) diff --git a/src/anthropic/resources/beta/prompt_caching/messages.py b/src/anthropic/resources/beta/prompt_caching/messages.py deleted file mode 100644 index af13a164..00000000 --- a/src/anthropic/resources/beta/prompt_caching/messages.py +++ /dev/null @@ -1,1835 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from typing import List, Union, Iterable -from itertools import chain -from typing_extensions import Literal, overload - -import httpx - -from .... import _legacy_response -from ...._types import NOT_GIVEN, Body, Query, Headers, NotGiven -from ...._utils import ( - is_given, - required_args, - maybe_transform, - strip_not_given, - async_maybe_transform, -) -from ...._compat import cached_property -from ...._resource import SyncAPIResource, AsyncAPIResource -from ...._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper -from ...._constants import DEFAULT_TIMEOUT -from ...._streaming import Stream, AsyncStream -from ...._base_client import make_request_options -from ....types.model_param import ModelParam -from ....types.metadata_param import MetadataParam -from ....types.tool_choice_param import ToolChoiceParam -from ....types.beta.prompt_caching import message_create_params -from ....types.anthropic_beta_param import AnthropicBetaParam -from ....types.beta.prompt_caching.prompt_caching_beta_message import PromptCachingBetaMessage -from ....types.beta.prompt_caching.prompt_caching_beta_tool_param import PromptCachingBetaToolParam -from ....types.beta.prompt_caching.prompt_caching_beta_message_param import PromptCachingBetaMessageParam -from ....types.beta.prompt_caching.prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam -from ....types.beta.prompt_caching.raw_prompt_caching_beta_message_stream_event import ( - RawPromptCachingBetaMessageStreamEvent, -) - -__all__ = ["Messages", "AsyncMessages"] - - -class Messages(SyncAPIResource): - @cached_property - def with_raw_response(self) -> MessagesWithRawResponse: - """ - This property can be used as a prefix for any HTTP method call to return the - the raw response object instead of the parsed content. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers - """ - return MessagesWithRawResponse(self) - - @cached_property - def with_streaming_response(self) -> MessagesWithStreamingResponse: - """ - An alternative to `.with_raw_response` that doesn't eagerly read the response body. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response - """ - return MessagesWithStreamingResponse(self) - - @overload - def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - stream: Literal[False] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> PromptCachingBetaMessage: - """ - Send a structured list of input messages with text and/or image content, and the - model will generate the next message in the conversation. - - The Messages API can be used for either single queries or stateless multi-turn - conversations. - - Args: - max_tokens: The maximum number of tokens to generate before stopping. - - Note that our models may stop _before_ reaching this maximum. This parameter - only specifies the absolute maximum number of tokens to generate. - - Different models have different maximum values for this parameter. See - [models](https://docs.anthropic.com/en/docs/models-overview) for details. - - messages: Input messages. - - Our models are trained to operate on alternating `user` and `assistant` - conversational turns. When creating a new `Message`, you specify the prior - conversational turns with the `messages` parameter, and the model then generates - the next `Message` in the conversation. Consecutive `user` or `assistant` turns - in your request will be combined into a single turn. - - Each input message must be an object with a `role` and `content`. You can - specify a single `user`-role message, or you can include multiple `user` and - `assistant` messages. - - If the final message uses the `assistant` role, the response content will - continue immediately from the content in that message. This can be used to - constrain part of the model's response. - - Example with a single `user` message: - - ```json - [{ "role": "user", "content": "Hello, Claude" }] - ``` - - Example with multiple conversational turns: - - ```json - [ - { "role": "user", "content": "Hello there." }, - { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, - { "role": "user", "content": "Can you explain LLMs in plain English?" } - ] - ``` - - Example with a partially-filled response from Claude: - - ```json - [ - { - "role": "user", - "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" - }, - { "role": "assistant", "content": "The best answer is (" } - ] - ``` - - Each input message `content` may be either a single `string` or an array of - content blocks, where each block has a specific `type`. Using a `string` for - `content` is shorthand for an array of one content block of type `"text"`. The - following input messages are equivalent: - - ```json - { "role": "user", "content": "Hello, Claude" } - ``` - - ```json - { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } - ``` - - Starting with Claude 3 models, you can also send image content blocks: - - ```json - { - "role": "user", - "content": [ - { - "type": "image", - "source": { - "type": "base64", - "media_type": "image/jpeg", - "data": "/9j/4AAQSkZJRg..." - } - }, - { "type": "text", "text": "What is in this image?" } - ] - } - ``` - - We currently support the `base64` source type for images, and the `image/jpeg`, - `image/png`, `image/gif`, and `image/webp` media types. - - See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for - more input examples. - - Note that if you want to include a - [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use - the top-level `system` parameter — there is no `"system"` role for input - messages in the Messages API. - - model: The model that will complete your prompt.\n\nSee - [models](https://docs.anthropic.com/en/docs/models-overview) for additional - details and options. - - metadata: An object describing metadata about the request. - - stop_sequences: Custom text sequences that will cause the model to stop generating. - - Our models will normally stop when they have naturally completed their turn, - which will result in a response `stop_reason` of `"end_turn"`. - - If you want the model to stop generating when it encounters custom strings of - text, you can use the `stop_sequences` parameter. If the model encounters one of - the custom sequences, the response `stop_reason` value will be `"stop_sequence"` - and the response `stop_sequence` value will contain the matched stop sequence. - - stream: Whether to incrementally stream the response using server-sent events. - - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. - - system: System prompt. - - A system prompt is a way of providing context and instructions to Claude, such - as specifying a particular goal or role. See our - [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). - - temperature: Amount of randomness injected into the response. - - Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0` - for analytical / multiple choice, and closer to `1.0` for creative and - generative tasks. - - Note that even with `temperature` of `0.0`, the results will not be fully - deterministic. - - tool_choice: How the model should use the provided tools. The model can use a specific tool, - any available tool, or decide by itself. - - tools: Definitions of tools that the model may use. - - If you include `tools` in your API request, the model may return `tool_use` - content blocks that represent the model's use of those tools. You can then run - those tools using the tool input generated by the model and then optionally - return results back to the model using `tool_result` content blocks. - - Each tool definition includes: - - - `name`: Name of the tool. - - `description`: Optional, but strongly-recommended description of the tool. - - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` - shape that the model will produce in `tool_use` output content blocks. - - For example, if you defined `tools` as: - - ```json - [ - { - "name": "get_stock_price", - "description": "Get the current stock price for a given ticker symbol.", - "input_schema": { - "type": "object", - "properties": { - "ticker": { - "type": "string", - "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." - } - }, - "required": ["ticker"] - } - } - ] - ``` - - And then asked the model "What's the S&P 500 at today?", the model might produce - `tool_use` content blocks in the response like this: - - ```json - [ - { - "type": "tool_use", - "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "name": "get_stock_price", - "input": { "ticker": "^GSPC" } - } - ] - ``` - - You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an - input, and return the following back to the model in a subsequent `user` - message: - - ```json - [ - { - "type": "tool_result", - "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "content": "259.75 USD" - } - ] - ``` - - Tools can be used for workflows that include running client-side tools and - functions, or more generally whenever you want the model to produce a particular - JSON structure of output. - - See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. - - top_k: Only sample from the top K options for each subsequent token. - - Used to remove "long tail" low probability responses. - [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277). - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - top_p: Use nucleus sampling. - - In nucleus sampling, we compute the cumulative distribution over all the options - for each subsequent token in decreasing probability order and cut it off once it - reaches a particular probability specified by `top_p`. You should either alter - `temperature` or `top_p`, but not both. - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - betas: Optional header to specify the beta version(s) you want to use. - - extra_headers: Send extra headers - - extra_query: Add additional query parameters to the request - - extra_body: Add additional JSON properties to the request - - timeout: Override the client-level default timeout for this request, in seconds - """ - ... - - @overload - def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - stream: Literal[True], - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> Stream[RawPromptCachingBetaMessageStreamEvent]: - """ - Send a structured list of input messages with text and/or image content, and the - model will generate the next message in the conversation. - - The Messages API can be used for either single queries or stateless multi-turn - conversations. - - Args: - max_tokens: The maximum number of tokens to generate before stopping. - - Note that our models may stop _before_ reaching this maximum. This parameter - only specifies the absolute maximum number of tokens to generate. - - Different models have different maximum values for this parameter. See - [models](https://docs.anthropic.com/en/docs/models-overview) for details. - - messages: Input messages. - - Our models are trained to operate on alternating `user` and `assistant` - conversational turns. When creating a new `Message`, you specify the prior - conversational turns with the `messages` parameter, and the model then generates - the next `Message` in the conversation. Consecutive `user` or `assistant` turns - in your request will be combined into a single turn. - - Each input message must be an object with a `role` and `content`. You can - specify a single `user`-role message, or you can include multiple `user` and - `assistant` messages. - - If the final message uses the `assistant` role, the response content will - continue immediately from the content in that message. This can be used to - constrain part of the model's response. - - Example with a single `user` message: - - ```json - [{ "role": "user", "content": "Hello, Claude" }] - ``` - - Example with multiple conversational turns: - - ```json - [ - { "role": "user", "content": "Hello there." }, - { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, - { "role": "user", "content": "Can you explain LLMs in plain English?" } - ] - ``` - - Example with a partially-filled response from Claude: - - ```json - [ - { - "role": "user", - "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" - }, - { "role": "assistant", "content": "The best answer is (" } - ] - ``` - - Each input message `content` may be either a single `string` or an array of - content blocks, where each block has a specific `type`. Using a `string` for - `content` is shorthand for an array of one content block of type `"text"`. The - following input messages are equivalent: - - ```json - { "role": "user", "content": "Hello, Claude" } - ``` - - ```json - { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } - ``` - - Starting with Claude 3 models, you can also send image content blocks: - - ```json - { - "role": "user", - "content": [ - { - "type": "image", - "source": { - "type": "base64", - "media_type": "image/jpeg", - "data": "/9j/4AAQSkZJRg..." - } - }, - { "type": "text", "text": "What is in this image?" } - ] - } - ``` - - We currently support the `base64` source type for images, and the `image/jpeg`, - `image/png`, `image/gif`, and `image/webp` media types. - - See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for - more input examples. - - Note that if you want to include a - [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use - the top-level `system` parameter — there is no `"system"` role for input - messages in the Messages API. - - model: The model that will complete your prompt.\n\nSee - [models](https://docs.anthropic.com/en/docs/models-overview) for additional - details and options. - - stream: Whether to incrementally stream the response using server-sent events. - - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. - - metadata: An object describing metadata about the request. - - stop_sequences: Custom text sequences that will cause the model to stop generating. - - Our models will normally stop when they have naturally completed their turn, - which will result in a response `stop_reason` of `"end_turn"`. - - If you want the model to stop generating when it encounters custom strings of - text, you can use the `stop_sequences` parameter. If the model encounters one of - the custom sequences, the response `stop_reason` value will be `"stop_sequence"` - and the response `stop_sequence` value will contain the matched stop sequence. - - system: System prompt. - - A system prompt is a way of providing context and instructions to Claude, such - as specifying a particular goal or role. See our - [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). - - temperature: Amount of randomness injected into the response. - - Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0` - for analytical / multiple choice, and closer to `1.0` for creative and - generative tasks. - - Note that even with `temperature` of `0.0`, the results will not be fully - deterministic. - - tool_choice: How the model should use the provided tools. The model can use a specific tool, - any available tool, or decide by itself. - - tools: Definitions of tools that the model may use. - - If you include `tools` in your API request, the model may return `tool_use` - content blocks that represent the model's use of those tools. You can then run - those tools using the tool input generated by the model and then optionally - return results back to the model using `tool_result` content blocks. - - Each tool definition includes: - - - `name`: Name of the tool. - - `description`: Optional, but strongly-recommended description of the tool. - - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` - shape that the model will produce in `tool_use` output content blocks. - - For example, if you defined `tools` as: - - ```json - [ - { - "name": "get_stock_price", - "description": "Get the current stock price for a given ticker symbol.", - "input_schema": { - "type": "object", - "properties": { - "ticker": { - "type": "string", - "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." - } - }, - "required": ["ticker"] - } - } - ] - ``` - - And then asked the model "What's the S&P 500 at today?", the model might produce - `tool_use` content blocks in the response like this: - - ```json - [ - { - "type": "tool_use", - "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "name": "get_stock_price", - "input": { "ticker": "^GSPC" } - } - ] - ``` - - You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an - input, and return the following back to the model in a subsequent `user` - message: - - ```json - [ - { - "type": "tool_result", - "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "content": "259.75 USD" - } - ] - ``` - - Tools can be used for workflows that include running client-side tools and - functions, or more generally whenever you want the model to produce a particular - JSON structure of output. - - See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. - - top_k: Only sample from the top K options for each subsequent token. - - Used to remove "long tail" low probability responses. - [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277). - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - top_p: Use nucleus sampling. - - In nucleus sampling, we compute the cumulative distribution over all the options - for each subsequent token in decreasing probability order and cut it off once it - reaches a particular probability specified by `top_p`. You should either alter - `temperature` or `top_p`, but not both. - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - betas: Optional header to specify the beta version(s) you want to use. - - extra_headers: Send extra headers - - extra_query: Add additional query parameters to the request - - extra_body: Add additional JSON properties to the request - - timeout: Override the client-level default timeout for this request, in seconds - """ - ... - - @overload - def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - stream: bool, - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> PromptCachingBetaMessage | Stream[RawPromptCachingBetaMessageStreamEvent]: - """ - Send a structured list of input messages with text and/or image content, and the - model will generate the next message in the conversation. - - The Messages API can be used for either single queries or stateless multi-turn - conversations. - - Args: - max_tokens: The maximum number of tokens to generate before stopping. - - Note that our models may stop _before_ reaching this maximum. This parameter - only specifies the absolute maximum number of tokens to generate. - - Different models have different maximum values for this parameter. See - [models](https://docs.anthropic.com/en/docs/models-overview) for details. - - messages: Input messages. - - Our models are trained to operate on alternating `user` and `assistant` - conversational turns. When creating a new `Message`, you specify the prior - conversational turns with the `messages` parameter, and the model then generates - the next `Message` in the conversation. Consecutive `user` or `assistant` turns - in your request will be combined into a single turn. - - Each input message must be an object with a `role` and `content`. You can - specify a single `user`-role message, or you can include multiple `user` and - `assistant` messages. - - If the final message uses the `assistant` role, the response content will - continue immediately from the content in that message. This can be used to - constrain part of the model's response. - - Example with a single `user` message: - - ```json - [{ "role": "user", "content": "Hello, Claude" }] - ``` - - Example with multiple conversational turns: - - ```json - [ - { "role": "user", "content": "Hello there." }, - { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, - { "role": "user", "content": "Can you explain LLMs in plain English?" } - ] - ``` - - Example with a partially-filled response from Claude: - - ```json - [ - { - "role": "user", - "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" - }, - { "role": "assistant", "content": "The best answer is (" } - ] - ``` - - Each input message `content` may be either a single `string` or an array of - content blocks, where each block has a specific `type`. Using a `string` for - `content` is shorthand for an array of one content block of type `"text"`. The - following input messages are equivalent: - - ```json - { "role": "user", "content": "Hello, Claude" } - ``` - - ```json - { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } - ``` - - Starting with Claude 3 models, you can also send image content blocks: - - ```json - { - "role": "user", - "content": [ - { - "type": "image", - "source": { - "type": "base64", - "media_type": "image/jpeg", - "data": "/9j/4AAQSkZJRg..." - } - }, - { "type": "text", "text": "What is in this image?" } - ] - } - ``` - - We currently support the `base64` source type for images, and the `image/jpeg`, - `image/png`, `image/gif`, and `image/webp` media types. - - See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for - more input examples. - - Note that if you want to include a - [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use - the top-level `system` parameter — there is no `"system"` role for input - messages in the Messages API. - - model: The model that will complete your prompt.