-
Notifications
You must be signed in to change notification settings - Fork 17
/
lexer_atn_simulator.go
677 lines (583 loc) · 21.5 KB
/
lexer_atn_simulator.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
// Copyright (c) 2012-2022 The ANTLR Project. All rights reserved.
// Use of this file is governed by the BSD 3-clause license that
// can be found in the LICENSE.txt file in the project root.
package antlr
import (
"fmt"
"strconv"
"strings"
)
//goland:noinspection GoUnusedGlobalVariable
var (
LexerATNSimulatorMinDFAEdge = 0
LexerATNSimulatorMaxDFAEdge = 127 // forces unicode to stay in ATN
LexerATNSimulatorMatchCalls = 0
)
type ILexerATNSimulator interface {
IATNSimulator
reset()
Match(input CharStream, mode int) int
GetCharPositionInLine() int
GetLine() int
GetText(input CharStream) string
Consume(input CharStream)
}
type LexerATNSimulator struct {
BaseATNSimulator
recog Lexer
predictionMode int
mergeCache *JPCMap2
startIndex int
Line int
CharPositionInLine int
mode int
prevAccept *SimState
MatchCalls int
}
func NewLexerATNSimulator(recog Lexer, atn *ATN, decisionToDFA []*DFA, sharedContextCache *PredictionContextCache) *LexerATNSimulator {
l := &LexerATNSimulator{
BaseATNSimulator: BaseATNSimulator{
atn: atn,
sharedContextCache: sharedContextCache,
},
}
l.decisionToDFA = decisionToDFA
l.recog = recog
// The current token's starting index into the character stream.
// Shared across DFA to ATN simulation in case the ATN fails and the
// DFA did not have a previous accept state. In l case, we use the
// ATN-generated exception object.
l.startIndex = -1
// line number 1..n within the input
l.Line = 1
// The index of the character relative to the beginning of the line
// 0..n-1
l.CharPositionInLine = 0
l.mode = LexerDefaultMode
// Used during DFA/ATN exec to record the most recent accept configuration
// info
l.prevAccept = NewSimState()
return l
}
func (l *LexerATNSimulator) copyState(simulator *LexerATNSimulator) {
l.CharPositionInLine = simulator.CharPositionInLine
l.Line = simulator.Line
l.mode = simulator.mode
l.startIndex = simulator.startIndex
}
func (l *LexerATNSimulator) Match(input CharStream, mode int) int {
l.MatchCalls++
l.mode = mode
mark := input.Mark()
defer func() {
input.Release(mark)
}()
l.startIndex = input.Index()
l.prevAccept.reset()
dfa := l.decisionToDFA[mode]
var s0 *DFAState
l.atn.stateMu.RLock()
s0 = dfa.getS0()
l.atn.stateMu.RUnlock()
if s0 == nil {
return l.MatchATN(input)
}
return l.execATN(input, s0)
}
func (l *LexerATNSimulator) reset() {
l.prevAccept.reset()
l.startIndex = -1
l.Line = 1
l.CharPositionInLine = 0
l.mode = LexerDefaultMode
}
func (l *LexerATNSimulator) MatchATN(input CharStream) int {
startState := l.atn.modeToStartState[l.mode]
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("MatchATN mode " + strconv.Itoa(l.mode) + " start: " + startState.String())
}
oldMode := l.mode
s0Closure := l.computeStartState(input, startState)
suppressEdge := s0Closure.hasSemanticContext
s0Closure.hasSemanticContext = false
next := l.addDFAState(s0Closure, suppressEdge)
predict := l.execATN(input, next)
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("DFA after MatchATN: " + l.decisionToDFA[oldMode].ToLexerString())
}
return predict
}
func (l *LexerATNSimulator) execATN(input CharStream, ds0 *DFAState) int {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("start state closure=" + ds0.configs.String())
}
if ds0.isAcceptState {
// allow zero-Length tokens
l.captureSimState(l.prevAccept, input, ds0)
}
t := input.LA(1)
s := ds0 // s is current/from DFA state
for { // while more work
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("execATN loop starting closure: " + s.configs.String())
}
// As we move src->trg, src->trg, we keep track of the previous trg to
// avoid looking up the DFA state again, which is expensive.
// If the previous target was already part of the DFA, we might
// be able to avoid doing a reach operation upon t. If s!=nil,
// it means that semantic predicates didn't prevent us from
// creating a DFA state. Once we know s!=nil, we check to see if
// the DFA state has an edge already for t. If so, we can just reuse
// it's configuration set there's no point in re-computing it.