\n\nSee - [models](https://docs.anthropic.com/en/docs/models-overview) for additional - details and options. - - stream: Whether to incrementally stream the response using server-sent events. - - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. - - metadata: An object describing metadata about the request. - - stop_sequences: Custom text sequences that will cause the model to stop generating. - - Our models will normally stop when they have naturally completed their turn, - which will result in a response `stop_reason` of `"end_turn"`. - - If you want the model to stop generating when it encounters custom strings of - text, you can use the `stop_sequences` parameter. If the model encounters one of - the custom sequences, the response `stop_reason` value will be `"stop_sequence"` - and the response `stop_sequence` value will contain the matched stop sequence. - - system: System prompt. - - A system prompt is a way of providing context and instructions to Claude, such - as specifying a particular goal or role. See our - [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). - - temperature: Amount of randomness injected into the response. - - Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0` - for analytical / multiple choice, and closer to `1.0` for creative and - generative tasks. - - Note that even with `temperature` of `0.0`, the results will not be fully - deterministic. - - tool_choice: How the model should use the provided tools. The model can use a specific tool, - any available tool, or decide by itself. - - tools: Definitions of tools that the model may use. - - If you include `tools` in your API request, the model may return `tool_use` - content blocks that represent the model's use of those tools. You can then run - those tools using the tool input generated by the model and then optionally - return results back to the model using `tool_result` content blocks. - - Each tool definition includes: - - - `name`: Name of the tool. - - `description`: Optional, but strongly-recommended description of the tool. - - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` - shape that the model will produce in `tool_use` output content blocks. - - For example, if you defined `tools` as: - - ```json - [ - { - "name": "get_stock_price", - "description": "Get the current stock price for a given ticker symbol.", - "input_schema": { - "type": "object", - "properties": { - "ticker": { - "type": "string", - "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." - } - }, - "required": ["ticker"] - } - } - ] - ``` - - And then asked the model "What's the S&P 500 at today?", the model might produce - `tool_use` content blocks in the response like this: - - ```json - [ - { - "type": "tool_use", - "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "name": "get_stock_price", - "input": { "ticker": "^GSPC" } - } - ] - ``` - - You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an - input, and return the following back to the model in a subsequent `user` - message: - - ```json - [ - { - "type": "tool_result", - "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "content": "259.75 USD" - } - ] - ``` - - Tools can be used for workflows that include running client-side tools and - functions, or more generally whenever you want the model to produce a particular - JSON structure of output. - - See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. - - top_k: Only sample from the top K options for each subsequent token. - - Used to remove "long tail" low probability responses. - [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277). - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - top_p: Use nucleus sampling. - - In nucleus sampling, we compute the cumulative distribution over all the options - for each subsequent token in decreasing probability order and cut it off once it - reaches a particular probability specified by `top_p`. You should either alter - `temperature` or `top_p`, but not both. - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - betas: Optional header to specify the beta version(s) you want to use. - - extra_headers: Send extra headers - - extra_query: Add additional query parameters to the request - - extra_body: Add additional JSON properties to the request - - timeout: Override the client-level default timeout for this request, in seconds - """ - ... - - @required_args(["max_tokens", "messages", "model"], ["max_tokens", "messages", "model", "stream"]) - def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - stream: Literal[False] | Literal[True] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> PromptCachingBetaMessage | Stream[RawPromptCachingBetaMessageStreamEvent]: - if not is_given(timeout) and self._client.timeout == DEFAULT_TIMEOUT: - timeout = 600 - extra_headers = { - **strip_not_given( - { - "anthropic-beta": ",".join(chain((str(e) for e in betas), ["prompt-caching-2024-07-31"])) - if is_given(betas) - else NOT_GIVEN - } - ), - **(extra_headers or {}), - } - extra_headers = {"anthropic-beta": "prompt-caching-2024-07-31", **(extra_headers or {})} - return self._post( - "/v1/messages?beta=prompt_caching", - body=maybe_transform( - { - "max_tokens": max_tokens, - "messages": messages, - "model": model, - "metadata": metadata, - "stop_sequences": stop_sequences, - "stream": stream, - "system": system, - "temperature": temperature, - "tool_choice": tool_choice, - "tools": tools, - "top_k": top_k, - "top_p": top_p, - }, - message_create_params.MessageCreateParams, - ), - options=make_request_options( - extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout - ), - cast_to=PromptCachingBetaMessage, - stream=stream or False, - stream_cls=Stream[RawPromptCachingBetaMessageStreamEvent], - ) - - -class AsyncMessages(AsyncAPIResource): - @cached_property - def with_raw_response(self) -> AsyncMessagesWithRawResponse: - """ - This property can be used as a prefix for any HTTP method call to return the - the raw response object instead of the parsed content. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers - """ - return AsyncMessagesWithRawResponse(self) - - @cached_property - def with_streaming_response(self) -> AsyncMessagesWithStreamingResponse: - """ - An alternative to `.with_raw_response` that doesn't eagerly read the response body. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response - """ - return AsyncMessagesWithStreamingResponse(self) - - @overload - async def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - stream: Literal[False] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> PromptCachingBetaMessage: - """ - Send a structured list of input messages with text and/or image content, and the - model will generate the next message in the conversation. - - The Messages API can be used for either single queries or stateless multi-turn - conversations. - - Args: - max_tokens: The maximum number of tokens to generate before stopping. - - Note that our models may stop _before_ reaching this maximum. This parameter - only specifies the absolute maximum number of tokens to generate. - - Different models have different maximum values for this parameter. See - [models](https://docs.anthropic.com/en/docs/models-overview) for details. - - messages: Input messages. - - Our models are trained to operate on alternating `user` and `assistant` - conversational turns. When creating a new `Message`, you specify the prior - conversational turns with the `messages` parameter, and the model then generates - the next `Message` in the conversation. Consecutive `user` or `assistant` turns - in your request will be combined into a single turn. - - Each input message must be an object with a `role` and `content`. You can - specify a single `user`-role message, or you can include multiple `user` and - `assistant` messages. - - If the final message uses the `assistant` role, the response content will - continue immediately from the content in that message. This can be used to - constrain part of the model's response. - - Example with a single `user` message: - - ```json - [{ "role": "user", "content": "Hello, Claude" }] - ``` - - Example with multiple conversational turns: - - ```json - [ - { "role": "user", "content": "Hello there." }, - { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, - { "role": "user", "content": "Can you explain LLMs in plain English?" } - ] - ``` - - Example with a partially-filled response from Claude: - - ```json - [ - { - "role": "user", - "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" - }, - { "role": "assistant", "content": "The best answer is (" } - ] - ``` - - Each input message `content` may be either a single `string` or an array of - content blocks, where each block has a specific `type`. Using a `string` for - `content` is shorthand for an array of one content block of type `"text"`. The - following input messages are equivalent: - - ```json - { "role": "user", "content": "Hello, Claude" } - ``` - - ```json - { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } - ``` - - Starting with Claude 3 models, you can also send image content blocks: - - ```json - { - "role": "user", - "content": [ - { - "type": "image", - "source": { - "type": "base64", - "media_type": "image/jpeg", - "data": "/9j/4AAQSkZJRg..." - } - }, - { "type": "text", "text": "What is in this image?" } - ] - } - ``` - - We currently support the `base64` source type for images, and the `image/jpeg`, - `image/png`, `image/gif`, and `image/webp` media types. - - See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for - more input examples. - - Note that if you want to include a - [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use - the top-level `system` parameter — there is no `"system"` role for input - messages in the Messages API. - - model: The model that will complete your prompt.\n\nSee - [models](https://docs.anthropic.com/en/docs/models-overview) for additional - details and options. - - metadata: An object describing metadata about the request. - - stop_sequences: Custom text sequences that will cause the model to stop generating. - - Our models will normally stop when they have naturally completed their turn, - which will result in a response `stop_reason` of `"end_turn"`. - - If you want the model to stop generating when it encounters custom strings of - text, you can use the `stop_sequences` parameter. If the model encounters one of - the custom sequences, the response `stop_reason` value will be `"stop_sequence"` - and the response `stop_sequence` value will contain the matched stop sequence. - - stream: Whether to incrementally stream the response using server-sent events. - - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. - - system: System prompt. - - A system prompt is a way of providing context and instructions to Claude, such - as specifying a particular goal or role. See our - [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). - - temperature: Amount of randomness injected into the response. - - Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0` - for analytical / multiple choice, and closer to `1.0` for creative and - generative tasks. - - Note that even with `temperature` of `0.0`, the results will not be fully - deterministic. - - tool_choice: How the model should use the provided tools. The model can use a specific tool, - any available tool, or decide by itself. - - tools: Definitions of tools that the model may use. - - If you include `tools` in your API request, the model may return `tool_use` - content blocks that represent the model's use of those tools. You can then run - those tools using the tool input generated by the model and then optionally - return results back to the model using `tool_result` content blocks. - - Each tool definition includes: - - - `name`: Name of the tool. - - `description`: Optional, but strongly-recommended description of the tool. - - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` - shape that the model will produce in `tool_use` output content blocks. - - For example, if you defined `tools` as: - - ```json - [ - { - "name": "get_stock_price", - "description": "Get the current stock price for a given ticker symbol.", - "input_schema": { - "type": "object", - "properties": { - "ticker": { - "type": "string", - "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." - } - }, - "required": ["ticker"] - } - } - ] - ``` - - And then asked the model "What's the S&P 500 at today?", the model might produce - `tool_use` content blocks in the response like this: - - ```json - [ - { - "type": "tool_use", - "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "name": "get_stock_price", - "input": { "ticker": "^GSPC" } - } - ] - ``` - - You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an - input, and return the following back to the model in a subsequent `user` - message: - - ```json - [ - { - "type": "tool_result", - "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "content": "259.75 USD" - } - ] - ``` - - Tools can be used for workflows that include running client-side tools and - functions, or more generally whenever you want the model to produce a particular - JSON structure of output. - - See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. - - top_k: Only sample from the top K options for each subsequent token. - - Used to remove "long tail" low probability responses. - [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277). - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - top_p: Use nucleus sampling. - - In nucleus sampling, we compute the cumulative distribution over all the options - for each subsequent token in decreasing probability order and cut it off once it - reaches a particular probability specified by `top_p`. You should either alter - `temperature` or `top_p`, but not both. - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - betas: Optional header to specify the beta version(s) you want to use. - - extra_headers: Send extra headers - - extra_query: Add additional query parameters to the request - - extra_body: Add additional JSON properties to the request - - timeout: Override the client-level default timeout for this request, in seconds - """ - ... - - @overload - async def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - stream: Literal[True], - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> AsyncStream[RawPromptCachingBetaMessageStreamEvent]: - """ - Send a structured list of input messages with text and/or image content, and the - model will generate the next message in the conversation. - - The Messages API can be used for either single queries or stateless multi-turn - conversations. - - Args: - max_tokens: The maximum number of tokens to generate before stopping. - - Note that our models may stop _before_ reaching this maximum. This parameter - only specifies the absolute maximum number of tokens to generate. - - Different models have different maximum values for this parameter. See - [models](https://docs.anthropic.com/en/docs/models-overview) for details. - - messages: Input messages. - - Our models are trained to operate on alternating `user` and `assistant` - conversational turns. When creating a new `Message`, you specify the prior - conversational turns with the `messages` parameter, and the model then generates - the next `Message` in the conversation. Consecutive `user` or `assistant` turns - in your request will be combined into a single turn. - - Each input message must be an object with a `role` and `content`. You can - specify a single `user`-role message, or you can include multiple `user` and - `assistant` messages. - - If the final message uses the `assistant` role, the response content will - continue immediately from the content in that message. This can be used to - constrain part of the model's response. - - Example with a single `user` message: - - ```json - [{ "role": "user", "content": "Hello, Claude" }] - ``` - - Example with multiple conversational turns: - - ```json - [ - { "role": "user", "content": "Hello there." }, - { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, - { "role": "user", "content": "Can you explain LLMs in plain English?" } - ] - ``` - - Example with a partially-filled response from Claude: - - ```json - [ - { - "role": "user", - "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" - }, - { "role": "assistant", "content": "The best answer is (" } - ] - ``` - - Each input message `content` may be either a single `string` or an array of - content blocks, where each block has a specific `type`. Using a `string` for - `content` is shorthand for an array of one content block of type `"text"`. The - following input messages are equivalent: - - ```json - { "role": "user", "content": "Hello, Claude" } - ``` - - ```json - { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } - ``` - - Starting with Claude 3 models, you can also send image content blocks: - - ```json - { - "role": "user", - "content": [ - { - "type": "image", - "source": { - "type": "base64", - "media_type": "image/jpeg", - "data": "/9j/4AAQSkZJRg..." - } - }, - { "type": "text", "text": "What is in this image?" } - ] - } - ``` - - We currently support the `base64` source type for images, and the `image/jpeg`, - `image/png`, `image/gif`, and `image/webp` media types. - - See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for - more input examples. - - Note that if you want to include a - [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use - the top-level `system` parameter — there is no `"system"` role for input - messages in the Messages API. - - model: The model that will complete your prompt.\n\nSee - [models](https://docs.anthropic.com/en/docs/models-overview) for additional - details and options. - - stream: Whether to incrementally stream the response using server-sent events. - - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. - - metadata: An object describing metadata about the request. - - stop_sequences: Custom text sequences that will cause the model to stop generating. - - Our models will normally stop when they have naturally completed their turn, - which will result in a response `stop_reason` of `"end_turn"`. - - If you want the model to stop generating when it encounters custom strings of - text, you can use the `stop_sequences` parameter. If the model encounters one of - the custom sequences, the response `stop_reason` value will be `"stop_sequence"` - and the response `stop_sequence` value will contain the matched stop sequence. - - system: System prompt. - - A system prompt is a way of providing context and instructions to Claude, such - as specifying a particular goal or role. See our - [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). - - temperature: Amount of randomness injected into the response. - - Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0` - for analytical / multiple choice, and closer to `1.0` for creative and - generative tasks. - - Note that even with `temperature` of `0.0`, the results will not be fully - deterministic. - - tool_choice: How the model should use the provided tools. The model can use a specific tool, - any available tool, or decide by itself. - - tools: Definitions of tools that the model may use. - - If you include `tools` in your API request, the model may return `tool_use` - content blocks that represent the model's use of those tools. You can then run - those tools using the tool input generated by the model and then optionally - return results back to the model using `tool_result` content blocks. - - Each tool definition includes: - - - `name`: Name of the tool. - - `description`: Optional, but strongly-recommended description of the tool. - - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` - shape that the model will produce in `tool_use` output content blocks. - - For example, if you defined `tools` as: - - ```json - [ - { - "name": "get_stock_price", - "description": "Get the current stock price for a given ticker symbol.", - "input_schema": { - "type": "object", - "properties": { - "ticker": { - "type": "string", - "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." - } - }, - "required": ["ticker"] - } - } - ] - ``` - - And then asked the model "What's the S&P 500 at today?", the model might produce - `tool_use` content blocks in the response like this: - - ```json - [ - { - "type": "tool_use", - "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "name": "get_stock_price", - "input": { "ticker": "^GSPC" } - } - ] - ``` - - You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an - input, and return the following back to the model in a subsequent `user` - message: - - ```json - [ - { - "type": "tool_result", - "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "content": "259.75 USD" - } - ] - ``` - - Tools can be used for workflows that include running client-side tools and - functions, or more generally whenever you want the model to produce a particular - JSON structure of output. - - See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. - - top_k: Only sample from the top K options for each subsequent token. - - Used to remove "long tail" low probability responses. - [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277). - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - top_p: Use nucleus sampling. - - In nucleus sampling, we compute the cumulative distribution over all the options - for each subsequent token in decreasing probability order and cut it off once it - reaches a particular probability specified by `top_p`. You should either alter - `temperature` or `top_p`, but not both. - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - betas: Optional header to specify the beta version(s) you want to use. - - extra_headers: Send extra headers - - extra_query: Add additional query parameters to the request - - extra_body: Add additional JSON properties to the request - - timeout: Override the client-level default timeout for this request, in seconds - """ - ... - - @overload - async def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - stream: bool, - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> PromptCachingBetaMessage | AsyncStream[RawPromptCachingBetaMessageStreamEvent]: - """ - Send a structured list of input messages with text and/or image content, and the - model will generate the next message in the conversation. - - The Messages API can be used for either single queries or stateless multi-turn - conversations. - - Args: - max_tokens: The maximum number of tokens to generate before stopping. - - Note that our models may stop _before_ reaching this maximum. This parameter - only specifies the absolute maximum number of tokens to generate. - - Different models have different maximum values for this parameter. See - [models](https://docs.anthropic.com/en/docs/models-overview) for details. - - messages: Input messages. - - Our models are trained to operate on alternating `user` and `assistant` - conversational turns. When creating a new `Message`, you specify the prior - conversational turns with the `messages` parameter, and the model then generates - the next `Message` in the conversation. Consecutive `user` or `assistant` turns - in your request will be combined into a single turn. - - Each input message must be an object with a `role` and `content`. You can - specify a single `user`-role message, or you can include multiple `user` and - `assistant` messages. - - If the final message uses the `assistant` role, the response content will - continue immediately from the content in that message. This can be used to - constrain part of the model's response. - - Example with a single `user` message: - - ```json - [{ "role": "user", "content": "Hello, Claude" }] - ``` - - Example with multiple conversational turns: - - ```json - [ - { "role": "user", "content": "Hello there." }, - { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, - { "role": "user", "content": "Can you explain LLMs in plain English?" } - ] - ``` - - Example with a partially-filled response from Claude: - - ```json - [ - { - "role": "user", - "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" - }, - { "role": "assistant", "content": "The best answer is (" } - ] - ``` - - Each input message `content` may be either a single `string` or an array of - content blocks, where each block has a specific `type`. Using a `string` for - `content` is shorthand for an array of one content block of type `"text"`. The - following input messages are equivalent: - - ```json - { "role": "user", "content": "Hello, Claude" } - ``` - - ```json - { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } - ``` - - Starting with Claude 3 models, you can also send image content blocks: - - ```json - { - "role": "user", - "content": [ - { - "type": "image", - "source": { - "type": "base64", - "media_type": "image/jpeg", - "data": "/9j/4AAQSkZJRg..." - } - }, - { "type": "text", "text": "What is in this image?" } - ] - } - ``` - - We currently support the `base64` source type for images, and the `image/jpeg`, - `image/png`, `image/gif`, and `image/webp` media types. - - See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for - more input examples. - - Note that if you want to include a - [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use - the top-level `system` parameter — there is no `"system"` role for input - messages in the Messages API. - - model: The model that will complete your prompt.