// This is kind of like doing DFA simulation within the ATN
// simulation because DFA simulation is really just a way to avoid
// computing reach/closure sets. Technically, once we know that
// we have a previously added DFA state, we could jump over to
// the DFA simulator. But, that would mean popping back and forth
// a lot and making things more complicated algorithmically.
// This optimization makes a lot of sense for loops within DFA.
// A character will take us back to an existing DFA state
// that already has lots of edges out of it. e.g., .* in comments.
target := l.getExistingTargetState(s, t)
if target == nil {
target = l.computeTargetState(input, s, t)
// print("Computed:" + str(target))
}
if target == ATNSimulatorError {
break
}
// If l is a consumable input element, make sure to consume before
// capturing the accept state so the input index, line, and char
// position accurately reflect the state of the interpreter at the
// end of the token.
if t != TokenEOF {
l.Consume(input)
}
if target.isAcceptState {
l.captureSimState(l.prevAccept, input, target)
if t == TokenEOF {
break
}
}
t = input.LA(1)
s = target // flip current DFA target becomes new src/from state
}
return l.failOrAccept(l.prevAccept, input, s.configs, t)
}
// Get an existing target state for an edge in the DFA. If the target state
// for the edge has not yet been computed or is otherwise not available,
// l method returns {@code nil}.
//
// @param s The current DFA state
// @param t The next input symbol
// @return The existing target DFA state for the given input symbol
// {@code t}, or {@code nil} if the target state for l edge is not
// already cached
func (l *LexerATNSimulator) getExistingTargetState(s *DFAState, t int) *DFAState {
if t < LexerATNSimulatorMinDFAEdge || t > LexerATNSimulatorMaxDFAEdge {
return nil
}
l.atn.edgeMu.RLock()
defer l.atn.edgeMu.RUnlock()
if s.getEdges() == nil {
return nil
}
target := s.getIthEdge(t - LexerATNSimulatorMinDFAEdge)
if runtimeConfig.lexerATNSimulatorDebug && target != nil {
fmt.Println("reuse state " + strconv.Itoa(s.stateNumber) + " edge to " + strconv.Itoa(target.stateNumber))
}
return target
}
// computeTargetState computes a target state for an edge in the [DFA], and attempt to add the
// computed state and corresponding edge to the [DFA].
//
// The func returns the computed target [DFA] state for the given input symbol t.
// If this does not lead to a valid [DFA] state, this method
// returns ATNSimulatorError.
func (l *LexerATNSimulator) computeTargetState(input CharStream, s *DFAState, t int) *DFAState {
reach := NewOrderedATNConfigSet()
// if we don't find an existing DFA state
// Fill reach starting from closure, following t transitions
l.getReachableConfigSet(input, s.configs, reach, t)
if len(reach.configs) == 0 { // we got nowhere on t from s
if !reach.hasSemanticContext {
// we got nowhere on t, don't panic out l knowledge it'd
// cause a fail-over from DFA later.
l.addDFAEdge(s, t, ATNSimulatorError, nil)
}
// stop when we can't Match any more char
return ATNSimulatorError
}
// Add an edge from s to target DFA found/created for reach
return l.addDFAEdge(s, t, nil, reach)
}
func (l *LexerATNSimulator) failOrAccept(prevAccept *SimState, input CharStream, reach *ATNConfigSet, t int) int {
if l.prevAccept.dfaState != nil {
lexerActionExecutor := prevAccept.dfaState.lexerActionExecutor
l.accept(input, lexerActionExecutor, l.startIndex, prevAccept.index, prevAccept.line, prevAccept.column)
return prevAccept.dfaState.prediction
}
// if no accept and EOF is first char, return EOF
if t == TokenEOF && input.Index() == l.startIndex {
return TokenEOF
}
panic(NewLexerNoViableAltException(l.recog, input, l.startIndex, reach))
}
// getReachableConfigSet when given a starting configuration set, figures out all [ATN] configurations
// we can reach upon input t.