\n\nSee - [models](https://docs.anthropic.com/en/docs/models-overview) for additional - details and options. - - stream: Whether to incrementally stream the response using server-sent events. - - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. - - metadata: An object describing metadata about the request. - - stop_sequences: Custom text sequences that will cause the model to stop generating. - - Our models will normally stop when they have naturally completed their turn, - which will result in a response `stop_reason` of `"end_turn"`. - - If you want the model to stop generating when it encounters custom strings of - text, you can use the `stop_sequences` parameter. If the model encounters one of - the custom sequences, the response `stop_reason` value will be `"stop_sequence"` - and the response `stop_sequence` value will contain the matched stop sequence. - - system: System prompt. - - A system prompt is a way of providing context and instructions to Claude, such - as specifying a particular goal or role. See our - [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). - - temperature: Amount of randomness injected into the response. - - Defaults to `1.0`. Ranges from `0.0` to `1.0`. Use `temperature` closer to `0.0` - for analytical / multiple choice, and closer to `1.0` for creative and - generative tasks. - - Note that even with `temperature` of `0.0`, the results will not be fully - deterministic. - - tool_choice: How the model should use the provided tools. The model can use a specific tool, - any available tool, or decide by itself. - - tools: Definitions of tools that the model may use. - - If you include `tools` in your API request, the model may return `tool_use` - content blocks that represent the model's use of those tools. You can then run - those tools using the tool input generated by the model and then optionally - return results back to the model using `tool_result` content blocks. - - Each tool definition includes: - - - `name`: Name of the tool. - - `description`: Optional, but strongly-recommended description of the tool. - - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` - shape that the model will produce in `tool_use` output content blocks. - - For example, if you defined `tools` as: - - ```json - [ - { - "name": "get_stock_price", - "description": "Get the current stock price for a given ticker symbol.", - "input_schema": { - "type": "object", - "properties": { - "ticker": { - "type": "string", - "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." - } - }, - "required": ["ticker"] - } - } - ] - ``` - - And then asked the model "What's the S&P 500 at today?", the model might produce - `tool_use` content blocks in the response like this: - - ```json - [ - { - "type": "tool_use", - "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "name": "get_stock_price", - "input": { "ticker": "^GSPC" } - } - ] - ``` - - You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an - input, and return the following back to the model in a subsequent `user` - message: - - ```json - [ - { - "type": "tool_result", - "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", - "content": "259.75 USD" - } - ] - ``` - - Tools can be used for workflows that include running client-side tools and - functions, or more generally whenever you want the model to produce a particular - JSON structure of output. - - See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. - - top_k: Only sample from the top K options for each subsequent token. - - Used to remove "long tail" low probability responses. - [Learn more technical details here](https://towardsdatascience.com/how-to-sample-from-language-models-682bceb97277). - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - top_p: Use nucleus sampling. - - In nucleus sampling, we compute the cumulative distribution over all the options - for each subsequent token in decreasing probability order and cut it off once it - reaches a particular probability specified by `top_p`. You should either alter - `temperature` or `top_p`, but not both. - - Recommended for advanced use cases only. You usually only need to use - `temperature`. - - betas: Optional header to specify the beta version(s) you want to use. - - extra_headers: Send extra headers - - extra_query: Add additional query parameters to the request - - extra_body: Add additional JSON properties to the request - - timeout: Override the client-level default timeout for this request, in seconds - """ - ... - - @required_args(["max_tokens", "messages", "model"], ["max_tokens", "messages", "model", "stream"]) - async def create( - self, - *, - max_tokens: int, - messages: Iterable[PromptCachingBetaMessageParam], - model: ModelParam, - metadata: MetadataParam | NotGiven = NOT_GIVEN, - stop_sequences: List[str] | NotGiven = NOT_GIVEN, - stream: Literal[False] | Literal[True] | NotGiven = NOT_GIVEN, - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] | NotGiven = NOT_GIVEN, - temperature: float | NotGiven = NOT_GIVEN, - tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, - tools: Iterable[PromptCachingBetaToolParam] | NotGiven = NOT_GIVEN, - top_k: int | NotGiven = NOT_GIVEN, - top_p: float | NotGiven = NOT_GIVEN, - betas: List[AnthropicBetaParam] | NotGiven = NOT_GIVEN, - # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. - # The extra values given here take precedence over values defined on the client or passed to this method. - extra_headers: Headers | None = None, - extra_query: Query | None = None, - extra_body: Body | None = None, - timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, - ) -> PromptCachingBetaMessage | AsyncStream[RawPromptCachingBetaMessageStreamEvent]: - if not is_given(timeout) and self._client.timeout == DEFAULT_TIMEOUT: - timeout = 600 - extra_headers = { - **strip_not_given( - { - "anthropic-beta": ",".join(chain((str(e) for e in betas), ["prompt-caching-2024-07-31"])) - if is_given(betas) - else NOT_GIVEN - } - ), - **(extra_headers or {}), - } - extra_headers = {"anthropic-beta": "prompt-caching-2024-07-31", **(extra_headers or {})} - return await self._post( - "/v1/messages?beta=prompt_caching", - body=await async_maybe_transform( - { - "max_tokens": max_tokens, - "messages": messages, - "model": model, - "metadata": metadata, - "stop_sequences": stop_sequences, - "stream": stream, - "system": system, - "temperature": temperature, - "tool_choice": tool_choice, - "tools": tools, - "top_k": top_k, - "top_p": top_p, - }, - message_create_params.MessageCreateParams, - ), - options=make_request_options( - extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout - ), - cast_to=PromptCachingBetaMessage, - stream=stream or False, - stream_cls=AsyncStream[RawPromptCachingBetaMessageStreamEvent], - ) - - -class MessagesWithRawResponse: - def __init__(self, messages: Messages) -> None: - self._messages = messages - - self.create = _legacy_response.to_raw_response_wrapper( - messages.create, - ) - - -class AsyncMessagesWithRawResponse: - def __init__(self, messages: AsyncMessages) -> None: - self._messages = messages - - self.create = _legacy_response.async_to_raw_response_wrapper( - messages.create, - ) - - -class MessagesWithStreamingResponse: - def __init__(self, messages: Messages) -> None: - self._messages = messages - - self.create = to_streamed_response_wrapper( - messages.create, - ) - - -class AsyncMessagesWithStreamingResponse: - def __init__(self, messages: AsyncMessages) -> None: - self._messages = messages - - self.create = async_to_streamed_response_wrapper( - messages.create, - ) diff --git a/src/anthropic/resources/beta/prompt_caching/prompt_caching.py b/src/anthropic/resources/beta/prompt_caching/prompt_caching.py deleted file mode 100644 index 0154a0d3..00000000 --- a/src/anthropic/resources/beta/prompt_caching/prompt_caching.py +++ /dev/null @@ -1,102 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from .messages import ( - Messages, - AsyncMessages, - MessagesWithRawResponse, - AsyncMessagesWithRawResponse, - MessagesWithStreamingResponse, - AsyncMessagesWithStreamingResponse, -) -from ...._compat import cached_property -from ...._resource import SyncAPIResource, AsyncAPIResource - -__all__ = ["PromptCaching", "AsyncPromptCaching"] - - -class PromptCaching(SyncAPIResource): - @cached_property - def messages(self) -> Messages: - return Messages(self._client) - - @cached_property - def with_raw_response(self) -> PromptCachingWithRawResponse: - """ - This property can be used as a prefix for any HTTP method call to return the - the raw response object instead of the parsed content. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers - """ - return PromptCachingWithRawResponse(self) - - @cached_property - def with_streaming_response(self) -> PromptCachingWithStreamingResponse: - """ - An alternative to `.with_raw_response` that doesn't eagerly read the response body. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response - """ - return PromptCachingWithStreamingResponse(self) - - -class AsyncPromptCaching(AsyncAPIResource): - @cached_property - def messages(self) -> AsyncMessages: - return AsyncMessages(self._client) - - @cached_property - def with_raw_response(self) -> AsyncPromptCachingWithRawResponse: - """ - This property can be used as a prefix for any HTTP method call to return the - the raw response object instead of the parsed content. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers - """ - return AsyncPromptCachingWithRawResponse(self) - - @cached_property - def with_streaming_response(self) -> AsyncPromptCachingWithStreamingResponse: - """ - An alternative to `.with_raw_response` that doesn't eagerly read the response body. - - For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response - """ - return AsyncPromptCachingWithStreamingResponse(self) - - -class PromptCachingWithRawResponse: - def __init__(self, prompt_caching: PromptCaching) -> None: - self._prompt_caching = prompt_caching - - @cached_property - def messages(self) -> MessagesWithRawResponse: - return MessagesWithRawResponse(self._prompt_caching.messages) - - -class AsyncPromptCachingWithRawResponse: - def __init__(self, prompt_caching: AsyncPromptCaching) -> None: - self._prompt_caching = prompt_caching - - @cached_property - def messages(self) -> AsyncMessagesWithRawResponse: - return AsyncMessagesWithRawResponse(self._prompt_caching.messages) - - -class PromptCachingWithStreamingResponse: - def __init__(self, prompt_caching: PromptCaching) -> None: - self._prompt_caching = prompt_caching - - @cached_property - def messages(self) -> MessagesWithStreamingResponse: - return MessagesWithStreamingResponse(self._prompt_caching.messages) - - -class AsyncPromptCachingWithStreamingResponse: - def __init__(self, prompt_caching: AsyncPromptCaching) -> None: - self._prompt_caching = prompt_caching - - @cached_property - def messages(self) -> AsyncMessagesWithStreamingResponse: - return AsyncMessagesWithStreamingResponse(self._prompt_caching.messages) diff --git a/src/anthropic/resources/beta/prompt_caching/__init__.py b/src/anthropic/resources/messages/__init__.py similarity index 52% rename from src/anthropic/resources/beta/prompt_caching/__init__.py rename to src/anthropic/resources/messages/__init__.py index ccf0b0a8..34b0a923 100644 --- a/src/anthropic/resources/beta/prompt_caching/__init__.py +++ b/src/anthropic/resources/messages/__init__.py @@ -1,5 +1,13 @@ # File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. +from .batches import ( + Batches, + AsyncBatches, + BatchesWithRawResponse, + AsyncBatchesWithRawResponse, + BatchesWithStreamingResponse, + AsyncBatchesWithStreamingResponse, +) from .messages import ( Messages, AsyncMessages, @@ -8,26 +16,18 @@ MessagesWithStreamingResponse, AsyncMessagesWithStreamingResponse, ) -from .prompt_caching import ( - PromptCaching, - AsyncPromptCaching, - PromptCachingWithRawResponse, - AsyncPromptCachingWithRawResponse, - PromptCachingWithStreamingResponse, - AsyncPromptCachingWithStreamingResponse, -) __all__ = [ + "Batches", + "AsyncBatches", + "BatchesWithRawResponse", + "AsyncBatchesWithRawResponse", + "BatchesWithStreamingResponse", + "AsyncBatchesWithStreamingResponse", "Messages", "AsyncMessages", "MessagesWithRawResponse", "AsyncMessagesWithRawResponse", "MessagesWithStreamingResponse", "AsyncMessagesWithStreamingResponse", - "PromptCaching", - "AsyncPromptCaching", - "PromptCachingWithRawResponse", - "AsyncPromptCachingWithRawResponse", - "PromptCachingWithStreamingResponse", - "AsyncPromptCachingWithStreamingResponse", ] diff --git a/src/anthropic/resources/messages/batches.py b/src/anthropic/resources/messages/batches.py new file mode 100644 index 00000000..8e4add91 --- /dev/null +++ b/src/anthropic/resources/messages/batches.py @@ -0,0 +1,600 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Iterable + +import httpx + +from ... import _legacy_response +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import ( + maybe_transform, + async_maybe_transform, +) +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import ( + BinaryAPIResponse, + AsyncBinaryAPIResponse, + StreamedBinaryAPIResponse, + AsyncStreamedBinaryAPIResponse, + to_streamed_response_wrapper, + to_custom_raw_response_wrapper, + async_to_streamed_response_wrapper, + to_custom_streamed_response_wrapper, + async_to_custom_raw_response_wrapper, + async_to_custom_streamed_response_wrapper, +) +from ...pagination import SyncPage, AsyncPage +from ..._base_client import AsyncPaginator, make_request_options +from ...types.messages import batch_list_params, batch_create_params +from ...types.messages.message_batch import MessageBatch + +__all__ = ["Batches", "AsyncBatches"] + + +class Batches(SyncAPIResource): + @cached_property + def with_raw_response(self) -> BatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers + """ + return BatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> BatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response + """ + return BatchesWithStreamingResponse(self) + + def create( + self, + *, + requests: Iterable[batch_create_params.Request], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageBatch: + """ + Send a batch of Message creation requests. + + The Message Batches API can be used to process multiple Messages API requests at + once. Once a Message Batch is created, it begins processing immediately. Batches + can take up to 24 hours to complete. + + Args: + requests: List of requests for prompt completion. Each is an individual request to create + a Message. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._post( + "/v1/messages/batches", + body=maybe_transform({"requests": requests}, batch_create_params.BatchCreateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageBatch, + ) + + def retrieve( + self, + message_batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageBatch: + """This endpoint is idempotent and can be used to poll for Message Batch + completion. + + To access the results of a Message Batch, make a request to the + `results_url` field in the response. + + Args: + message_batch_id: ID of the Message Batch. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not message_batch_id: + raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}") + return self._get( + f"/v1/messages/batches/{message_batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageBatch, + ) + + def list( + self, + *, + after_id: str | NotGiven = NOT_GIVEN, + before_id: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncPage[MessageBatch]: + """List all Message Batches within a Workspace. + + Most recently created batches are + returned first. + + Args: + after_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately after this object. + + before_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately before this object. + + limit: Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/v1/messages/batches", + page=SyncPage[MessageBatch], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after_id": after_id, + "before_id": before_id, + "limit": limit, + }, + batch_list_params.BatchListParams, + ), + ), + model=MessageBatch, + ) + + def cancel( + self, + message_batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageBatch: + """Batches may be canceled any time before processing ends. + + Once cancellation is + initiated, the batch enters a `canceling` state, at which time the system may + complete any in-progress, non-interruptible requests before finalizing + cancellation. + + The number of canceled requests is specified in `request_counts`. To determine + which requests were canceled, check the individual results within the batch. + Note that cancellation may not result in any canceled requests if they were + non-interruptible. + + Args: + message_batch_id: ID of the Message Batch. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not message_batch_id: + raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}") + return self._post( + f"/v1/messages/batches/{message_batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageBatch, + ) + + def results( + self, + message_batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> BinaryAPIResponse: + """ + Streams the results of a Message Batch as a `.jsonl` file. + + Each line in the file is a JSON object containing the result of a single request + in the Message Batch. Results are not guaranteed to be in the same order as + requests. Use the `custom_id` field to match results to requests. + + Args: + message_batch_id: ID of the Message Batch. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not message_batch_id: + raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}") + extra_headers = {"Accept": "application/binary", **(extra_headers or {})} + return self._get( + f"/v1/messages/batches/{message_batch_id}/results", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=BinaryAPIResponse, + ) + + +class AsyncBatches(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncBatchesWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers + """ + return AsyncBatchesWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncBatchesWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response + """ + return AsyncBatchesWithStreamingResponse(self) + + async def create( + self, + *, + requests: Iterable[batch_create_params.Request], + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageBatch: + """ + Send a batch of Message creation requests. + + The Message Batches API can be used to process multiple Messages API requests at + once. Once a Message Batch is created, it begins processing immediately. Batches + can take up to 24 hours to complete. + + Args: + requests: List of requests for prompt completion. Each is an individual request to create + a Message. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return await self._post( + "/v1/messages/batches", + body=await async_maybe_transform({"requests": requests}, batch_create_params.BatchCreateParams), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageBatch, + ) + + async def retrieve( + self, + message_batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageBatch: + """This endpoint is idempotent and can be used to poll for Message Batch + completion. + + To access the results of a Message Batch, make a request to the + `results_url` field in the response. + + Args: + message_batch_id: ID of the Message Batch. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not message_batch_id: + raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}") + return await self._get( + f"/v1/messages/batches/{message_batch_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageBatch, + ) + + def list( + self, + *, + after_id: str | NotGiven = NOT_GIVEN, + before_id: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[MessageBatch, AsyncPage[MessageBatch]]: + """List all Message Batches within a Workspace. + + Most recently created batches are + returned first. + + Args: + after_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately after this object. + + before_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately before this object. + + limit: Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/v1/messages/batches", + page=AsyncPage[MessageBatch], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after_id": after_id, + "before_id": before_id, + "limit": limit, + }, + batch_list_params.BatchListParams, + ), + ), + model=MessageBatch, + ) + + async def cancel( + self, + message_batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageBatch: + """Batches may be canceled any time before processing ends. + + Once cancellation is + initiated, the batch enters a `canceling` state, at which time the system may + complete any in-progress, non-interruptible requests before finalizing + cancellation. + + The number of canceled requests is specified in `request_counts`. To determine + which requests were canceled, check the individual results within the batch. + Note that cancellation may not result in any canceled requests if they were + non-interruptible. + + Args: + message_batch_id: ID of the Message Batch. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not message_batch_id: + raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}") + return await self._post( + f"/v1/messages/batches/{message_batch_id}/cancel", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageBatch, + ) + + async def results( + self, + message_batch_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncBinaryAPIResponse: + """ + Streams the results of a Message Batch as a `.jsonl` file. + + Each line in the file is a JSON object containing the result of a single request + in the Message Batch. Results are not guaranteed to be in the same order as + requests. Use the `custom_id` field to match results to requests. + + Args: + message_batch_id: ID of the Message Batch. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not message_batch_id: + raise ValueError(f"Expected a non-empty value for `message_batch_id` but received {message_batch_id!r}") + extra_headers = {"Accept": "application/binary", **(extra_headers or {})} + return await self._get( + f"/v1/messages/batches/{message_batch_id}/results", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=AsyncBinaryAPIResponse, + ) + + +class BatchesWithRawResponse: + def __init__(self, batches: Batches) -> None: + self._batches = batches + + self.create = _legacy_response.to_raw_response_wrapper( + batches.create, + ) + self.retrieve = _legacy_response.to_raw_response_wrapper( + batches.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + batches.list, + ) + self.cancel = _legacy_response.to_raw_response_wrapper( + batches.cancel, + ) + self.results = to_custom_raw_response_wrapper( + batches.results, + BinaryAPIResponse, + ) + + +class AsyncBatchesWithRawResponse: + def __init__(self, batches: AsyncBatches) -> None: + self._batches = batches + + self.create = _legacy_response.async_to_raw_response_wrapper( + batches.create, + ) + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + batches.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + batches.list, + ) + self.cancel = _legacy_response.async_to_raw_response_wrapper( + batches.cancel, + ) + self.results = async_to_custom_raw_response_wrapper( + batches.results, + AsyncBinaryAPIResponse, + ) + + +class BatchesWithStreamingResponse: + def __init__(self, batches: Batches) -> None: + self._batches = batches + + self.create = to_streamed_response_wrapper( + batches.create, + ) + self.retrieve = to_streamed_response_wrapper( + batches.retrieve, + ) + self.list = to_streamed_response_wrapper( + batches.list, + ) + self.cancel = to_streamed_response_wrapper( + batches.cancel, + ) + self.results = to_custom_streamed_response_wrapper( + batches.results, + StreamedBinaryAPIResponse, + ) + + +class AsyncBatchesWithStreamingResponse: + def __init__(self, batches: AsyncBatches) -> None: + self._batches = batches + + self.create = async_to_streamed_response_wrapper( + batches.create, + ) + self.retrieve = async_to_streamed_response_wrapper( + batches.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + batches.list, + ) + self.cancel = async_to_streamed_response_wrapper( + batches.cancel, + ) + self.results = async_to_custom_streamed_response_wrapper( + batches.results, + AsyncStreamedBinaryAPIResponse, + ) diff --git a/src/anthropic/resources/messages.py b/src/anthropic/resources/messages/messages.py similarity index 78% rename from src/anthropic/resources/messages.py rename to src/anthropic/resources/messages/messages.py index fbb0c68c..d19caf22 100644 --- a/src/anthropic/resources/messages.py +++ b/src/anthropic/resources/messages/messages.py @@ -7,34 +7,47 @@ import httpx -from .. import _legacy_response -from ..types import message_create_params -from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven -from .._utils import ( +from ... import _legacy_response +from ...types import message_create_params, message_count_tokens_params +from .batches import ( + Batches, + AsyncBatches, + BatchesWithRawResponse, + AsyncBatchesWithRawResponse, + BatchesWithStreamingResponse, + AsyncBatchesWithStreamingResponse, +) +from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from ..._utils import ( is_given, required_args, maybe_transform, async_maybe_transform, ) -from .._compat import cached_property -from .._resource import SyncAPIResource, AsyncAPIResource -from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper -from .._constants import DEFAULT_TIMEOUT -from .._streaming import Stream, AsyncStream -from .._base_client import make_request_options -from ..types.message import Message -from ..types.tool_param import ToolParam -from ..types.model_param import ModelParam -from ..types.message_param import MessageParam -from ..types.metadata_param import MetadataParam -from ..types.text_block_param import TextBlockParam -from ..types.tool_choice_param import ToolChoiceParam -from ..types.raw_message_stream_event import RawMessageStreamEvent +from ..._compat import cached_property +from ..._resource import SyncAPIResource, AsyncAPIResource +from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ..._constants import DEFAULT_TIMEOUT +from ..._streaming import Stream, AsyncStream +from ..._base_client import make_request_options +from ...types.message import Message +from ...types.tool_param import ToolParam +from ...types.model_param import ModelParam +from ...types.message_param import MessageParam +from ...types.metadata_param import MetadataParam +from ...types.text_block_param import TextBlockParam +from ...types.tool_choice_param import ToolChoiceParam +from ...types.message_tokens_count import MessageTokensCount +from ...types.raw_message_stream_event import RawMessageStreamEvent __all__ = ["Messages", "AsyncMessages"] class Messages(SyncAPIResource): + @cached_property + def batches(self) -> Batches: + return Batches(self._client) + @cached_property def with_raw_response(self) -> MessagesWithRawResponse: """ @@ -892,8 +905,229 @@ def create( stream_cls=Stream[RawMessageStreamEvent], ) + def count_tokens( + self, + *, + messages: Iterable[MessageParam], + model: ModelParam, + system: Union[str, Iterable[TextBlockParam]] | NotGiven = NOT_GIVEN, + tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageTokensCount: + """ + Count the number of tokens in a Message. + + The Token Count API can be used to count the number of tokens in a Message, + including tools, images, and documents, without creating it. + + Args: + messages: Input messages. + + Our models are trained to operate on alternating `user` and `assistant` + conversational turns. When creating a new `Message`, you specify the prior + conversational turns with the `messages` parameter, and the model then generates + the next `Message` in the conversation. Consecutive `user` or `assistant` turns + in your request will be combined into a single turn. + + Each input message must be an object with a `role` and `content`. You can + specify a single `user`-role message, or you can include multiple `user` and + `assistant` messages. + + If the final message uses the `assistant` role, the response content will + continue immediately from the content in that message. This can be used to + constrain part of the model's response. + + Example with a single `user` message: + + ```json + [{ "role": "user", "content": "Hello, Claude" }] + ``` + + Example with multiple conversational turns: + + ```json + [ + { "role": "user", "content": "Hello there." }, + { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, + { "role": "user", "content": "Can you explain LLMs in plain English?" } + ] + ``` + + Example with a partially-filled response from Claude: + + ```json + [ + { + "role": "user", + "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" + }, + { "role": "assistant", "content": "The best answer is (" } + ] + ``` + + Each input message `content` may be either a single `string` or an array of + content blocks, where each block has a specific `type`. Using a `string` for + `content` is shorthand for an array of one content block of type `"text"`. The + following input messages are equivalent: + + ```json + { "role": "user", "content": "Hello, Claude" } + ``` + + ```json + { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } + ``` + + Starting with Claude 3 models, you can also send image content blocks: + + ```json + { + "role": "user", + "content": [ + { + "type": "image", + "source": { + "type": "base64", + "media_type": "image/jpeg", + "data": "/9j/4AAQSkZJRg..." + } + }, + { "type": "text", "text": "What is in this image?" } + ] + } + ``` + + We currently support the `base64` source type for images, and the `image/jpeg`, + `image/png`, `image/gif`, and `image/webp` media types. + + See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for + more input examples. + + Note that if you want to include a + [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use + the top-level `system` parameter — there is no `"system"` role for input + messages in the Messages API. + + model: The model that will complete your prompt.\n\nSee + [models](https://docs.anthropic.com/en/docs/models-overview) for additional + details and options. + + system: System prompt. + + A system prompt is a way of providing context and instructions to Claude, such + as specifying a particular goal or role. See our + [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). + + tool_choice: How the model should use the provided tools. The model can use a specific tool, + any available tool, or decide by itself. + + tools: Definitions of tools that the model may use. + + If you include `tools` in your API request, the model may return `tool_use` + content blocks that represent the model's use of those tools. You can then run + those tools using the tool input generated by the model and then optionally + return results back to the model using `tool_result` content blocks. + + Each tool definition includes: + + - `name`: Name of the tool. + - `description`: Optional, but strongly-recommended description of the tool. + - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` + shape that the model will produce in `tool_use` output content blocks. + + For example, if you defined `tools` as: + + ```json + [ + { + "name": "get_stock_price", + "description": "Get the current stock price for a given ticker symbol.", + "input_schema": { + "type": "object", + "properties": { + "ticker": { + "type": "string", + "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." + } + }, + "required": ["ticker"] + } + } + ] + ``` + + And then asked the model "What's the S&P 500 at today?", the model might produce + `tool_use` content blocks in the response like this: + + ```json + [ + { + "type": "tool_use", + "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", + "name": "get_stock_price", + "input": { "ticker": "^GSPC" } + } + ] + ``` + + You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an + input, and return the following back to the model in a subsequent `user` + message: + + ```json + [ + { + "type": "tool_result", + "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", + "content": "259.75 USD" + } + ] + ``` + + Tools can be used for workflows that include running client-side tools and + functions, or more generally whenever you want the model to produce a particular + JSON structure of output. + + See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._post( + "/v1/messages/count_tokens", + body=maybe_transform( + { + "messages": messages, + "model": model, + "system": system, + "tool_choice": tool_choice, + "tools": tools, + }, + message_count_tokens_params.MessageCountTokensParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageTokensCount, + ) + class AsyncMessages(AsyncAPIResource): + @cached_property + def batches(self) -> AsyncBatches: + return AsyncBatches(self._client) + @cached_property def with_raw_response(self) -> AsyncMessagesWithRawResponse: """ @@ -1751,6 +1985,223 @@ async def create( stream_cls=AsyncStream[RawMessageStreamEvent], ) + async def count_tokens( + self, + *, + messages: Iterable[MessageParam], + model: ModelParam, + system: Union[str, Iterable[TextBlockParam]] | NotGiven = NOT_GIVEN, + tool_choice: ToolChoiceParam | NotGiven = NOT_GIVEN, + tools: Iterable[ToolParam] | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> MessageTokensCount: + """ + Count the number of tokens in a Message. + + The Token Count API can be used to count the number of tokens in a Message, + including tools, images, and documents, without creating it. + + Args: + messages: Input messages. + + Our models are trained to operate on alternating `user` and `assistant` + conversational turns. When creating a new `Message`, you specify the prior + conversational turns with the `messages` parameter, and the model then generates + the next `Message` in the conversation. Consecutive `user` or `assistant` turns + in your request will be combined into a single turn. + + Each input message must be an object with a `role` and `content`. You can + specify a single `user`-role message, or you can include multiple `user` and + `assistant` messages. + + If the final message uses the `assistant` role, the response content will + continue immediately from the content in that message. This can be used to + constrain part of the model's response. + + Example with a single `user` message: + + ```json + [{ "role": "user", "content": "Hello, Claude" }] + ``` + + Example with multiple conversational turns: + + ```json + [ + { "role": "user", "content": "Hello there." }, + { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, + { "role": "user", "content": "Can you explain LLMs in plain English?" } + ] + ``` + + Example with a partially-filled response from Claude: + + ```json + [ + { + "role": "user", + "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" + }, + { "role": "assistant", "content": "The best answer is (" } + ] + ``` + + Each input message `content` may be either a single `string` or an array of + content blocks, where each block has a specific `type`. Using a `string` for + `content` is shorthand for an array of one content block of type `"text"`. The + following input messages are equivalent: + + ```json + { "role": "user", "content": "Hello, Claude" } + ``` + + ```json + { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } + ``` + + Starting with Claude 3 models, you can also send image content blocks: + + ```json + { + "role": "user", + "content": [ + { + "type": "image", + "source": { + "type": "base64", + "media_type": "image/jpeg", + "data": "/9j/4AAQSkZJRg..." + } + }, + { "type": "text", "text": "What is in this image?" } + ] + } + ``` + + We currently support the `base64` source type for images, and the `image/jpeg`, + `image/png`, `image/gif`, and `image/webp` media types. + + See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for + more input examples. + + Note that if you want to include a + [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use + the top-level `system` parameter — there is no `"system"` role for input + messages in the Messages API. + + model: The model that will complete your prompt.\n\nSee + [models](https://docs.anthropic.com/en/docs/models-overview) for additional + details and options. + + system: System prompt. + + A system prompt is a way of providing context and instructions to Claude, such + as specifying a particular goal or role. See our + [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). + + tool_choice: How the model should use the provided tools. The model can use a specific tool, + any available tool, or decide by itself. + + tools: Definitions of tools that the model may use. + + If you include `tools` in your API request, the model may return `tool_use` + content blocks that represent the model's use of those tools. You can then run + those tools using the tool input generated by the model and then optionally + return results back to the model using `tool_result` content blocks. + + Each tool definition includes: + + - `name`: Name of the tool. + - `description`: Optional, but strongly-recommended description of the tool. + - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` + shape that the model will produce in `tool_use` output content blocks. + + For example, if you defined `tools` as: + + ```json + [ + { + "name": "get_stock_price", + "description": "Get the current stock price for a given ticker symbol.", + "input_schema": { + "type": "object", + "properties": { + "ticker": { + "type": "string", + "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." + } + }, + "required": ["ticker"] + } + } + ] + ``` + + And then asked the model "What's the S&P 500 at today?", the model might produce + `tool_use` content blocks in the response like this: + + ```json + [ + { + "type": "tool_use", + "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", + "name": "get_stock_price", + "input": { "ticker": "^GSPC" } + } + ] + ``` + + You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an + input, and return the following back to the model in a subsequent `user` + message: + + ```json + [ + { + "type": "tool_result", + "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", + "content": "259.75 USD" + } + ] + ``` + + Tools can be used for workflows that include running client-side tools and + functions, or more generally whenever you want the model to produce a particular + JSON structure of output. + + See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return await self._post( + "/v1/messages/count_tokens", + body=await async_maybe_transform( + { + "messages": messages, + "model": model, + "system": system, + "tool_choice": tool_choice, + "tools": tools, + }, + message_count_tokens_params.MessageCountTokensParams, + ), + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=MessageTokensCount, + ) + class MessagesWithRawResponse: def __init__(self, messages: Messages) -> None: @@ -1759,6 +2210,13 @@ def __init__(self, messages: Messages) -> None: self.create = _legacy_response.to_raw_response_wrapper( messages.create, ) + self.count_tokens = _legacy_response.to_raw_response_wrapper( + messages.count_tokens, + ) + + @cached_property + def batches(self) -> BatchesWithRawResponse: + return BatchesWithRawResponse(self._messages.batches) class AsyncMessagesWithRawResponse: @@ -1768,6 +2226,13 @@ def __init__(self, messages: AsyncMessages) -> None: self.create = _legacy_response.async_to_raw_response_wrapper( messages.create, ) + self.count_tokens = _legacy_response.async_to_raw_response_wrapper( + messages.count_tokens, + ) + + @cached_property + def batches(self) -> AsyncBatchesWithRawResponse: + return AsyncBatchesWithRawResponse(self._messages.batches) class MessagesWithStreamingResponse: @@ -1777,6 +2242,13 @@ def __init__(self, messages: Messages) -> None: self.create = to_streamed_response_wrapper( messages.create, ) + self.count_tokens = to_streamed_response_wrapper( + messages.count_tokens, + ) + + @cached_property + def batches(self) -> BatchesWithStreamingResponse: + return BatchesWithStreamingResponse(self._messages.batches) class AsyncMessagesWithStreamingResponse: @@ -1786,3 +2258,10 @@ def __init__(self, messages: AsyncMessages) -> None: self.create = async_to_streamed_response_wrapper( messages.create, ) + self.count_tokens = async_to_streamed_response_wrapper( + messages.count_tokens, + ) + + @cached_property + def batches(self) -> AsyncBatchesWithStreamingResponse: + return AsyncBatchesWithStreamingResponse(self._messages.batches) diff --git a/src/anthropic/resources/models.py b/src/anthropic/resources/models.py new file mode 100644 index 00000000..aec102bf --- /dev/null +++ b/src/anthropic/resources/models.py @@ -0,0 +1,300 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import httpx + +from .. import _legacy_response +from ..types import model_list_params +from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven +from .._utils import maybe_transform +from .._compat import cached_property +from .._resource import SyncAPIResource, AsyncAPIResource +from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper +from ..pagination import SyncPage, AsyncPage +from .._base_client import AsyncPaginator, make_request_options +from ..types.model_info import ModelInfo + +__all__ = ["Models", "AsyncModels"] + + +class Models(SyncAPIResource): + @cached_property + def with_raw_response(self) -> ModelsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers + """ + return ModelsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> ModelsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response + """ + return ModelsWithStreamingResponse(self) + + def retrieve( + self, + model_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ModelInfo: + """ + Get a specific model. + + The Models API response can be used to determine information about a specific + model or resolve a model alias to a model ID. + + Args: + model_id: Model identifier or alias. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model_id: + raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}") + return self._get( + f"/v1/models/{model_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ModelInfo, + ) + + def list( + self, + *, + after_id: str | NotGiven = NOT_GIVEN, + before_id: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> SyncPage[ModelInfo]: + """ + List available models. + + The Models API response can be used to determine which models are available for + use in the API. More recently released models are listed first. + + Args: + after_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately after this object. + + before_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately before this object. + + limit: Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/v1/models", + page=SyncPage[ModelInfo], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after_id": after_id, + "before_id": before_id, + "limit": limit, + }, + model_list_params.ModelListParams, + ), + ), + model=ModelInfo, + ) + + +class AsyncModels(AsyncAPIResource): + @cached_property + def with_raw_response(self) -> AsyncModelsWithRawResponse: + """ + This property can be used as a prefix for any HTTP method call to return the + the raw response object instead of the parsed content. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#accessing-raw-response-data-eg-headers + """ + return AsyncModelsWithRawResponse(self) + + @cached_property + def with_streaming_response(self) -> AsyncModelsWithStreamingResponse: + """ + An alternative to `.with_raw_response` that doesn't eagerly read the response body. + + For more information, see https://www.github.com/anthropics/anthropic-sdk-python#with_streaming_response + """ + return AsyncModelsWithStreamingResponse(self) + + async def retrieve( + self, + model_id: str, + *, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> ModelInfo: + """ + Get a specific model. + + The Models API response can be used to determine information about a specific + model or resolve a model alias to a model ID. + + Args: + model_id: Model identifier or alias. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + if not model_id: + raise ValueError(f"Expected a non-empty value for `model_id` but received {model_id!r}") + return await self._get( + f"/v1/models/{model_id}", + options=make_request_options( + extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout + ), + cast_to=ModelInfo, + ) + + def list( + self, + *, + after_id: str | NotGiven = NOT_GIVEN, + before_id: str | NotGiven = NOT_GIVEN, + limit: int | NotGiven = NOT_GIVEN, + # Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs. + # The extra values given here take precedence over values defined on the client or passed to this method. + extra_headers: Headers | None = None, + extra_query: Query | None = None, + extra_body: Body | None = None, + timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN, + ) -> AsyncPaginator[ModelInfo, AsyncPage[ModelInfo]]: + """ + List available models. + + The Models API response can be used to determine which models are available for + use in the API. More recently released models are listed first. + + Args: + after_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately after this object. + + before_id: ID of the object to use as a cursor for pagination. When provided, returns the + page of results immediately before this object. + + limit: Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + + extra_headers: Send extra headers + + extra_query: Add additional query parameters to the request + + extra_body: Add additional JSON properties to the request + + timeout: Override the client-level default timeout for this request, in seconds + """ + return self._get_api_list( + "/v1/models", + page=AsyncPage[ModelInfo], + options=make_request_options( + extra_headers=extra_headers, + extra_query=extra_query, + extra_body=extra_body, + timeout=timeout, + query=maybe_transform( + { + "after_id": after_id, + "before_id": before_id, + "limit": limit, + }, + model_list_params.ModelListParams, + ), + ), + model=ModelInfo, + ) + + +class ModelsWithRawResponse: + def __init__(self, models: Models) -> None: + self._models = models + + self.retrieve = _legacy_response.to_raw_response_wrapper( + models.retrieve, + ) + self.list = _legacy_response.to_raw_response_wrapper( + models.list, + ) + + +class AsyncModelsWithRawResponse: + def __init__(self, models: AsyncModels) -> None: + self._models = models + + self.retrieve = _legacy_response.async_to_raw_response_wrapper( + models.retrieve, + ) + self.list = _legacy_response.async_to_raw_response_wrapper( + models.list, + ) + + +class ModelsWithStreamingResponse: + def __init__(self, models: Models) -> None: + self._models = models + + self.retrieve = to_streamed_response_wrapper( + models.retrieve, + ) + self.list = to_streamed_response_wrapper( + models.list, + ) + + +class AsyncModelsWithStreamingResponse: + def __init__(self, models: AsyncModels) -> None: + self._models = models + + self.retrieve = async_to_streamed_response_wrapper( + models.retrieve, + ) + self.list = async_to_streamed_response_wrapper( + models.list, + ) diff --git a/src/anthropic/types/__init__.py b/src/anthropic/types/__init__.py index 0125a215..a880b827 100644 --- a/src/anthropic/types/__init__.py +++ b/src/anthropic/types/__init__.py @@ -4,9 +4,23 @@ from .model import Model as Model from .usage import Usage as Usage +from .shared import ( + ErrorObject as ErrorObject, + BillingError as BillingError, + ErrorResponse as ErrorResponse, + NotFoundError as NotFoundError, + APIErrorObject as APIErrorObject, + RateLimitError as RateLimitError, + OverloadedError as OverloadedError, + PermissionError as PermissionError, + AuthenticationError as AuthenticationError, + GatewayTimeoutError as GatewayTimeoutError, + InvalidRequestError as InvalidRequestError, +) from .message import Message as Message from .beta_error import BetaError as BetaError from .completion import Completion as Completion +from .model_info import ModelInfo as ModelInfo from .text_block import TextBlock as TextBlock from .text_delta import TextDelta as TextDelta from .tool_param import ToolParam as ToolParam @@ -19,7 +33,9 @@ from .input_json_delta import InputJSONDelta as InputJSONDelta from .text_block_param import TextBlockParam as TextBlockParam from .image_block_param import ImageBlockParam as ImageBlockParam +from .model_list_params import ModelListParams as ModelListParams from .tool_choice_param import ToolChoiceParam as ToolChoiceParam +from .beta_billing_error import BetaBillingError as BetaBillingError from .message_stop_event import MessageStopEvent as MessageStopEvent from .beta_error_response import BetaErrorResponse as BetaErrorResponse from .content_block_param import ContentBlockParam as ContentBlockParam @@ -28,7 +44,9 @@ from .message_start_event import MessageStartEvent as MessageStartEvent from .anthropic_beta_param import AnthropicBetaParam as AnthropicBetaParam from .beta_not_found_error import BetaNotFoundError as BetaNotFoundError +from .document_block_param import DocumentBlockParam as DocumentBlockParam from .message_stream_event import MessageStreamEvent as MessageStreamEvent +from .message_tokens_count import MessageTokensCount as MessageTokensCount from .tool_use_block_param import ToolUseBlockParam as ToolUseBlockParam from .beta_overloaded_error import BetaOverloadedError as BetaOverloadedError from .beta_permission_error import BetaPermissionError as BetaPermissionError @@ -38,6 +56,7 @@ from .raw_message_stop_event import RawMessageStopEvent as RawMessageStopEvent from .tool_choice_auto_param import ToolChoiceAutoParam as ToolChoiceAutoParam from .tool_choice_tool_param import ToolChoiceToolParam as ToolChoiceToolParam +from .base64_pdf_source_param import Base64PDFSourceParam as Base64PDFSourceParam from .raw_message_delta_event import RawMessageDeltaEvent as RawMessageDeltaEvent from .raw_message_start_event import RawMessageStartEvent as RawMessageStartEvent from .tool_result_block_param import ToolResultBlockParam as ToolResultBlockParam @@ -47,7 +66,10 @@ from .beta_authentication_error import BetaAuthenticationError as BetaAuthenticationError from .content_block_delta_event import ContentBlockDeltaEvent as ContentBlockDeltaEvent from .content_block_start_event import ContentBlockStartEvent as ContentBlockStartEvent +from .beta_gateway_timeout_error import BetaGatewayTimeoutError as BetaGatewayTimeoutError from .beta_invalid_request_error import BetaInvalidRequestError as BetaInvalidRequestError +from .message_count_tokens_params import MessageCountTokensParams as MessageCountTokensParams from .raw_content_block_stop_event import RawContentBlockStopEvent as RawContentBlockStopEvent +from .cache_control_ephemeral_param import CacheControlEphemeralParam as CacheControlEphemeralParam from .raw_content_block_delta_event import RawContentBlockDeltaEvent as RawContentBlockDeltaEvent from .raw_content_block_start_event import RawContentBlockStartEvent as RawContentBlockStartEvent diff --git a/src/anthropic/types/base64_pdf_source_param.py b/src/anthropic/types/base64_pdf_source_param.py new file mode 100644 index 00000000..ac247a19 --- /dev/null +++ b/src/anthropic/types/base64_pdf_source_param.py @@ -0,0 +1,23 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union +from typing_extensions import Literal, Required, Annotated, TypedDict + +from .._types import Base64FileInput +from .._utils import PropertyInfo +from .._models import set_pydantic_config + +__all__ = ["Base64PDFSourceParam"] + + +class Base64PDFSourceParam(TypedDict, total=False): + data: Required[Annotated[Union[str, Base64FileInput], PropertyInfo(format="base64")]] + + media_type: Required[Literal["application/pdf"]] + + type: Required[Literal["base64"]] + + +set_pydantic_config(Base64PDFSourceParam, {"arbitrary_types_allowed": True}) diff --git a/src/anthropic/types/beta/__init__.py b/src/anthropic/types/beta/__init__.py index cf5fd496..c233d9c7 100644 --- a/src/anthropic/types/beta/__init__.py +++ b/src/anthropic/types/beta/__init__.py @@ -4,9 +4,11 @@ from .beta_usage import BetaUsage as BetaUsage from .beta_message import BetaMessage as BetaMessage +from .beta_model_info import BetaModelInfo as BetaModelInfo from .beta_text_block import BetaTextBlock as BetaTextBlock from .beta_text_delta import BetaTextDelta as BetaTextDelta from .beta_tool_param import BetaToolParam as BetaToolParam +from .model_list_params import ModelListParams as ModelListParams from .beta_content_block import BetaContentBlock as BetaContentBlock from .beta_message_param import BetaMessageParam as BetaMessageParam from .beta_metadata_param import BetaMetadataParam as BetaMetadataParam diff --git a/src/anthropic/types/beta/beta_model_info.py b/src/anthropic/types/beta/beta_model_info.py new file mode 100644 index 00000000..6ea50d9f --- /dev/null +++ b/src/anthropic/types/beta/beta_model_info.