//
// Parameter reach is a return parameter.
func (l *LexerATNSimulator) getReachableConfigSet(input CharStream, closure *ATNConfigSet, reach *ATNConfigSet, t int) {
// l is used to Skip processing for configs which have a lower priority
// than a runtimeConfig that already reached an accept state for the same rule
SkipAlt := ATNInvalidAltNumber
for _, cfg := range closure.configs {
currentAltReachedAcceptState := cfg.GetAlt() == SkipAlt
if currentAltReachedAcceptState && cfg.passedThroughNonGreedyDecision {
continue
}
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Printf("testing %s at %s\n", l.GetTokenName(t), cfg.String())
}
for _, trans := range cfg.GetState().GetTransitions() {
target := l.getReachableTarget(trans, t)
if target != nil {
lexerActionExecutor := cfg.lexerActionExecutor
if lexerActionExecutor != nil {
lexerActionExecutor = lexerActionExecutor.fixOffsetBeforeMatch(input.Index() - l.startIndex)
}
treatEOFAsEpsilon := t == TokenEOF
config := NewLexerATNConfig3(cfg, target, lexerActionExecutor)
if l.closure(input, config, reach,
currentAltReachedAcceptState, true, treatEOFAsEpsilon) {
// any remaining configs for l alt have a lower priority
// than the one that just reached an accept state.
SkipAlt = cfg.GetAlt()
}
}
}
}
}
func (l *LexerATNSimulator) accept(input CharStream, lexerActionExecutor *LexerActionExecutor, startIndex, index, line, charPos int) {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Printf("ACTION %v\n", lexerActionExecutor)
}
// seek to after last char in token
input.Seek(index)
l.Line = line
l.CharPositionInLine = charPos
if lexerActionExecutor != nil && l.recog != nil {
lexerActionExecutor.execute(l.recog, input, startIndex)
}
}
func (l *LexerATNSimulator) getReachableTarget(trans Transition, t int) ATNState {
if trans.Matches(t, 0, LexerMaxCharValue) {
return trans.getTarget()
}
return nil
}
func (l *LexerATNSimulator) computeStartState(input CharStream, p ATNState) *ATNConfigSet {
configs := NewOrderedATNConfigSet()
for i := 0; i < len(p.GetTransitions()); i++ {
target := p.GetTransitions()[i].getTarget()
cfg := NewLexerATNConfig6(target, i+1, BasePredictionContextEMPTY)
l.closure(input, cfg, configs, false, false, false)
}
return configs
}
// closure since the alternatives within any lexer decision are ordered by
// preference, this method stops pursuing the closure as soon as an accept
// state is reached. After the first accept state is reached by depth-first
// search from runtimeConfig, all other (potentially reachable) states for
// this rule would have a lower priority.
//
// The func returns true if an accept state is reached.
func (l *LexerATNSimulator) closure(input CharStream, config *ATNConfig, configs *ATNConfigSet,
currentAltReachedAcceptState, speculative, treatEOFAsEpsilon bool) bool {
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("closure(" + config.String() + ")")
}
_, ok := config.state.(*RuleStopState)
if ok {
if runtimeConfig.lexerATNSimulatorDebug {
if l.recog != nil {
fmt.Printf("closure at %s rule stop %s\n", l.recog.GetRuleNames()[config.state.GetRuleIndex()], config)
} else {
fmt.Printf("closure at rule stop %s\n", config)
}
}
if config.context == nil || config.context.hasEmptyPath() {
if config.context == nil || config.context.isEmpty() {
configs.Add(config, nil)
return true
}
configs.Add(NewLexerATNConfig2(config, config.state, BasePredictionContextEMPTY), nil)
currentAltReachedAcceptState = true
}
if config.context != nil && !config.context.isEmpty() {
for i := 0; i < config.context.length(); i++ {
if config.context.getReturnState(i) != BasePredictionContextEmptyReturnState {
newContext := config.context.GetParent(i) // "pop" return state
returnState := l.atn.states[config.context.getReturnState(i)]
cfg := NewLexerATNConfig2(config, returnState, newContext)
currentAltReachedAcceptState = l.closure(input, cfg, configs, currentAltReachedAcceptState, speculative, treatEOFAsEpsilon)
}
}
}
return currentAltReachedAcceptState
}
// optimization
if !config.state.GetEpsilonOnlyTransitions() {
if !currentAltReachedAcceptState || !config.passedThroughNonGreedyDecision {
configs.Add(config, nil)
}
}
for j := 0; j < len(config.state.GetTransitions()); j++ {
trans := config.state.GetTransitions()[j]
cfg := l.getEpsilonTarget(input, config, trans, configs, speculative, treatEOFAsEpsilon)
if cfg != nil {
currentAltReachedAcceptState = l.closure(input, cfg, configs,
currentAltReachedAcceptState, speculative, treatEOFAsEpsilon)
}
}
return currentAltReachedAcceptState
}
// side-effect: can alter configs.hasSemanticContext
func (l *LexerATNSimulator) getEpsilonTarget(input CharStream, config *ATNConfig, trans Transition,
configs *ATNConfigSet, speculative, treatEOFAsEpsilon bool) *ATNConfig {
var cfg *ATNConfig
if trans.getSerializationType() == TransitionRULE {
rt := trans.(*RuleTransition)
newContext := SingletonBasePredictionContextCreate(config.context, rt.followState.GetStateNumber())
cfg = NewLexerATNConfig2(config, trans.getTarget(), newContext)
} else if trans.getSerializationType() == TransitionPRECEDENCE {
panic("Precedence predicates are not supported in lexers.")