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from datetime import datetime +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["BetaModelInfo"] + + +class BetaModelInfo(BaseModel): + id: str + """Unique model identifier.""" + + created_at: datetime + """RFC 3339 datetime string representing the time at which the model was released. + + May be set to an epoch value if the release date is unknown. + """ + + display_name: str + """A human-readable name for the model.""" + + type: Literal["model"] + """Object type. + + For Models, this is always `"model"`. + """ diff --git a/src/anthropic/types/beta/beta_raw_content_block_delta_event.py b/src/anthropic/types/beta/beta_raw_content_block_delta_event.py index 9e26688c..03ce6557 100644 --- a/src/anthropic/types/beta/beta_raw_content_block_delta_event.py +++ b/src/anthropic/types/beta/beta_raw_content_block_delta_event.py @@ -1,16 +1,15 @@ # File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. from typing import Union -from typing_extensions import Literal, Annotated, TypeAlias +from typing_extensions import Literal, TypeAlias -from ..._utils import PropertyInfo from ..._models import BaseModel from .beta_text_delta import BetaTextDelta from .beta_input_json_delta import BetaInputJSONDelta __all__ = ["BetaRawContentBlockDeltaEvent", "Delta"] -Delta: TypeAlias = Annotated[Union[BetaTextDelta, BetaInputJSONDelta], PropertyInfo(discriminator="type")] +Delta: TypeAlias = Union[BetaTextDelta, BetaInputJSONDelta] class BetaRawContentBlockDeltaEvent(BaseModel): diff --git a/src/anthropic/types/beta/messages/batch_list_params.py b/src/anthropic/types/beta/messages/batch_list_params.py index b75cd931..3f406251 100644 --- a/src/anthropic/types/beta/messages/batch_list_params.py +++ b/src/anthropic/types/beta/messages/batch_list_params.py @@ -27,7 +27,7 @@ class BatchListParams(TypedDict, total=False): limit: int """Number of items to return per page. - Defaults to `20`. Ranges from `1` to `100`. + Defaults to `20`. Ranges from `1` to `1000`. """ betas: Annotated[List[AnthropicBetaParam], PropertyInfo(alias="anthropic-beta")] diff --git a/src/anthropic/types/beta/model_list_params.py b/src/anthropic/types/beta/model_list_params.py new file mode 100644 index 00000000..b16d22a3 --- /dev/null +++ b/src/anthropic/types/beta/model_list_params.py @@ -0,0 +1,27 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +__all__ = ["ModelListParams"] + + +class ModelListParams(TypedDict, total=False): + after_id: str + """ID of the object to use as a cursor for pagination. + + When provided, returns the page of results immediately after this object. + """ + + before_id: str + """ID of the object to use as a cursor for pagination. + + When provided, returns the page of results immediately before this object. + """ + + limit: int + """Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + """ diff --git a/src/anthropic/types/beta/prompt_caching/__init__.py b/src/anthropic/types/beta/prompt_caching/__init__.py deleted file mode 100644 index 3b4004fc..00000000 --- a/src/anthropic/types/beta/prompt_caching/__init__.py +++ /dev/null @@ -1,26 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from .message_create_params import MessageCreateParams as MessageCreateParams -from .prompt_caching_beta_usage import PromptCachingBetaUsage as PromptCachingBetaUsage -from .prompt_caching_beta_message import PromptCachingBetaMessage as PromptCachingBetaMessage -from .prompt_caching_beta_tool_param import PromptCachingBetaToolParam as PromptCachingBetaToolParam -from .prompt_caching_beta_message_param import PromptCachingBetaMessageParam as PromptCachingBetaMessageParam -from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam as PromptCachingBetaTextBlockParam -from .prompt_caching_beta_image_block_param import PromptCachingBetaImageBlockParam as PromptCachingBetaImageBlockParam -from .prompt_caching_beta_tool_use_block_param import ( - PromptCachingBetaToolUseBlockParam as PromptCachingBetaToolUseBlockParam, -) -from .prompt_caching_beta_tool_result_block_param import ( - PromptCachingBetaToolResultBlockParam as PromptCachingBetaToolResultBlockParam, -) -from .raw_prompt_caching_beta_message_start_event import ( - RawPromptCachingBetaMessageStartEvent as RawPromptCachingBetaMessageStartEvent, -) -from .raw_prompt_caching_beta_message_stream_event import ( - RawPromptCachingBetaMessageStreamEvent as RawPromptCachingBetaMessageStreamEvent, -) -from .prompt_caching_beta_cache_control_ephemeral_param import ( - PromptCachingBetaCacheControlEphemeralParam as PromptCachingBetaCacheControlEphemeralParam, -) diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_image_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_image_block_param.py deleted file mode 100644 index 02dfb0bc..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_image_block_param.py +++ /dev/null @@ -1,32 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from typing import Union, Optional -from typing_extensions import Literal, Required, Annotated, TypedDict - -from ...._types import Base64FileInput -from ...._utils import PropertyInfo -from ...._models import set_pydantic_config -from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam - -__all__ = ["PromptCachingBetaImageBlockParam", "Source"] - - -class Source(TypedDict, total=False): - data: Required[Annotated[Union[str, Base64FileInput], PropertyInfo(format="base64")]] - - media_type: Required[Literal["image/jpeg", "image/png", "image/gif", "image/webp"]] - - type: Required[Literal["base64"]] - - -set_pydantic_config(Source, {"arbitrary_types_allowed": True}) - - -class PromptCachingBetaImageBlockParam(TypedDict, total=False): - source: Required[Source] - - type: Required[Literal["image"]] - - cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam] diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message.py deleted file mode 100644 index 2cc49a2c..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message.py +++ /dev/null @@ -1,109 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from typing import List, Optional -from typing_extensions import Literal - -from ...model import Model -from ...._models import BaseModel -from ...content_block import ContentBlock -from .prompt_caching_beta_usage import PromptCachingBetaUsage - -__all__ = ["PromptCachingBetaMessage"] - - -class PromptCachingBetaMessage(BaseModel): - id: str - """Unique object identifier. - - The format and length of IDs may change over time. - """ - - content: List[ContentBlock] - """Content generated by the model. - - This is an array of content blocks, each of which has a `type` that determines - its shape. - - Example: - - ```json - [{ "type": "text", "text": "Hi, I'm Claude." }] - ``` - - If the request input `messages` ended with an `assistant` turn, then the - response `content` will continue directly from that last turn. You can use this - to constrain the model's output. - - For example, if the input `messages` were: - - ```json - [ - { - "role": "user", - "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" - }, - { "role": "assistant", "content": "The best answer is (" } - ] - ``` - - Then the response `content` might be: - - ```json - [{ "type": "text", "text": "B)" }] - ``` - """ - - model: Model - """ - The model that will complete your prompt.\n\nSee - [models](https://docs.anthropic.com/en/docs/models-overview) for additional - details and options. - """ - - role: Literal["assistant"] - """Conversational role of the generated message. - - This will always be `"assistant"`. - """ - - stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = None - """The reason that we stopped. - - This may be one the following values: - - - `"end_turn"`: the model reached a natural stopping point - - `"max_tokens"`: we exceeded the requested `max_tokens` or the model's maximum - - `"stop_sequence"`: one of your provided custom `stop_sequences` was generated - - `"tool_use"`: the model invoked one or more tools - - In non-streaming mode this value is always non-null. In streaming mode, it is - null in the `message_start` event and non-null otherwise. - """ - - stop_sequence: Optional[str] = None - """Which custom stop sequence was generated, if any. - - This value will be a non-null string if one of your custom stop sequences was - generated. - """ - - type: Literal["message"] - """Object type. - - For Messages, this is always `"message"`. - """ - - usage: PromptCachingBetaUsage - """Billing and rate-limit usage. - - Anthropic's API bills and rate-limits by token counts, as tokens represent the - underlying cost to our systems. - - Under the hood, the API transforms requests into a format suitable for the - model. The model's output then goes through a parsing stage before becoming an - API response. As a result, the token counts in `usage` will not match one-to-one - with the exact visible content of an API request or response. - - For example, `output_tokens` will be non-zero, even for an empty string response - from Claude. - """ diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message_param.py deleted file mode 100644 index f88093e2..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_message_param.py +++ /dev/null @@ -1,33 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from typing import Union, Iterable -from typing_extensions import Literal, Required, TypedDict - -from ...content_block import ContentBlock -from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam -from .prompt_caching_beta_image_block_param import PromptCachingBetaImageBlockParam -from .prompt_caching_beta_tool_use_block_param import PromptCachingBetaToolUseBlockParam -from .prompt_caching_beta_tool_result_block_param import PromptCachingBetaToolResultBlockParam - -__all__ = ["PromptCachingBetaMessageParam"] - - -class PromptCachingBetaMessageParam(TypedDict, total=False): - content: Required[ - Union[ - str, - Iterable[ - Union[ - PromptCachingBetaTextBlockParam, - PromptCachingBetaImageBlockParam, - PromptCachingBetaToolUseBlockParam, - PromptCachingBetaToolResultBlockParam, - ContentBlock, - ] - ], - ] - ] - - role: Required[Literal["user", "assistant"]] diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_text_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_text_block_param.py deleted file mode 100644 index cbb463d2..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_text_block_param.py +++ /dev/null @@ -1,18 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from typing import Optional -from typing_extensions import Literal, Required, TypedDict - -from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam - -__all__ = ["PromptCachingBetaTextBlockParam"] - - -class PromptCachingBetaTextBlockParam(TypedDict, total=False): - text: Required[str] - - type: Required[Literal["text"]] - - cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam] diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_param.py deleted file mode 100644 index cfd9f8aa..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_param.py +++ /dev/null @@ -1,45 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from typing import Dict, Union, Optional -from typing_extensions import Literal, Required, TypeAlias, TypedDict - -from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam - -__all__ = ["PromptCachingBetaToolParam", "InputSchema"] - - -class InputSchemaTyped(TypedDict, total=False): - type: Required[Literal["object"]] - - properties: Optional[object] - - -InputSchema: TypeAlias = Union[InputSchemaTyped, Dict[str, object]] - - -class PromptCachingBetaToolParam(TypedDict, total=False): - input_schema: Required[InputSchema] - """[JSON schema](https://json-schema.org/) for this tool's input. - - This defines the shape of the `input` that your tool accepts and that the model - will produce. - """ - - name: Required[str] - """Name of the tool. - - This is how the tool will be called by the model and in tool_use blocks. - """ - - cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam] - - description: str - """Description of what this tool does. - - Tool descriptions should be as detailed as possible. The more information that - the model has about what the tool is and how to use it, the better it will - perform. You can use natural language descriptions to reinforce important - aspects of the tool input JSON schema. - """ diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_result_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_result_block_param.py deleted file mode 100644 index 6c1ca718..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_result_block_param.py +++ /dev/null @@ -1,26 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from typing import Union, Iterable, Optional -from typing_extensions import Literal, Required, TypeAlias, TypedDict - -from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam -from .prompt_caching_beta_image_block_param import PromptCachingBetaImageBlockParam -from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam - -__all__ = ["PromptCachingBetaToolResultBlockParam", "Content"] - -Content: TypeAlias = Union[PromptCachingBetaTextBlockParam, PromptCachingBetaImageBlockParam] - - -class PromptCachingBetaToolResultBlockParam(TypedDict, total=False): - tool_use_id: Required[str] - - type: Required[Literal["tool_result"]] - - cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam] - - content: Union[str, Iterable[Content]] - - is_error: bool diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_use_block_param.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_use_block_param.py deleted file mode 100644 index 35ccf446..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_tool_use_block_param.py +++ /dev/null @@ -1,22 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -from typing import Optional -from typing_extensions import Literal, Required, TypedDict - -from .prompt_caching_beta_cache_control_ephemeral_param import PromptCachingBetaCacheControlEphemeralParam - -__all__ = ["PromptCachingBetaToolUseBlockParam"] - - -class PromptCachingBetaToolUseBlockParam(TypedDict, total=False): - id: Required[str] - - input: Required[object] - - name: Required[str] - - type: Required[Literal["tool_use"]] - - cache_control: Optional[PromptCachingBetaCacheControlEphemeralParam] diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_usage.py b/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_usage.py deleted file mode 100644 index 20d23004..00000000 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_usage.py +++ /dev/null @@ -1,21 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from typing import Optional - -from ...._models import BaseModel - -__all__ = ["PromptCachingBetaUsage"] - - -class PromptCachingBetaUsage(BaseModel): - cache_creation_input_tokens: Optional[int] = None - """The number of input tokens used to create the cache entry.""" - - cache_read_input_tokens: Optional[int] = None - """The number of input tokens read from the cache.""" - - input_tokens: int - """The number of input tokens which were used.""" - - output_tokens: int - """The number of output tokens which were used.""" diff --git a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_start_event.py b/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_start_event.py deleted file mode 100644 index 9d055e22..00000000 --- a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_start_event.py +++ /dev/null @@ -1,14 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from typing_extensions import Literal - -from ...._models import BaseModel -from .prompt_caching_beta_message import PromptCachingBetaMessage - -__all__ = ["RawPromptCachingBetaMessageStartEvent"] - - -class RawPromptCachingBetaMessageStartEvent(BaseModel): - message: PromptCachingBetaMessage - - type: Literal["message_start"] diff --git a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_stream_event.py b/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_stream_event.py deleted file mode 100644 index 58099baf..00000000 --- a/src/anthropic/types/beta/prompt_caching/raw_prompt_caching_beta_message_stream_event.py +++ /dev/null @@ -1,26 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from typing import Union -from typing_extensions import Annotated, TypeAlias - -from ...._utils import PropertyInfo -from ...raw_message_stop_event import RawMessageStopEvent -from ...raw_message_delta_event import RawMessageDeltaEvent -from ...raw_content_block_stop_event import RawContentBlockStopEvent -from ...raw_content_block_delta_event import RawContentBlockDeltaEvent -from ...raw_content_block_start_event import RawContentBlockStartEvent -from .raw_prompt_caching_beta_message_start_event import RawPromptCachingBetaMessageStartEvent - -__all__ = ["RawPromptCachingBetaMessageStreamEvent"] - -RawPromptCachingBetaMessageStreamEvent: TypeAlias = Annotated[ - Union[ - RawPromptCachingBetaMessageStartEvent, - RawMessageDeltaEvent, - RawMessageStopEvent, - RawContentBlockStartEvent, - RawContentBlockDeltaEvent, - RawContentBlockStopEvent, - ], - PropertyInfo(discriminator="type"), -] diff --git a/src/anthropic/types/beta_billing_error.py b/src/anthropic/types/beta_billing_error.py new file mode 100644 index 00000000..1ab37614 --- /dev/null +++ b/src/anthropic/types/beta_billing_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["BetaBillingError"] + + +class BetaBillingError(BaseModel): + message: str + + type: Literal["billing_error"] diff --git a/src/anthropic/types/beta_error.py b/src/anthropic/types/beta_error.py index 4d870ff4..029d80dc 100644 --- a/src/anthropic/types/beta_error.py +++ b/src/anthropic/types/beta_error.py @@ -5,11 +5,13 @@ from .._utils import PropertyInfo from .beta_api_error import BetaAPIError +from .beta_billing_error import BetaBillingError from .beta_not_found_error import BetaNotFoundError from .beta_overloaded_error import BetaOverloadedError from .beta_permission_error import BetaPermissionError from .beta_rate_limit_error import BetaRateLimitError from .beta_authentication_error import BetaAuthenticationError +from .beta_gateway_timeout_error import BetaGatewayTimeoutError from .beta_invalid_request_error import BetaInvalidRequestError __all__ = ["BetaError"] @@ -18,9 +20,11 @@ Union[ BetaInvalidRequestError, BetaAuthenticationError, + BetaBillingError, BetaPermissionError, BetaNotFoundError, BetaRateLimitError, + BetaGatewayTimeoutError, BetaAPIError, BetaOverloadedError, ], diff --git a/src/anthropic/types/beta_gateway_timeout_error.py b/src/anthropic/types/beta_gateway_timeout_error.py new file mode 100644 index 00000000..9a29705b --- /dev/null +++ b/src/anthropic/types/beta_gateway_timeout_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["BetaGatewayTimeoutError"] + + +class BetaGatewayTimeoutError(BaseModel): + message: str + + type: Literal["timeout_error"] diff --git a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_cache_control_ephemeral_param.py b/src/anthropic/types/cache_control_ephemeral_param.py similarity index 62% rename from src/anthropic/types/beta/prompt_caching/prompt_caching_beta_cache_control_ephemeral_param.py rename to src/anthropic/types/cache_control_ephemeral_param.py index 8370b938..8900071e 100644 --- a/src/anthropic/types/beta/prompt_caching/prompt_caching_beta_cache_control_ephemeral_param.py +++ b/src/anthropic/types/cache_control_ephemeral_param.py @@ -4,8 +4,8 @@ from typing_extensions import Literal, Required, TypedDict -__all__ = ["PromptCachingBetaCacheControlEphemeralParam"] +__all__ = ["CacheControlEphemeralParam"] -class PromptCachingBetaCacheControlEphemeralParam(TypedDict, total=False): +class CacheControlEphemeralParam(TypedDict, total=False): type: Required[Literal["ephemeral"]] diff --git a/src/anthropic/types/content_block_param.py b/src/anthropic/types/content_block_param.py index 65e9bd4a..836a5e19 100644 --- a/src/anthropic/types/content_block_param.py +++ b/src/anthropic/types/content_block_param.py @@ -7,9 +7,12 @@ from .text_block_param import TextBlockParam from .image_block_param import ImageBlockParam +from .document_block_param import DocumentBlockParam from .tool_use_block_param import ToolUseBlockParam from .tool_result_block_param import ToolResultBlockParam __all__ = ["ContentBlockParam"] -ContentBlockParam: TypeAlias = Union[TextBlockParam, ImageBlockParam, ToolUseBlockParam, ToolResultBlockParam] +ContentBlockParam: TypeAlias = Union[ + TextBlockParam, ImageBlockParam, ToolUseBlockParam, ToolResultBlockParam, DocumentBlockParam +] diff --git a/src/anthropic/types/document_block_param.py b/src/anthropic/types/document_block_param.py new file mode 100644 index 00000000..57522e93 --- /dev/null +++ b/src/anthropic/types/document_block_param.