} else if trans.getSerializationType() == TransitionPREDICATE {
// Track traversing semantic predicates. If we traverse,
// we cannot add a DFA state for l "reach" computation
// because the DFA would not test the predicate again in the
// future. Rather than creating collections of semantic predicates
// like v3 and testing them on prediction, v4 will test them on the
// fly all the time using the ATN not the DFA. This is slower but
// semantically it's not used that often. One of the key elements to
// l predicate mechanism is not adding DFA states that see
// predicates immediately afterwards in the ATN. For example,
// a : ID {p1}? | ID {p2}?
// should create the start state for rule 'a' (to save start state
// competition), but should not create target of ID state. The
// collection of ATN states the following ID references includes
// states reached by traversing predicates. Since l is when we
// test them, we cannot cash the DFA state target of ID.
pt := trans.(*PredicateTransition)
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("EVAL rule " + strconv.Itoa(trans.(*PredicateTransition).ruleIndex) + ":" + strconv.Itoa(pt.predIndex))
}
configs.hasSemanticContext = true
if l.evaluatePredicate(input, pt.ruleIndex, pt.predIndex, speculative) {
cfg = NewLexerATNConfig4(config, trans.getTarget())
}
} else if trans.getSerializationType() == TransitionACTION {
if config.context == nil || config.context.hasEmptyPath() {
// execute actions anywhere in the start rule for a token.
//
// TODO: if the entry rule is invoked recursively, some
// actions may be executed during the recursive call. The
// problem can appear when hasEmptyPath() is true but
// isEmpty() is false. In this case, the config needs to be
// split into two contexts - one with just the empty path
// and another with everything but the empty path.
// Unfortunately, the current algorithm does not allow
// getEpsilonTarget to return two configurations, so
// additional modifications are needed before we can support
// the split operation.
lexerActionExecutor := LexerActionExecutorappend(config.lexerActionExecutor, l.atn.lexerActions[trans.(*ActionTransition).actionIndex])
cfg = NewLexerATNConfig3(config, trans.getTarget(), lexerActionExecutor)
} else {
// ignore actions in referenced rules
cfg = NewLexerATNConfig4(config, trans.getTarget())
}
} else if trans.getSerializationType() == TransitionEPSILON {
cfg = NewLexerATNConfig4(config, trans.getTarget())
} else if trans.getSerializationType() == TransitionATOM ||
trans.getSerializationType() == TransitionRANGE ||
trans.getSerializationType() == TransitionSET {
if treatEOFAsEpsilon {
if trans.Matches(TokenEOF, 0, LexerMaxCharValue) {
cfg = NewLexerATNConfig4(config, trans.getTarget())
}
}
}
return cfg
}
// evaluatePredicate eEvaluates a predicate specified in the lexer.
//
// If speculative is true, this method was called before
// [consume] for the Matched character. This method should call
// [consume] before evaluating the predicate to ensure position
// sensitive values, including [GetText], [GetLine],
// and [GetColumn], properly reflect the current
// lexer state. This method should restore input and the simulator
// to the original state before returning, i.e. undo the actions made by the
// call to [Consume].
//
// The func returns true if the specified predicate evaluates to true.
func (l *LexerATNSimulator) evaluatePredicate(input CharStream, ruleIndex, predIndex int, speculative bool) bool {
// assume true if no recognizer was provided
if l.recog == nil {
return true
}
if !speculative {
return l.recog.Sempred(nil, ruleIndex, predIndex)
}
savedcolumn := l.CharPositionInLine
savedLine := l.Line
index := input.Index()
marker := input.Mark()
defer func() {
l.CharPositionInLine = savedcolumn
l.Line = savedLine
input.Seek(index)
input.Release(marker)
}()
l.Consume(input)
return l.recog.Sempred(nil, ruleIndex, predIndex)
}
func (l *LexerATNSimulator) captureSimState(settings *SimState, input CharStream, dfaState *DFAState) {
settings.index = input.Index()
settings.line = l.Line
settings.column = l.CharPositionInLine
settings.dfaState = dfaState
}
func (l *LexerATNSimulator) addDFAEdge(from *DFAState, tk int, to *DFAState, cfgs *ATNConfigSet) *DFAState {
if to == nil && cfgs != nil {
// leading to l call, ATNConfigSet.hasSemanticContext is used as a
// marker indicating dynamic predicate evaluation makes l edge
// dependent on the specific input sequence, so the static edge in the
// DFA should be omitted. The target DFAState is still created since
// execATN has the ability to reSynchronize with the DFA state cache
// following the predicate evaluation step.