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Optional +from typing_extensions import Literal, Required, TypedDict + +from .base64_pdf_source_param import Base64PDFSourceParam +from .cache_control_ephemeral_param import CacheControlEphemeralParam + +__all__ = ["DocumentBlockParam"] + + +class DocumentBlockParam(TypedDict, total=False): + source: Required[Base64PDFSourceParam] + + type: Required[Literal["document"]] + + cache_control: Optional[CacheControlEphemeralParam] diff --git a/src/anthropic/types/image_block_param.py b/src/anthropic/types/image_block_param.py index d7f46fa9..bfd8c18e 100644 --- a/src/anthropic/types/image_block_param.py +++ b/src/anthropic/types/image_block_param.py @@ -2,12 +2,13 @@ from __future__ import annotations -from typing import Union +from typing import Union, Optional from typing_extensions import Literal, Required, Annotated, TypedDict from .._types import Base64FileInput from .._utils import PropertyInfo from .._models import set_pydantic_config +from .cache_control_ephemeral_param import CacheControlEphemeralParam __all__ = ["ImageBlockParam", "Source"] @@ -27,3 +28,5 @@ class ImageBlockParam(TypedDict, total=False): source: Required[Source] type: Required[Literal["image"]] + + cache_control: Optional[CacheControlEphemeralParam] diff --git a/src/anthropic/types/message_count_tokens_params.py b/src/anthropic/types/message_count_tokens_params.py new file mode 100644 index 00000000..c3afbf36 --- /dev/null +++ b/src/anthropic/types/message_count_tokens_params.py @@ -0,0 +1,197 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing import Union, Iterable +from typing_extensions import Required, TypedDict + +from .tool_param import ToolParam +from .model_param import ModelParam +from .message_param import MessageParam +from .text_block_param import TextBlockParam +from .tool_choice_param import ToolChoiceParam + +__all__ = ["MessageCountTokensParams"] + + +class MessageCountTokensParams(TypedDict, total=False): + messages: Required[Iterable[MessageParam]] + """Input messages. + + Our models are trained to operate on alternating `user` and `assistant` + conversational turns. When creating a new `Message`, you specify the prior + conversational turns with the `messages` parameter, and the model then generates + the next `Message` in the conversation. Consecutive `user` or `assistant` turns + in your request will be combined into a single turn. + + Each input message must be an object with a `role` and `content`. You can + specify a single `user`-role message, or you can include multiple `user` and + `assistant` messages. + + If the final message uses the `assistant` role, the response content will + continue immediately from the content in that message. This can be used to + constrain part of the model's response. + + Example with a single `user` message: + + ```json + [{ "role": "user", "content": "Hello, Claude" }] + ``` + + Example with multiple conversational turns: + + ```json + [ + { "role": "user", "content": "Hello there." }, + { "role": "assistant", "content": "Hi, I'm Claude. How can I help you?" }, + { "role": "user", "content": "Can you explain LLMs in plain English?" } + ] + ``` + + Example with a partially-filled response from Claude: + + ```json + [ + { + "role": "user", + "content": "What's the Greek name for Sun? (A) Sol (B) Helios (C) Sun" + }, + { "role": "assistant", "content": "The best answer is (" } + ] + ``` + + Each input message `content` may be either a single `string` or an array of + content blocks, where each block has a specific `type`. Using a `string` for + `content` is shorthand for an array of one content block of type `"text"`. The + following input messages are equivalent: + + ```json + { "role": "user", "content": "Hello, Claude" } + ``` + + ```json + { "role": "user", "content": [{ "type": "text", "text": "Hello, Claude" }] } + ``` + + Starting with Claude 3 models, you can also send image content blocks: + + ```json + { + "role": "user", + "content": [ + { + "type": "image", + "source": { + "type": "base64", + "media_type": "image/jpeg", + "data": "/9j/4AAQSkZJRg..." + } + }, + { "type": "text", "text": "What is in this image?" } + ] + } + ``` + + We currently support the `base64` source type for images, and the `image/jpeg`, + `image/png`, `image/gif`, and `image/webp` media types. + + See [examples](https://docs.anthropic.com/en/api/messages-examples#vision) for + more input examples. + + Note that if you want to include a + [system prompt](https://docs.anthropic.com/en/docs/system-prompts), you can use + the top-level `system` parameter — there is no `"system"` role for input + messages in the Messages API. + """ + + model: Required[ModelParam] + """ + The model that will complete your prompt.\n\nSee + [models](https://docs.anthropic.com/en/docs/models-overview) for additional + details and options. + """ + + system: Union[str, Iterable[TextBlockParam]] + """System prompt. + + A system prompt is a way of providing context and instructions to Claude, such + as specifying a particular goal or role. See our + [guide to system prompts](https://docs.anthropic.com/en/docs/system-prompts). + """ + + tool_choice: ToolChoiceParam + """How the model should use the provided tools. + + The model can use a specific tool, any available tool, or decide by itself. + """ + + tools: Iterable[ToolParam] + """Definitions of tools that the model may use. + + If you include `tools` in your API request, the model may return `tool_use` + content blocks that represent the model's use of those tools. You can then run + those tools using the tool input generated by the model and then optionally + return results back to the model using `tool_result` content blocks. + + Each tool definition includes: + + - `name`: Name of the tool. + - `description`: Optional, but strongly-recommended description of the tool. + - `input_schema`: [JSON schema](https://json-schema.org/) for the tool `input` + shape that the model will produce in `tool_use` output content blocks. + + For example, if you defined `tools` as: + + ```json + [ + { + "name": "get_stock_price", + "description": "Get the current stock price for a given ticker symbol.", + "input_schema": { + "type": "object", + "properties": { + "ticker": { + "type": "string", + "description": "The stock ticker symbol, e.g. AAPL for Apple Inc." + } + }, + "required": ["ticker"] + } + } + ] + ``` + + And then asked the model "What's the S&P 500 at today?", the model might produce + `tool_use` content blocks in the response like this: + + ```json + [ + { + "type": "tool_use", + "id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", + "name": "get_stock_price", + "input": { "ticker": "^GSPC" } + } + ] + ``` + + You might then run your `get_stock_price` tool with `{"ticker": "^GSPC"}` as an + input, and return the following back to the model in a subsequent `user` + message: + + ```json + [ + { + "type": "tool_result", + "tool_use_id": "toolu_01D7FLrfh4GYq7yT1ULFeyMV", + "content": "259.75 USD" + } + ] + ``` + + Tools can be used for workflows that include running client-side tools and + functions, or more generally whenever you want the model to produce a particular + JSON structure of output. + + See our [guide](https://docs.anthropic.com/en/docs/tool-use) for more details. + """ diff --git a/src/anthropic/types/message_param.py b/src/anthropic/types/message_param.py index 89921c61..811fc7b5 100644 --- a/src/anthropic/types/message_param.py +++ b/src/anthropic/types/message_param.py @@ -8,6 +8,7 @@ from .content_block import ContentBlock from .text_block_param import TextBlockParam from .image_block_param import ImageBlockParam +from .document_block_param import DocumentBlockParam from .tool_use_block_param import ToolUseBlockParam from .tool_result_block_param import ToolResultBlockParam @@ -17,7 +18,17 @@ class MessageParam(TypedDict, total=False): content: Required[ Union[ - str, Iterable[Union[TextBlockParam, ImageBlockParam, ToolUseBlockParam, ToolResultBlockParam, ContentBlock]] + str, + Iterable[ + Union[ + TextBlockParam, + ImageBlockParam, + ToolUseBlockParam, + ToolResultBlockParam, + DocumentBlockParam, + ContentBlock, + ] + ], ] ] diff --git a/src/anthropic/types/message_tokens_count.py b/src/anthropic/types/message_tokens_count.py new file mode 100644 index 00000000..d570019f --- /dev/null +++ b/src/anthropic/types/message_tokens_count.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from .._models import BaseModel + +__all__ = ["MessageTokensCount"] + + +class MessageTokensCount(BaseModel): + input_tokens: int + """ + The total number of tokens across the provided list of messages, system prompt, + and tools. + """ diff --git a/src/anthropic/types/messages/__init__.py b/src/anthropic/types/messages/__init__.py new file mode 100644 index 00000000..c316f0ec --- /dev/null +++ b/src/anthropic/types/messages/__init__.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from .message_batch import MessageBatch as MessageBatch +from .batch_list_params import BatchListParams as BatchListParams +from .batch_create_params import BatchCreateParams as BatchCreateParams +from .message_batch_result import MessageBatchResult as MessageBatchResult +from .message_batch_errored_result import MessageBatchErroredResult as MessageBatchErroredResult +from .message_batch_expired_result import MessageBatchExpiredResult as MessageBatchExpiredResult +from .message_batch_request_counts import MessageBatchRequestCounts as MessageBatchRequestCounts +from .message_batch_canceled_result import MessageBatchCanceledResult as MessageBatchCanceledResult +from .message_batch_succeeded_result import MessageBatchSucceededResult as MessageBatchSucceededResult +from .message_batch_individual_response import MessageBatchIndividualResponse as MessageBatchIndividualResponse diff --git a/src/anthropic/types/beta/prompt_caching/message_create_params.py b/src/anthropic/types/messages/batch_create_params.py similarity index 84% rename from src/anthropic/types/beta/prompt_caching/message_create_params.py rename to src/anthropic/types/messages/batch_create_params.py index b7330b71..c361a90e 100644 --- a/src/anthropic/types/beta/prompt_caching/message_create_params.py +++ b/src/anthropic/types/messages/batch_create_params.py @@ -3,21 +3,27 @@ from __future__ import annotations from typing import List, Union, Iterable -from typing_extensions import Literal, Required, Annotated, TypedDict +from typing_extensions import Required, TypedDict -from ...._utils import PropertyInfo -from ...model_param import ModelParam -from ...metadata_param import MetadataParam -from ...tool_choice_param import ToolChoiceParam -from ...anthropic_beta_param import AnthropicBetaParam -from .prompt_caching_beta_tool_param import PromptCachingBetaToolParam -from .prompt_caching_beta_message_param import PromptCachingBetaMessageParam -from .prompt_caching_beta_text_block_param import PromptCachingBetaTextBlockParam +from ..tool_param import ToolParam +from ..model_param import ModelParam +from ..message_param import MessageParam +from ..metadata_param import MetadataParam +from ..text_block_param import TextBlockParam +from ..tool_choice_param import ToolChoiceParam -__all__ = ["MessageCreateParamsBase", "MessageCreateParamsNonStreaming", "MessageCreateParamsStreaming"] +__all__ = ["BatchCreateParams", "Request", "RequestParams"] -class MessageCreateParamsBase(TypedDict, total=False): +class BatchCreateParams(TypedDict, total=False): + requests: Required[Iterable[Request]] + """List of requests for prompt completion. + + Each is an individual request to create a Message. + """ + + +class RequestParams(TypedDict, total=False): max_tokens: Required[int] """The maximum number of tokens to generate before stopping. @@ -28,7 +34,7 @@ class MessageCreateParamsBase(TypedDict, total=False): [models](https://docs.anthropic.com/en/docs/models-overview) for details. """ - messages: Required[Iterable[PromptCachingBetaMessageParam]] + messages: Required[Iterable[MessageParam]] """Input messages. Our models are trained to operate on alternating `user` and `assistant` @@ -139,7 +145,14 @@ class MessageCreateParamsBase(TypedDict, total=False): and the response `stop_sequence` value will contain the matched stop sequence. """ - system: Union[str, Iterable[PromptCachingBetaTextBlockParam]] + stream: bool + """Whether to incrementally stream the response using server-sent events. + + See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for + details. + """ + + system: Union[str, Iterable[TextBlockParam]] """System prompt. A system prompt is a way of providing context and instructions to Claude, such @@ -164,7 +177,7 @@ class MessageCreateParamsBase(TypedDict, total=False): The model can use a specific tool, any available tool, or decide by itself. """ - tools: Iterable[PromptCachingBetaToolParam] + tools: Iterable[ToolParam] """Definitions of tools that the model may use. If you include `tools` in your API request, the model may return `tool_use` @@ -257,26 +270,20 @@ class MessageCreateParamsBase(TypedDict, total=False): `temperature`. """ - betas: Annotated[List[AnthropicBetaParam], PropertyInfo(alias="anthropic-beta")] - """Optional header to specify the beta version(s) you want to use.""" +class Request(TypedDict, total=False): + custom_id: Required[str] + """Developer-provided ID created for each request in a Message Batch. -class MessageCreateParamsNonStreaming(MessageCreateParamsBase, total=False): - stream: Literal[False] - """Whether to incrementally stream the response using server-sent events. + Useful for matching results to requests, as results may be given out of request + order. - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. + Must be unique for each request within the Message Batch. """ + params: Required[RequestParams] + """Messages API creation parameters for the individual request. -class MessageCreateParamsStreaming(MessageCreateParamsBase): - stream: Required[Literal[True]] - """Whether to incrementally stream the response using server-sent events. - - See [streaming](https://docs.anthropic.com/en/api/messages-streaming) for - details. + See the [Messages API reference](/en/api/messages) for full documentation on + available parameters. """ - - -MessageCreateParams = Union[MessageCreateParamsNonStreaming, MessageCreateParamsStreaming] diff --git a/src/anthropic/types/messages/batch_list_params.py b/src/anthropic/types/messages/batch_list_params.py new file mode 100644 index 00000000..7b290a77 --- /dev/null +++ b/src/anthropic/types/messages/batch_list_params.py @@ -0,0 +1,27 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +__all__ = ["BatchListParams"] + + +class BatchListParams(TypedDict, total=False): + after_id: str + """ID of the object to use as a cursor for pagination. + + When provided, returns the page of results immediately after this object. + """ + + before_id: str + """ID of the object to use as a cursor for pagination. + + When provided, returns the page of results immediately before this object. + """ + + limit: int + """Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + """ diff --git a/src/anthropic/types/messages/message_batch.py b/src/anthropic/types/messages/message_batch.py new file mode 100644 index 00000000..a03e73e1 --- /dev/null +++ b/src/anthropic/types/messages/message_batch.py @@ -0,0 +1,77 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Optional +from datetime import datetime +from typing_extensions import Literal + +from ..._models import BaseModel +from .message_batch_request_counts import MessageBatchRequestCounts + +__all__ = ["MessageBatch"] + + +class MessageBatch(BaseModel): + id: str + """Unique object identifier. + + The format and length of IDs may change over time. + """ + + archived_at: Optional[datetime] = None + """ + RFC 3339 datetime string representing the time at which the Message Batch was + archived and its results became unavailable. + """ + + cancel_initiated_at: Optional[datetime] = None + """ + RFC 3339 datetime string representing the time at which cancellation was + initiated for the Message Batch. Specified only if cancellation was initiated. + """ + + created_at: datetime + """ + RFC 3339 datetime string representing the time at which the Message Batch was + created. + """ + + ended_at: Optional[datetime] = None + """ + RFC 3339 datetime string representing the time at which processing for the + Message Batch ended. Specified only once processing ends. + + Processing ends when every request in a Message Batch has either succeeded, + errored, canceled, or expired. + """ + + expires_at: datetime + """ + RFC 3339 datetime string representing the time at which the Message Batch will + expire and end processing, which is 24 hours after creation. + """ + + processing_status: Literal["in_progress", "canceling", "ended"] + """Processing status of the Message Batch.""" + + request_counts: MessageBatchRequestCounts + """Tallies requests within the Message Batch, categorized by their status. + + Requests start as `processing` and move to one of the other statuses only once + processing of the entire batch ends. The sum of all values always matches the + total number of requests in the batch. + """ + + results_url: Optional[str] = None + """URL to a `.jsonl` file containing the results of the Message Batch requests. + + Specified only once processing ends. + + Results in the file are not guaranteed to be in the same order as requests. Use + the `custom_id` field to match results to requests. + """ + + type: Literal["message_batch"] + """Object type. + + For Message Batches, this is always `"message_batch"`. + """ diff --git a/src/anthropic/types/messages/message_batch_canceled_result.py b/src/anthropic/types/messages/message_batch_canceled_result.py new file mode 100644 index 00000000..9826aa91 --- /dev/null +++ b/src/anthropic/types/messages/message_batch_canceled_result.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["MessageBatchCanceledResult"] + + +class MessageBatchCanceledResult(BaseModel): + type: Literal["canceled"] diff --git a/src/anthropic/types/messages/message_batch_errored_result.py b/src/anthropic/types/messages/message_batch_errored_result.py new file mode 100644 index 00000000..5f890bfd --- /dev/null +++ b/src/anthropic/types/messages/message_batch_errored_result.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from ..shared.error_response import ErrorResponse + +__all__ = ["MessageBatchErroredResult"] + + +class MessageBatchErroredResult(BaseModel): + error: ErrorResponse + + type: Literal["errored"] diff --git a/src/anthropic/types/messages/message_batch_expired_result.py b/src/anthropic/types/messages/message_batch_expired_result.py new file mode 100644 index 00000000..ab9964e7 --- /dev/null +++ b/src/anthropic/types/messages/message_batch_expired_result.py @@ -0,0 +1,11 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["MessageBatchExpiredResult"] + + +class MessageBatchExpiredResult(BaseModel): + type: Literal["expired"] diff --git a/src/anthropic/types/messages/message_batch_individual_response.py b/src/anthropic/types/messages/message_batch_individual_response.py new file mode 100644 index 00000000..19d4f090 --- /dev/null +++ b/src/anthropic/types/messages/message_batch_individual_response.py @@ -0,0 +1,26 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..._models import BaseModel +from .message_batch_result import MessageBatchResult + +__all__ = ["MessageBatchIndividualResponse"] + + +class MessageBatchIndividualResponse(BaseModel): + custom_id: str + """Developer-provided ID created for each request in a Message Batch. + + Useful for matching results to requests, as results may be given out of request + order. + + Must be unique for each request within the Message Batch. + """ + + result: MessageBatchResult + """Processing result for this request. + + Contains a Message output if processing was successful, an error response if + processing failed, or the reason why processing was not attempted, such as + cancellation or expiration. + """ diff --git a/src/anthropic/types/messages/message_batch_request_counts.py b/src/anthropic/types/messages/message_batch_request_counts.py new file mode 100644 index 00000000..04edc3c3 --- /dev/null +++ b/src/anthropic/types/messages/message_batch_request_counts.py @@ -0,0 +1,35 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + + +from ..._models import BaseModel + +__all__ = ["MessageBatchRequestCounts"] + + +class MessageBatchRequestCounts(BaseModel): + canceled: int + """Number of requests in the Message Batch that have been canceled. + + This is zero until processing of the entire Message Batch has ended. + """ + + errored: int + """Number of requests in the Message Batch that encountered an error. + + This is zero until processing of the entire Message Batch has ended. + """ + + expired: int + """Number of requests in the Message Batch that have expired. + + This is zero until processing of the entire Message Batch has ended. + """ + + processing: int + """Number of requests in the Message Batch that are processing.""" + + succeeded: int + """Number of requests in the Message Batch that have completed successfully. + + This is zero until processing of the entire Message Batch has ended. + """ diff --git a/src/anthropic/types/messages/message_batch_result.py b/src/anthropic/types/messages/message_batch_result.py new file mode 100644 index 00000000..3186f2aa --- /dev/null +++ b/src/anthropic/types/messages/message_batch_result.py @@ -0,0 +1,19 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .message_batch_errored_result import MessageBatchErroredResult +from .message_batch_expired_result import MessageBatchExpiredResult +from .message_batch_canceled_result import MessageBatchCanceledResult +from .message_batch_succeeded_result import MessageBatchSucceededResult + +__all__ = ["MessageBatchResult"] + +MessageBatchResult: TypeAlias = Annotated[ + Union[ + MessageBatchSucceededResult, MessageBatchErroredResult, MessageBatchCanceledResult, MessageBatchExpiredResult + ], + PropertyInfo(discriminator="type"), +] diff --git a/src/anthropic/types/messages/message_batch_succeeded_result.py b/src/anthropic/types/messages/message_batch_succeeded_result.py new file mode 100644 index 00000000..1cc454a4 --- /dev/null +++ b/src/anthropic/types/messages/message_batch_succeeded_result.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..message import Message +from ..._models import BaseModel + +__all__ = ["MessageBatchSucceededResult"] + + +class MessageBatchSucceededResult(BaseModel): + message: Message + + type: Literal["succeeded"] diff --git a/src/anthropic/types/model_info.py b/src/anthropic/types/model_info.py new file mode 100644 index 00000000..0e3945fe --- /dev/null +++ b/src/anthropic/types/model_info.py @@ -0,0 +1,28 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from datetime import datetime +from typing_extensions import Literal + +from .._models import BaseModel + +__all__ = ["ModelInfo"] + + +class ModelInfo(BaseModel): + id: str + """Unique model identifier.""" + + created_at: datetime + """RFC 3339 datetime string representing the time at which the model was released. + + May be set to an epoch value if the release date is unknown. + """ + + display_name: str + """A human-readable name for the model.""" + + type: Literal["model"] + """Object type. + + For Models, this is always `"model"`. + """ diff --git a/src/anthropic/types/model_list_params.py b/src/anthropic/types/model_list_params.py new file mode 100644 index 00000000..b16d22a3 --- /dev/null +++ b/src/anthropic/types/model_list_params.py @@ -0,0 +1,27 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +from typing_extensions import TypedDict + +__all__ = ["ModelListParams"] + + +class ModelListParams(TypedDict, total=False): + after_id: str + """ID of the object to use as a cursor for pagination. + + When provided, returns the page of results immediately after this object. + """ + + before_id: str + """ID of the object to use as a cursor for pagination. + + When provided, returns the page of results immediately before this object. + """ + + limit: int + """Number of items to return per page. + + Defaults to `20`. Ranges from `1` to `1000`. + """ diff --git a/src/anthropic/types/raw_content_block_delta_event.py b/src/anthropic/types/raw_content_block_delta_event.py index b384fbd3..8785197f 100644 --- a/src/anthropic/types/raw_content_block_delta_event.py +++ b/src/anthropic/types/raw_content_block_delta_event.py @@ -1,16 +1,15 @@ # File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. from typing import Union -from typing_extensions import Literal, Annotated, TypeAlias +from typing_extensions import Literal, TypeAlias -from .._utils import PropertyInfo from .._models import BaseModel from .text_delta import TextDelta from .input_json_delta import InputJSONDelta __all__ = ["RawContentBlockDeltaEvent", "Delta"] -Delta: TypeAlias = Annotated[Union[TextDelta, InputJSONDelta], PropertyInfo(discriminator="type")] +Delta: TypeAlias = Union[TextDelta, InputJSONDelta] class RawContentBlockDeltaEvent(BaseModel): diff --git a/src/anthropic/types/shared/__init__.py b/src/anthropic/types/shared/__init__.py new file mode 100644 index 00000000..178643b6 --- /dev/null +++ b/src/anthropic/types/shared/__init__.