//
// TJP notes: next time through the DFA, we see a pred again and eval.
// If that gets us to a previously created (but dangling) DFA
// state, we can continue in pure DFA mode from there.
//
suppressEdge := cfgs.hasSemanticContext
cfgs.hasSemanticContext = false
to = l.addDFAState(cfgs, true)
if suppressEdge {
return to
}
}
// add the edge
if tk < LexerATNSimulatorMinDFAEdge || tk > LexerATNSimulatorMaxDFAEdge {
// Only track edges within the DFA bounds
return to
}
if runtimeConfig.lexerATNSimulatorDebug {
fmt.Println("EDGE " + from.String() + " -> " + to.String() + " upon " + strconv.Itoa(tk))
}
l.atn.edgeMu.Lock()
defer l.atn.edgeMu.Unlock()
if from.getEdges() == nil {
// make room for tokens 1..n and -1 masquerading as index 0
from.setEdges(make([]*DFAState, LexerATNSimulatorMaxDFAEdge-LexerATNSimulatorMinDFAEdge+1))
}
from.setIthEdge(tk-LexerATNSimulatorMinDFAEdge, to) // connect
return to
}
// Add a NewDFA state if there isn't one with l set of
// configurations already. This method also detects the first
// configuration containing an ATN rule stop state. Later, when
// traversing the DFA, we will know which rule to accept.
func (l *LexerATNSimulator) addDFAState(configs *ATNConfigSet, suppressEdge bool) *DFAState {
proposed := NewDFAState(-1, configs)
var firstConfigWithRuleStopState *ATNConfig
for _, cfg := range configs.configs {
_, ok := cfg.GetState().(*RuleStopState)
if ok {
firstConfigWithRuleStopState = cfg
break
}
}
if firstConfigWithRuleStopState != nil {
proposed.isAcceptState = true
proposed.lexerActionExecutor = firstConfigWithRuleStopState.lexerActionExecutor
proposed.setPrediction(l.atn.ruleToTokenType[firstConfigWithRuleStopState.GetState().GetRuleIndex()])
}
dfa := l.decisionToDFA[l.mode]
l.atn.stateMu.Lock()
defer l.atn.stateMu.Unlock()
existing, present := dfa.Get(proposed)
if present {
// This state was already present, so just return it.
//
proposed = existing
} else {
// We need to add the new state
//
proposed.stateNumber = dfa.Len()
configs.readOnly = true
configs.configLookup = nil // Not needed now
proposed.configs = configs
dfa.Put(proposed)
}
if !suppressEdge {
dfa.setS0(proposed)
}
return proposed
}
func (l *LexerATNSimulator) getDFA(mode int) *DFA {
return l.decisionToDFA[mode]
}
// GetText returns the text [Match]ed so far for the current token.
func (l *LexerATNSimulator) GetText(input CharStream) string {
// index is first lookahead char, don't include.
return input.GetTextFromInterval(NewInterval(l.startIndex, input.Index()-1))
}
func (l *LexerATNSimulator) Consume(input CharStream) {
curChar := input.LA(1)
if curChar == int('\n') {
l.Line++
l.CharPositionInLine = 0
} else {
l.CharPositionInLine++
}
input.Consume()
}
func (l *LexerATNSimulator) GetCharPositionInLine() int {
return l.CharPositionInLine
}
func (l *LexerATNSimulator) GetLine() int {
return l.Line
}
func (l *LexerATNSimulator) GetTokenName(tt int) string {
if tt == -1 {
return "EOF"
}
var sb strings.Builder
sb.Grow(6)
sb.WriteByte('\'')
sb.WriteRune(rune(tt))
sb.WriteByte('\'')
return sb.String()
}
func resetSimState(sim *SimState) {
sim.index = -1
sim.line = 0
sim.column = -1
sim.dfaState = nil
}
type SimState struct {
index int
line int
column int
dfaState *DFAState
}
func NewSimState() *SimState {
s := new(SimState)
resetSimState(s)
return s
}
func (s *SimState) reset() {
resetSimState(s)
}