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from .error_object import ErrorObject as ErrorObject +from .billing_error import BillingError as BillingError +from .error_response import ErrorResponse as ErrorResponse +from .not_found_error import NotFoundError as NotFoundError +from .api_error_object import APIErrorObject as APIErrorObject +from .overloaded_error import OverloadedError as OverloadedError +from .permission_error import PermissionError as PermissionError +from .rate_limit_error import RateLimitError as RateLimitError +from .authentication_error import AuthenticationError as AuthenticationError +from .gateway_timeout_error import GatewayTimeoutError as GatewayTimeoutError +from .invalid_request_error import InvalidRequestError as InvalidRequestError diff --git a/src/anthropic/types/shared/api_error_object.py b/src/anthropic/types/shared/api_error_object.py new file mode 100644 index 00000000..dd92bead --- /dev/null +++ b/src/anthropic/types/shared/api_error_object.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["APIErrorObject"] + + +class APIErrorObject(BaseModel): + message: str + + type: Literal["api_error"] diff --git a/src/anthropic/types/shared/authentication_error.py b/src/anthropic/types/shared/authentication_error.py new file mode 100644 index 00000000..f777f5c8 --- /dev/null +++ b/src/anthropic/types/shared/authentication_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["AuthenticationError"] + + +class AuthenticationError(BaseModel): + message: str + + type: Literal["authentication_error"] diff --git a/src/anthropic/types/shared/billing_error.py b/src/anthropic/types/shared/billing_error.py new file mode 100644 index 00000000..26be12bb --- /dev/null +++ b/src/anthropic/types/shared/billing_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["BillingError"] + + +class BillingError(BaseModel): + message: str + + type: Literal["billing_error"] diff --git a/src/anthropic/types/shared/error_object.py b/src/anthropic/types/shared/error_object.py new file mode 100644 index 00000000..086db503 --- /dev/null +++ b/src/anthropic/types/shared/error_object.py @@ -0,0 +1,32 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing import Union +from typing_extensions import Annotated, TypeAlias + +from ..._utils import PropertyInfo +from .billing_error import BillingError +from .not_found_error import NotFoundError +from .api_error_object import APIErrorObject +from .overloaded_error import OverloadedError +from .permission_error import PermissionError +from .rate_limit_error import RateLimitError +from .authentication_error import AuthenticationError +from .gateway_timeout_error import GatewayTimeoutError +from .invalid_request_error import InvalidRequestError + +__all__ = ["ErrorObject"] + +ErrorObject: TypeAlias = Annotated[ + Union[ + InvalidRequestError, + AuthenticationError, + BillingError, + PermissionError, + NotFoundError, + RateLimitError, + GatewayTimeoutError, + APIErrorObject, + OverloadedError, + ], + PropertyInfo(discriminator="type"), +] diff --git a/src/anthropic/types/shared/error_response.py b/src/anthropic/types/shared/error_response.py new file mode 100644 index 00000000..97034923 --- /dev/null +++ b/src/anthropic/types/shared/error_response.py @@ -0,0 +1,14 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel +from .error_object import ErrorObject + +__all__ = ["ErrorResponse"] + + +class ErrorResponse(BaseModel): + error: ErrorObject + + type: Literal["error"] diff --git a/src/anthropic/types/shared/gateway_timeout_error.py b/src/anthropic/types/shared/gateway_timeout_error.py new file mode 100644 index 00000000..908aa12f --- /dev/null +++ b/src/anthropic/types/shared/gateway_timeout_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["GatewayTimeoutError"] + + +class GatewayTimeoutError(BaseModel): + message: str + + type: Literal["timeout_error"] diff --git a/src/anthropic/types/shared/invalid_request_error.py b/src/anthropic/types/shared/invalid_request_error.py new file mode 100644 index 00000000..ee5befc0 --- /dev/null +++ b/src/anthropic/types/shared/invalid_request_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["InvalidRequestError"] + + +class InvalidRequestError(BaseModel): + message: str + + type: Literal["invalid_request_error"] diff --git a/src/anthropic/types/shared/not_found_error.py b/src/anthropic/types/shared/not_found_error.py new file mode 100644 index 00000000..43e826fb --- /dev/null +++ b/src/anthropic/types/shared/not_found_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["NotFoundError"] + + +class NotFoundError(BaseModel): + message: str + + type: Literal["not_found_error"] diff --git a/src/anthropic/types/shared/overloaded_error.py b/src/anthropic/types/shared/overloaded_error.py new file mode 100644 index 00000000..74ee8373 --- /dev/null +++ b/src/anthropic/types/shared/overloaded_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["OverloadedError"] + + +class OverloadedError(BaseModel): + message: str + + type: Literal["overloaded_error"] diff --git a/src/anthropic/types/shared/permission_error.py b/src/anthropic/types/shared/permission_error.py new file mode 100644 index 00000000..48eb3546 --- /dev/null +++ b/src/anthropic/types/shared/permission_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["PermissionError"] + + +class PermissionError(BaseModel): + message: str + + type: Literal["permission_error"] diff --git a/src/anthropic/types/shared/rate_limit_error.py b/src/anthropic/types/shared/rate_limit_error.py new file mode 100644 index 00000000..3fa065ac --- /dev/null +++ b/src/anthropic/types/shared/rate_limit_error.py @@ -0,0 +1,13 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from typing_extensions import Literal + +from ..._models import BaseModel + +__all__ = ["RateLimitError"] + + +class RateLimitError(BaseModel): + message: str + + type: Literal["rate_limit_error"] diff --git a/src/anthropic/types/text_block_param.py b/src/anthropic/types/text_block_param.py index 825d1660..0b27ee2b 100644 --- a/src/anthropic/types/text_block_param.py +++ b/src/anthropic/types/text_block_param.py @@ -2,8 +2,11 @@ from __future__ import annotations +from typing import Optional from typing_extensions import Literal, Required, TypedDict +from .cache_control_ephemeral_param import CacheControlEphemeralParam + __all__ = ["TextBlockParam"] @@ -11,3 +14,5 @@ class TextBlockParam(TypedDict, total=False): text: Required[str] type: Required[Literal["text"]] + + cache_control: Optional[CacheControlEphemeralParam] diff --git a/src/anthropic/types/tool_param.py b/src/anthropic/types/tool_param.py index 35a95516..3a6ab1dd 100644 --- a/src/anthropic/types/tool_param.py +++ b/src/anthropic/types/tool_param.py @@ -5,6 +5,8 @@ from typing import Dict, Union, Optional from typing_extensions import Literal, Required, TypeAlias, TypedDict +from .cache_control_ephemeral_param import CacheControlEphemeralParam + __all__ = ["ToolParam", "InputSchema"] @@ -31,6 +33,8 @@ class ToolParam(TypedDict, total=False): This is how the tool will be called by the model and in tool_use blocks. """ + cache_control: Optional[CacheControlEphemeralParam] + description: str """Description of what this tool does. diff --git a/src/anthropic/types/tool_result_block_param.py b/src/anthropic/types/tool_result_block_param.py index 7c212e19..b6ca8aa9 100644 --- a/src/anthropic/types/tool_result_block_param.py +++ b/src/anthropic/types/tool_result_block_param.py @@ -2,11 +2,12 @@ from __future__ import annotations -from typing import Union, Iterable +from typing import Union, Iterable, Optional from typing_extensions import Literal, Required, TypeAlias, TypedDict from .text_block_param import TextBlockParam from .image_block_param import ImageBlockParam +from .cache_control_ephemeral_param import CacheControlEphemeralParam __all__ = ["ToolResultBlockParam", "Content"] @@ -18,6 +19,8 @@ class ToolResultBlockParam(TypedDict, total=False): type: Required[Literal["tool_result"]] + cache_control: Optional[CacheControlEphemeralParam] + content: Union[str, Iterable[Content]] is_error: bool diff --git a/src/anthropic/types/tool_use_block_param.py b/src/anthropic/types/tool_use_block_param.py index e0218476..cc285079 100644 --- a/src/anthropic/types/tool_use_block_param.py +++ b/src/anthropic/types/tool_use_block_param.py @@ -2,8 +2,11 @@ from __future__ import annotations +from typing import Optional from typing_extensions import Literal, Required, TypedDict +from .cache_control_ephemeral_param import CacheControlEphemeralParam + __all__ = ["ToolUseBlockParam"] @@ -15,3 +18,5 @@ class ToolUseBlockParam(TypedDict, total=False): name: Required[str] type: Required[Literal["tool_use"]] + + cache_control: Optional[CacheControlEphemeralParam] diff --git a/src/anthropic/types/usage.py b/src/anthropic/types/usage.py index 88f1ec84..b4f817bd 100644 --- a/src/anthropic/types/usage.py +++ b/src/anthropic/types/usage.py @@ -1,5 +1,6 @@ # File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. +from typing import Optional from .._models import BaseModel @@ -7,6 +8,12 @@ class Usage(BaseModel): + cache_creation_input_tokens: Optional[int] = None + """The number of input tokens used to create the cache entry.""" + + cache_read_input_tokens: Optional[int] = None + """The number of input tokens read from the cache.""" + input_tokens: int """The number of input tokens which were used.""" diff --git a/tests/api_resources/beta/prompt_caching/test_messages.py b/tests/api_resources/beta/prompt_caching/test_messages.py deleted file mode 100644 index 4ecb1624..00000000 --- a/tests/api_resources/beta/prompt_caching/test_messages.py +++ /dev/null @@ -1,442 +0,0 @@ -# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. - -from __future__ import annotations - -import os -from typing import Any, cast - -import pytest - -from anthropic import Anthropic, AsyncAnthropic -from tests.utils import assert_matches_type -from anthropic.types.beta.prompt_caching import PromptCachingBetaMessage - -base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010") - - -class TestMessages: - parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"]) - - @parametrize - def test_method_create_overload_1(self, client: Anthropic) -> None: - message = client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - ) - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - @parametrize - def test_method_create_with_all_params_overload_1(self, client: Anthropic) -> None: - message = client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"}, - stop_sequences=["string"], - stream=False, - system=[ - { - "text": "Today's date is 2024-06-01.", - "type": "text", - "cache_control": {"type": "ephemeral"}, - } - ], - temperature=1, - tool_choice={ - "type": "auto", - "disable_parallel_tool_use": True, - }, - tools=[ - { - "input_schema": { - "type": "object", - "properties": { - "location": { - "description": "The city and state, e.g. San Francisco, CA", - "type": "string", - }, - "unit": { - "description": "Unit for the output - one of (celsius, fahrenheit)", - "type": "string", - }, - }, - }, - "name": "x", - "cache_control": {"type": "ephemeral"}, - "description": "Get the current weather in a given location", - } - ], - top_k=5, - top_p=0.7, - betas=["string"], - ) - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - @parametrize - def test_raw_response_create_overload_1(self, client: Anthropic) -> None: - response = client.beta.prompt_caching.messages.with_raw_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - ) - - assert response.is_closed is True - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - message = response.parse() - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - @parametrize - def test_streaming_response_create_overload_1(self, client: Anthropic) -> None: - with client.beta.prompt_caching.messages.with_streaming_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - ) as response: - assert not response.is_closed - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - - message = response.parse() - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - assert cast(Any, response.is_closed) is True - - @parametrize - def test_method_create_overload_2(self, client: Anthropic) -> None: - message_stream = client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - ) - message_stream.response.close() - - @parametrize - def test_method_create_with_all_params_overload_2(self, client: Anthropic) -> None: - message_stream = client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"}, - stop_sequences=["string"], - system=[ - { - "text": "Today's date is 2024-06-01.", - "type": "text", - "cache_control": {"type": "ephemeral"}, - } - ], - temperature=1, - tool_choice={ - "type": "auto", - "disable_parallel_tool_use": True, - }, - tools=[ - { - "input_schema": { - "type": "object", - "properties": { - "location": { - "description": "The city and state, e.g. San Francisco, CA", - "type": "string", - }, - "unit": { - "description": "Unit for the output - one of (celsius, fahrenheit)", - "type": "string", - }, - }, - }, - "name": "x", - "cache_control": {"type": "ephemeral"}, - "description": "Get the current weather in a given location", - } - ], - top_k=5, - top_p=0.7, - betas=["string"], - ) - message_stream.response.close() - - @parametrize - def test_raw_response_create_overload_2(self, client: Anthropic) -> None: - response = client.beta.prompt_caching.messages.with_raw_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - ) - - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - stream = response.parse() - stream.close() - - @parametrize - def test_streaming_response_create_overload_2(self, client: Anthropic) -> None: - with client.beta.prompt_caching.messages.with_streaming_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - ) as response: - assert not response.is_closed - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - - stream = response.parse() - stream.close() - - assert cast(Any, response.is_closed) is True - - -class TestAsyncMessages: - parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"]) - - @parametrize - async def test_method_create_overload_1(self, async_client: AsyncAnthropic) -> None: - message = await async_client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - ) - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - @parametrize - async def test_method_create_with_all_params_overload_1(self, async_client: AsyncAnthropic) -> None: - message = await async_client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"}, - stop_sequences=["string"], - stream=False, - system=[ - { - "text": "Today's date is 2024-06-01.", - "type": "text", - "cache_control": {"type": "ephemeral"}, - } - ], - temperature=1, - tool_choice={ - "type": "auto", - "disable_parallel_tool_use": True, - }, - tools=[ - { - "input_schema": { - "type": "object", - "properties": { - "location": { - "description": "The city and state, e.g. San Francisco, CA", - "type": "string", - }, - "unit": { - "description": "Unit for the output - one of (celsius, fahrenheit)", - "type": "string", - }, - }, - }, - "name": "x", - "cache_control": {"type": "ephemeral"}, - "description": "Get the current weather in a given location", - } - ], - top_k=5, - top_p=0.7, - betas=["string"], - ) - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - @parametrize - async def test_raw_response_create_overload_1(self, async_client: AsyncAnthropic) -> None: - response = await async_client.beta.prompt_caching.messages.with_raw_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - ) - - assert response.is_closed is True - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - message = response.parse() - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - @parametrize - async def test_streaming_response_create_overload_1(self, async_client: AsyncAnthropic) -> None: - async with async_client.beta.prompt_caching.messages.with_streaming_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - ) as response: - assert not response.is_closed - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - - message = await response.parse() - assert_matches_type(PromptCachingBetaMessage, message, path=["response"]) - - assert cast(Any, response.is_closed) is True - - @parametrize - async def test_method_create_overload_2(self, async_client: AsyncAnthropic) -> None: - message_stream = await async_client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - ) - await message_stream.response.aclose() - - @parametrize - async def test_method_create_with_all_params_overload_2(self, async_client: AsyncAnthropic) -> None: - message_stream = await async_client.beta.prompt_caching.messages.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - metadata={"user_id": "13803d75-b4b5-4c3e-b2a2-6f21399b021b"}, - stop_sequences=["string"], - system=[ - { - "text": "Today's date is 2024-06-01.", - "type": "text", - "cache_control": {"type": "ephemeral"}, - } - ], - temperature=1, - tool_choice={ - "type": "auto", - "disable_parallel_tool_use": True, - }, - tools=[ - { - "input_schema": { - "type": "object", - "properties": { - "location": { - "description": "The city and state, e.g. San Francisco, CA", - "type": "string", - }, - "unit": { - "description": "Unit for the output - one of (celsius, fahrenheit)", - "type": "string", - }, - }, - }, - "name": "x", - "cache_control": {"type": "ephemeral"}, - "description": "Get the current weather in a given location", - } - ], - top_k=5, - top_p=0.7, - betas=["string"], - ) - await message_stream.response.aclose() - - @parametrize - async def test_raw_response_create_overload_2(self, async_client: AsyncAnthropic) -> None: - response = await async_client.beta.prompt_caching.messages.with_raw_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - ) - - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - stream = response.parse() - await stream.close() - - @parametrize - async def test_streaming_response_create_overload_2(self, async_client: AsyncAnthropic) -> None: - async with async_client.beta.prompt_caching.messages.with_streaming_response.create( - max_tokens=1024, - messages=[ - { - "content": "Hello, world", - "role": "user", - } - ], - model="claude-3-5-sonnet-20241022", - stream=True, - ) as response: - assert not response.is_closed - assert response.http_request.headers.get("X-Stainless-Lang") == "python" - - stream = await response.parse() - await stream.close() - - assert cast(Any, response.is_closed) is True diff --git a/tests/api_resources/beta/test_models.py b/tests/api_resources/beta/test_models.py new file mode 100644 index 00000000..17ffd939 --- /dev/null +++ b/tests/api_resources/beta/test_models.py @@ -0,0 +1,167 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import os +from typing import Any, cast + +import pytest + +from anthropic import Anthropic, AsyncAnthropic +from tests.utils import assert_matches_type +from anthropic.pagination import SyncPage, AsyncPage +from anthropic.types.beta import BetaModelInfo + +base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010") + + +class TestModels: + parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"]) + + @parametrize + def test_method_retrieve(self, client: Anthropic) -> None: + model = client.beta.models.retrieve( + "model_id", + ) + assert_matches_type(BetaModelInfo, model, path=["response"]) + + @parametrize + def test_raw_response_retrieve(self, client: Anthropic) -> None: + response = client.beta.models.with_raw_response.retrieve( + "model_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(BetaModelInfo, model, path=["response"]) + + @parametrize + def test_streaming_response_retrieve(self, client: Anthropic) -> None: + with client.beta.models.with_streaming_response.retrieve( + "model_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = response.parse() + assert_matches_type(BetaModelInfo, model, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + def test_path_params_retrieve(self, client: Anthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"): + client.beta.models.with_raw_response.retrieve( + "", + ) + + @parametrize + def test_method_list(self, client: Anthropic) -> None: + model = client.beta.models.list() + assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"]) + + @parametrize + def test_method_list_with_all_params(self, client: Anthropic) -> None: + model = client.beta.models.list( + after_id="after_id", + before_id="before_id", + limit=1, + ) + assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"]) + + @parametrize + def test_raw_response_list(self, client: Anthropic) -> None: + response = client.beta.models.with_raw_response.list() + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"]) + + @parametrize + def test_streaming_response_list(self, client: Anthropic) -> None: + with client.beta.models.with_streaming_response.list() as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = response.parse() + assert_matches_type(SyncPage[BetaModelInfo], model, path=["response"]) + + assert cast(Any, response.is_closed) is True + + +class TestAsyncModels: + parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"]) + + @parametrize + async def test_method_retrieve(self, async_client: AsyncAnthropic) -> None: + model = await async_client.beta.models.retrieve( + "model_id", + ) + assert_matches_type(BetaModelInfo, model, path=["response"]) + + @parametrize + async def test_raw_response_retrieve(self, async_client: AsyncAnthropic) -> None: + response = await async_client.beta.models.with_raw_response.retrieve( + "model_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(BetaModelInfo, model, path=["response"]) + + @parametrize + async def test_streaming_response_retrieve(self, async_client: AsyncAnthropic) -> None: + async with async_client.beta.models.with_streaming_response.retrieve( + "model_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = await response.parse() + assert_matches_type(BetaModelInfo, model, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + async def test_path_params_retrieve(self, async_client: AsyncAnthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"): + await async_client.beta.models.with_raw_response.retrieve( + "", + ) + + @parametrize + async def test_method_list(self, async_client: AsyncAnthropic) -> None: + model = await async_client.beta.models.list() + assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"]) + + @parametrize + async def test_method_list_with_all_params(self, async_client: AsyncAnthropic) -> None: + model = await async_client.beta.models.list( + after_id="after_id", + before_id="before_id", + limit=1, + ) + assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"]) + + @parametrize + async def test_raw_response_list(self, async_client: AsyncAnthropic) -> None: + response = await async_client.beta.models.with_raw_response.list() + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"]) + + @parametrize + async def test_streaming_response_list(self, async_client: AsyncAnthropic) -> None: + async with async_client.beta.models.with_streaming_response.list() as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = await response.parse() + assert_matches_type(AsyncPage[BetaModelInfo], model, path=["response"]) + + assert cast(Any, response.is_closed) is True diff --git a/tests/api_resources/beta/prompt_caching/__init__.py b/tests/api_resources/messages/__init__.py similarity index 100% rename from tests/api_resources/beta/prompt_caching/__init__.py rename to tests/api_resources/messages/__init__.py diff --git a/tests/api_resources/messages/test_batches.py b/tests/api_resources/messages/test_batches.py new file mode 100644 index 00000000..89ec66c8 --- /dev/null +++ b/tests/api_resources/messages/test_batches.py @@ -0,0 +1,511 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import os +from typing import Any, cast + +import httpx +import pytest +from respx import MockRouter + +from anthropic import Anthropic, AsyncAnthropic +from tests.utils import assert_matches_type +from anthropic._response import ( + BinaryAPIResponse, + AsyncBinaryAPIResponse, + StreamedBinaryAPIResponse, + AsyncStreamedBinaryAPIResponse, +) +from anthropic.pagination import SyncPage, AsyncPage +from anthropic.types.messages import MessageBatch + +# pyright: reportDeprecated=false + +base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010") + + +class TestBatches: + parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"]) + + @parametrize + def test_method_create(self, client: Anthropic) -> None: + batch = client.messages.batches.create( + requests=[ + { + "custom_id": "my-custom-id-1", + "params": { + "max_tokens": 1024, + "messages": [ + { + "content": "Hello, world", + "role": "user", + } + ], + "model": "claude-3-5-sonnet-20241022", + }, + } + ], + ) + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + def test_raw_response_create(self, client: Anthropic) -> None: + response = client.messages.batches.with_raw_response.create( + requests=[ + { + "custom_id": "my-custom-id-1", + "params": { + "max_tokens": 1024, + "messages": [ + { + "content": "Hello, world", + "role": "user", + } + ], + "model": "claude-3-5-sonnet-20241022", + }, + } + ], + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + def test_streaming_response_create(self, client: Anthropic) -> None: + with client.messages.batches.with_streaming_response.create( + requests=[ + { + "custom_id": "my-custom-id-1", + "params": { + "max_tokens": 1024, + "messages": [ + { + "content": "Hello, world", + "role": "user", + } + ], + "model": "claude-3-5-sonnet-20241022", + }, + } + ], + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + def test_method_retrieve(self, client: Anthropic) -> None: + batch = client.messages.batches.retrieve( + "message_batch_id", + ) + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + def test_raw_response_retrieve(self, client: Anthropic) -> None: + response = client.messages.batches.with_raw_response.retrieve( + "message_batch_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + def test_streaming_response_retrieve(self, client: Anthropic) -> None: + with client.messages.batches.with_streaming_response.retrieve( + "message_batch_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + def test_path_params_retrieve(self, client: Anthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"): + client.messages.batches.with_raw_response.retrieve( + "", + ) + + @parametrize + def test_method_list(self, client: Anthropic) -> None: + batch = client.messages.batches.list() + assert_matches_type(SyncPage[MessageBatch], batch, path=["response"]) + + @parametrize + def test_method_list_with_all_params(self, client: Anthropic) -> None: + batch = client.messages.batches.list( + after_id="after_id", + before_id="before_id", + limit=1, + ) + assert_matches_type(SyncPage[MessageBatch], batch, path=["response"]) + + @parametrize + def test_raw_response_list(self, client: Anthropic) -> None: + response = client.messages.batches.with_raw_response.list() + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(SyncPage[MessageBatch], batch, path=["response"]) + + @parametrize + def test_streaming_response_list(self, client: Anthropic) -> None: + with client.messages.batches.with_streaming_response.list() as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = response.parse() + assert_matches_type(SyncPage[MessageBatch], batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + def test_method_cancel(self, client: Anthropic) -> None: + batch = client.messages.batches.cancel( + "message_batch_id", + ) + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + def test_raw_response_cancel(self, client: Anthropic) -> None: + response = client.messages.batches.with_raw_response.cancel( + "message_batch_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + def test_streaming_response_cancel(self, client: Anthropic) -> None: + with client.messages.batches.with_streaming_response.cancel( + "message_batch_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + def test_path_params_cancel(self, client: Anthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"): + client.messages.batches.with_raw_response.cancel( + "", + ) + + @parametrize + @pytest.mark.respx(base_url=base_url) + def test_method_results(self, client: Anthropic, respx_mock: MockRouter) -> None: + respx_mock.get("/v1/messages/batches/message_batch_id/results").mock( + return_value=httpx.Response(200, json={"foo": "bar"}) + ) + batch = client.messages.batches.results( + "message_batch_id", + ) + assert batch.is_closed + assert batch.json() == {"foo": "bar"} + assert cast(Any, batch.is_closed) is True + assert isinstance(batch, BinaryAPIResponse) + + @parametrize + @pytest.mark.respx(base_url=base_url) + def test_raw_response_results(self, client: Anthropic, respx_mock: MockRouter) -> None: + respx_mock.get("/v1/messages/batches/message_batch_id/results").mock( + return_value=httpx.Response(200, json={"foo": "bar"}) + ) + + batch = client.messages.batches.with_raw_response.results( + "message_batch_id", + ) + + assert batch.is_closed is True + assert batch.http_request.headers.get("X-Stainless-Lang") == "python" + assert batch.json() == {"foo": "bar"} + assert isinstance(batch, BinaryAPIResponse) + + @parametrize + @pytest.mark.respx(base_url=base_url) + def test_streaming_response_results(self, client: Anthropic, respx_mock: MockRouter) -> None: + respx_mock.get("/v1/messages/batches/message_batch_id/results").mock( + return_value=httpx.Response(200, json={"foo": "bar"}) + ) + with client.messages.batches.with_streaming_response.results( + "message_batch_id", + ) as batch: + assert not batch.is_closed + assert batch.http_request.headers.get("X-Stainless-Lang") == "python" + + assert batch.json() == {"foo": "bar"} + assert cast(Any, batch.is_closed) is True + assert isinstance(batch, StreamedBinaryAPIResponse) + + assert cast(Any, batch.is_closed) is True + + @parametrize + @pytest.mark.respx(base_url=base_url) + def test_path_params_results(self, client: Anthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"): + client.messages.batches.with_raw_response.results( + "", + ) + + +class TestAsyncBatches: + parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"]) + + @parametrize + async def test_method_create(self, async_client: AsyncAnthropic) -> None: + batch = await async_client.messages.batches.create( + requests=[ + { + "custom_id": "my-custom-id-1", + "params": { + "max_tokens": 1024, + "messages": [ + { + "content": "Hello, world", + "role": "user", + } + ], + "model": "claude-3-5-sonnet-20241022", + }, + } + ], + ) + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + async def test_raw_response_create(self, async_client: AsyncAnthropic) -> None: + response = await async_client.messages.batches.with_raw_response.create( + requests=[ + { + "custom_id": "my-custom-id-1", + "params": { + "max_tokens": 1024, + "messages": [ + { + "content": "Hello, world", + "role": "user", + } + ], + "model": "claude-3-5-sonnet-20241022", + }, + } + ], + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + async def test_streaming_response_create(self, async_client: AsyncAnthropic) -> None: + async with async_client.messages.batches.with_streaming_response.create( + requests=[ + { + "custom_id": "my-custom-id-1", + "params": { + "max_tokens": 1024, + "messages": [ + { + "content": "Hello, world", + "role": "user", + } + ], + "model": "claude-3-5-sonnet-20241022", + }, + } + ], + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = await response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + async def test_method_retrieve(self, async_client: AsyncAnthropic) -> None: + batch = await async_client.messages.batches.retrieve( + "message_batch_id", + ) + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + async def test_raw_response_retrieve(self, async_client: AsyncAnthropic) -> None: + response = await async_client.messages.batches.with_raw_response.retrieve( + "message_batch_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + async def test_streaming_response_retrieve(self, async_client: AsyncAnthropic) -> None: + async with async_client.messages.batches.with_streaming_response.retrieve( + "message_batch_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = await response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + async def test_path_params_retrieve(self, async_client: AsyncAnthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"): + await async_client.messages.batches.with_raw_response.retrieve( + "", + ) + + @parametrize + async def test_method_list(self, async_client: AsyncAnthropic) -> None: + batch = await async_client.messages.batches.list() + assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"]) + + @parametrize + async def test_method_list_with_all_params(self, async_client: AsyncAnthropic) -> None: + batch = await async_client.messages.batches.list( + after_id="after_id", + before_id="before_id", + limit=1, + ) + assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"]) + + @parametrize + async def test_raw_response_list(self, async_client: AsyncAnthropic) -> None: + response = await async_client.messages.batches.with_raw_response.list() + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"]) + + @parametrize + async def test_streaming_response_list(self, async_client: AsyncAnthropic) -> None: + async with async_client.messages.batches.with_streaming_response.list() as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = await response.parse() + assert_matches_type(AsyncPage[MessageBatch], batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + async def test_method_cancel(self, async_client: AsyncAnthropic) -> None: + batch = await async_client.messages.batches.cancel( + "message_batch_id", + ) + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + async def test_raw_response_cancel(self, async_client: AsyncAnthropic) -> None: + response = await async_client.messages.batches.with_raw_response.cancel( + "message_batch_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + batch = response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + @parametrize + async def test_streaming_response_cancel(self, async_client: AsyncAnthropic) -> None: + async with async_client.messages.batches.with_streaming_response.cancel( + "message_batch_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + batch = await response.parse() + assert_matches_type(MessageBatch, batch, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + async def test_path_params_cancel(self, async_client: AsyncAnthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"): + await async_client.messages.batches.with_raw_response.cancel( + "", + ) + + @parametrize + @pytest.mark.respx(base_url=base_url) + async def test_method_results(self, async_client: AsyncAnthropic, respx_mock: MockRouter) -> None: + respx_mock.get("/v1/messages/batches/message_batch_id/results").mock( + return_value=httpx.Response(200, json={"foo": "bar"}) + ) + batch = await async_client.messages.batches.results( + "message_batch_id", + ) + assert batch.is_closed + assert await batch.json() == {"foo": "bar"} + assert cast(Any, batch.is_closed) is True + assert isinstance(batch, AsyncBinaryAPIResponse) + + @parametrize + @pytest.mark.respx(base_url=base_url) + async def test_raw_response_results(self, async_client: AsyncAnthropic, respx_mock: MockRouter) -> None: + respx_mock.get("/v1/messages/batches/message_batch_id/results").mock( + return_value=httpx.Response(200, json={"foo": "bar"}) + ) + + batch = await async_client.messages.batches.with_raw_response.results( + "message_batch_id", + ) + + assert batch.is_closed is True + assert batch.http_request.headers.get("X-Stainless-Lang") == "python" + assert await batch.json() == {"foo": "bar"} + assert isinstance(batch, AsyncBinaryAPIResponse) + + @parametrize + @pytest.mark.respx(base_url=base_url) + async def test_streaming_response_results(self, async_client: AsyncAnthropic, respx_mock: MockRouter) -> None: + respx_mock.get("/v1/messages/batches/message_batch_id/results").mock( + return_value=httpx.Response(200, json={"foo": "bar"}) + ) + async with async_client.messages.batches.with_streaming_response.results( + "message_batch_id", + ) as batch: + assert not batch.is_closed + assert batch.http_request.headers.get("X-Stainless-Lang") == "python" + + assert await batch.json() == {"foo": "bar"} + assert cast(Any, batch.is_closed) is True + assert isinstance(batch, AsyncStreamedBinaryAPIResponse) + + assert cast(Any, batch.is_closed) is True + + @parametrize + @pytest.mark.respx(base_url=base_url) + async def test_path_params_results(self, async_client: AsyncAnthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `message_batch_id` but received ''"): + await async_client.messages.batches.with_raw_response.results( + "", + ) diff --git a/tests/api_resources/test_messages.py b/tests/api_resources/test_messages.py index 9e1f91c5..dc5b2396 100644 --- a/tests/api_resources/test_messages.py +++ b/tests/api_resources/test_messages.py @@ -9,7 +9,10 @@ from anthropic import Anthropic, AsyncAnthropic from tests.utils import assert_matches_type -from anthropic.types import Message +from anthropic.types import ( + Message, + MessageTokensCount, +) base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010") @@ -49,6 +52,7 @@ def test_method_create_with_all_params_overload_1(self, client: Anthropic) -> No { "text": "Today's date is 2024-06-01.", "type": "text", + "cache_control": {"type": "ephemeral"}, } ], temperature=1, @@ -72,6 +76,7 @@ def test_method_create_with_all_params_overload_1(self, client: Anthropic) -> No }, }, "name": "x", + "cache_control": {"type": "ephemeral"}, "description": "Get the current weather in a given location", } ], @@ -151,6 +156,7 @@ def test_method_create_with_all_params_overload_2(self, client: Anthropic) -> No { "text": "Today's date is 2024-06-01.", "type": "text", + "cache_control": {"type": "ephemeral"}, } ], temperature=1, @@ -174,6 +180,7 @@ def test_method_create_with_all_params_overload_2(self, client: Anthropic) -> No }, }, "name": "x", + "cache_control": {"type": "ephemeral"}, "description": "Get the current weather in a given location", } ], @@ -221,6 +228,99 @@ def test_streaming_response_create_overload_2(self, client: Anthropic) -> None: assert cast(Any, response.is_closed) is True + @parametrize + def test_method_count_tokens(self, client: Anthropic) -> None: + message = client.messages.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + ) + assert_matches_type(MessageTokensCount, message, path=["response"]) + + @parametrize + def test_method_count_tokens_with_all_params(self, client: Anthropic) -> None: + message = client.messages.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + system=[ + { + "text": "Today's date is 2024-06-01.", + "type": "text", + "cache_control": {"type": "ephemeral"}, + } + ], + tool_choice={ + "type": "auto", + "disable_parallel_tool_use": True, + }, + tools=[ + { + "input_schema": { + "type": "object", + "properties": { + "location": { + "description": "The city and state, e.g. San Francisco, CA", + "type": "string", + }, + "unit": { + "description": "Unit for the output - one of (celsius, fahrenheit)", + "type": "string", + }, + }, + }, + "name": "x", + "cache_control": {"type": "ephemeral"}, + "description": "Get the current weather in a given location", + } + ], + ) + assert_matches_type(MessageTokensCount, message, path=["response"]) + + @parametrize + def test_raw_response_count_tokens(self, client: Anthropic) -> None: + response = client.messages.with_raw_response.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + message = response.parse() + assert_matches_type(MessageTokensCount, message, path=["response"]) + + @parametrize + def test_streaming_response_count_tokens(self, client: Anthropic) -> None: + with client.messages.with_streaming_response.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + message = response.parse() + assert_matches_type(MessageTokensCount, message, path=["response"]) + + assert cast(Any, response.is_closed) is True + class TestAsyncMessages: parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"]) @@ -257,6 +357,7 @@ async def test_method_create_with_all_params_overload_1(self, async_client: Asyn { "text": "Today's date is 2024-06-01.", "type": "text", + "cache_control": {"type": "ephemeral"}, } ], temperature=1, @@ -280,6 +381,7 @@ async def test_method_create_with_all_params_overload_1(self, async_client: Asyn }, }, "name": "x", + "cache_control": {"type": "ephemeral"}, "description": "Get the current weather in a given location", } ], @@ -359,6 +461,7 @@ async def test_method_create_with_all_params_overload_2(self, async_client: Asyn { "text": "Today's date is 2024-06-01.", "type": "text", + "cache_control": {"type": "ephemeral"}, } ], temperature=1, @@ -382,6 +485,7 @@ async def test_method_create_with_all_params_overload_2(self, async_client: Asyn }, }, "name": "x", + "cache_control": {"type": "ephemeral"}, "description": "Get the current weather in a given location", } ], @@ -428,3 +532,96 @@ async def test_streaming_response_create_overload_2(self, async_client: AsyncAnt await stream.close() assert cast(Any, response.is_closed) is True + + @parametrize + async def test_method_count_tokens(self, async_client: AsyncAnthropic) -> None: + message = await async_client.messages.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + ) + assert_matches_type(MessageTokensCount, message, path=["response"]) + + @parametrize + async def test_method_count_tokens_with_all_params(self, async_client: AsyncAnthropic) -> None: + message = await async_client.messages.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + system=[ + { + "text": "Today's date is 2024-06-01.", + "type": "text", + "cache_control": {"type": "ephemeral"}, + } + ], + tool_choice={ + "type": "auto", + "disable_parallel_tool_use": True, + }, + tools=[ + { + "input_schema": { + "type": "object", + "properties": { + "location": { + "description": "The city and state, e.g. San Francisco, CA", + "type": "string", + }, + "unit": { + "description": "Unit for the output - one of (celsius, fahrenheit)", + "type": "string", + }, + }, + }, + "name": "x", + "cache_control": {"type": "ephemeral"}, + "description": "Get the current weather in a given location", + } + ], + ) + assert_matches_type(MessageTokensCount, message, path=["response"]) + + @parametrize + async def test_raw_response_count_tokens(self, async_client: AsyncAnthropic) -> None: + response = await async_client.messages.with_raw_response.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + message = response.parse() + assert_matches_type(MessageTokensCount, message, path=["response"]) + + @parametrize + async def test_streaming_response_count_tokens(self, async_client: AsyncAnthropic) -> None: + async with async_client.messages.with_streaming_response.count_tokens( + messages=[ + { + "content": "string", + "role": "user", + } + ], + model="string", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + message = await response.parse() + assert_matches_type(MessageTokensCount, message, path=["response"]) + + assert cast(Any, response.is_closed) is True diff --git a/tests/api_resources/test_models.py b/tests/api_resources/test_models.py new file mode 100644 index 00000000..34b4961a --- /dev/null +++ b/tests/api_resources/test_models.py @@ -0,0 +1,167 @@ +# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details. + +from __future__ import annotations + +import os +from typing import Any, cast + +import pytest + +from anthropic import Anthropic, AsyncAnthropic +from tests.utils import assert_matches_type +from anthropic.types import ModelInfo +from anthropic.pagination import SyncPage, AsyncPage + +base_url = os.environ.get("TEST_API_BASE_URL", "http://127.0.0.1:4010") + + +class TestModels: + parametrize = pytest.mark.parametrize("client", [False, True], indirect=True, ids=["loose", "strict"]) + + @parametrize + def test_method_retrieve(self, client: Anthropic) -> None: + model = client.models.retrieve( + "model_id", + ) + assert_matches_type(ModelInfo, model, path=["response"]) + + @parametrize + def test_raw_response_retrieve(self, client: Anthropic) -> None: + response = client.models.with_raw_response.retrieve( + "model_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(ModelInfo, model, path=["response"]) + + @parametrize + def test_streaming_response_retrieve(self, client: Anthropic) -> None: + with client.models.with_streaming_response.retrieve( + "model_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = response.parse() + assert_matches_type(ModelInfo, model, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + def test_path_params_retrieve(self, client: Anthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"): + client.models.with_raw_response.retrieve( + "", + ) + + @parametrize + def test_method_list(self, client: Anthropic) -> None: + model = client.models.list() + assert_matches_type(SyncPage[ModelInfo], model, path=["response"]) + + @parametrize + def test_method_list_with_all_params(self, client: Anthropic) -> None: + model = client.models.list( + after_id="after_id", + before_id="before_id", + limit=1, + ) + assert_matches_type(SyncPage[ModelInfo], model, path=["response"]) + + @parametrize + def test_raw_response_list(self, client: Anthropic) -> None: + response = client.models.with_raw_response.list() + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(SyncPage[ModelInfo], model, path=["response"]) + + @parametrize + def test_streaming_response_list(self, client: Anthropic) -> None: + with client.models.with_streaming_response.list() as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = response.parse() + assert_matches_type(SyncPage[ModelInfo], model, path=["response"]) + + assert cast(Any, response.is_closed) is True + + +class TestAsyncModels: + parametrize = pytest.mark.parametrize("async_client", [False, True], indirect=True, ids=["loose", "strict"]) + + @parametrize + async def test_method_retrieve(self, async_client: AsyncAnthropic) -> None: + model = await async_client.models.retrieve( + "model_id", + ) + assert_matches_type(ModelInfo, model, path=["response"]) + + @parametrize + async def test_raw_response_retrieve(self, async_client: AsyncAnthropic) -> None: + response = await async_client.models.with_raw_response.retrieve( + "model_id", + ) + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(ModelInfo, model, path=["response"]) + + @parametrize + async def test_streaming_response_retrieve(self, async_client: AsyncAnthropic) -> None: + async with async_client.models.with_streaming_response.retrieve( + "model_id", + ) as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = await response.parse() + assert_matches_type(ModelInfo, model, path=["response"]) + + assert cast(Any, response.is_closed) is True + + @parametrize + async def test_path_params_retrieve(self, async_client: AsyncAnthropic) -> None: + with pytest.raises(ValueError, match=r"Expected a non-empty value for `model_id` but received ''"): + await async_client.models.with_raw_response.retrieve( + "", + ) + + @parametrize + async def test_method_list(self, async_client: AsyncAnthropic) -> None: + model = await async_client.models.list() + assert_matches_type(AsyncPage[ModelInfo], model, path=["response"]) + + @parametrize + async def test_method_list_with_all_params(self, async_client: AsyncAnthropic) -> None: + model = await async_client.models.list( + after_id="after_id", + before_id="before_id", + limit=1, + ) + assert_matches_type(AsyncPage[ModelInfo], model, path=["response"]) + + @parametrize + async def test_raw_response_list(self, async_client: AsyncAnthropic) -> None: + response = await async_client.models.with_raw_response.list() + + assert response.is_closed is True + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + model = response.parse() + assert_matches_type(AsyncPage[ModelInfo], model, path=["response"]) + + @parametrize + async def test_streaming_response_list(self, async_client: AsyncAnthropic) -> None: + async with async_client.models.with_streaming_response.list() as response: + assert not response.is_closed + assert response.http_request.headers.get("X-Stainless-Lang") == "python" + + model = await response.parse() + assert_matches_type(AsyncPage[ModelInfo], model, path=["response"]) + + assert cast(Any, response.is_closed) is True