-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
104 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
import numpy as np | ||
import pandas as pd | ||
from . import SignalDecomposition_AR as tsar | ||
from . import Utils as tsutil | ||
|
||
import sys | ||
|
||
|
||
def is_signal_intermittent(iSeries, iOptions): | ||
series = iSeries - iSeries.min() | ||
zero_values = series[abs(series) < 1e-8] | ||
lZeroRate = zero_values.shape[0] / series.shape[0] | ||
if(lZeroRate > iOptions.mCrostonOptions.mZeroRate): | ||
return True | ||
return False | ||
|
||
|
||
class cCroston_Model(tsar.cAbstractAR): | ||
def __init__(self , cycle_residue_name, P , iExogenousInfo = None): | ||
super().__init__(cycle_residue_name, iExogenousInfo) | ||
self.mNbLags = 1 | ||
|
||
def dumpCoefficients(self, iMax=10): | ||
# print(self.mScikitModel.__dict__); | ||
pass | ||
|
||
def set_name(self): | ||
self.mOutName = self.mCycleResidueName + '_CROSTON(' + str(self.mOptions.mCrostonOptions.mAlpha) + ')'; | ||
self.mFormula = "CROSTON" | ||
|
||
def get_coeff(self, alpha , croston_type): | ||
if(croston_type == "SBA"): | ||
return 1.0-(alpha/2.0) | ||
elif(croston_type == "SBJ"): | ||
return (1.0 - alpha/(2.0-alpha)) | ||
# default : any other value is the legacy croston method | ||
return 1.0 | ||
|
||
def croston(self, df): | ||
# print(df.shape) | ||
# print(df.columns) | ||
# print(df[['Date', 'Signal', '_Signal', 'row_number', '_Signal_ConstantTrend_residue_zeroCycle_residue']].tail(12)) | ||
alpha = self.mOptions.mCrostonOptions.mAlpha | ||
method = self.mOptions.mCrostonOptions.mMethod | ||
lCounts_df = df[[self.mTime, self.mCycleResidueName]] | ||
counts = lCounts_df[self.mCycleResidueName] - self.mOffset | ||
counts = counts[:365] | ||
# print(counts) | ||
# assert(not np.isnan(counts[:-1]).any()) | ||
# q is often called the “demand” and a the “inter-arrival time”. | ||
q = counts[abs(counts) > 1e-8] | ||
demand_times = pd.Series(list(q.index)) + 1 | ||
a = demand_times - demand_times.shift(1).fillna(0.0) | ||
df2 = pd.DataFrame({'demand_time' : list(demand_times), 'q' : list(q) , 'a' : list(a) }) | ||
|
||
df2['q_est'] = None | ||
df2['a_est'] = None | ||
|
||
# initialization : first values | ||
df2.loc[0 , 'q_est'] = df2['q'][0] | ||
df2.loc[0, 'a_est'] = df2['a'][0] | ||
for i in range(df2.shape[0] - 1): | ||
q1 = (1.0 - alpha) * df2['q_est'][ i ] + alpha * df2['q'][ i ] | ||
a1 = (1.0 - alpha) * df2['a_est'][ i ] + alpha * df2['a'][ i ] | ||
df2.loc[i + 1, 'q_est'] = q1 | ||
df2.loc[i + 1, 'a_est'] = a1 | ||
|
||
df2['forecast'] = self.get_coeff(alpha , method) * df2['q_est'] / df2['a_est'] | ||
df2['index'] = df2['demand_time'] - 1 | ||
|
||
df1 = lCounts_df.reset_index() | ||
df3 = df1.merge(df2 , how='left', on=('index' , 'index')) | ||
df4 = df3.fillna(method='ffill') | ||
df4['forecast'] = df4['forecast'] + self.mOffset | ||
return df4 | ||
|
||
def fit(self): | ||
# print("ESTIMATE_CROSTON_MODEL_START" , self.mCycleResidueName); | ||
|
||
self.set_name(); | ||
|
||
series = self.mCycleResidueName; | ||
self.mTime = self.mTimeInfo.mTime; | ||
self.mSignal = self.mTimeInfo.mSignal; | ||
self.mOffset = self.mARFrame[self.mCycleResidueName].min() | ||
self.mFeatureSelector = None; | ||
self.mInputNamesAfterSelection = self.mInputNames; | ||
self.mComplexity = 2 | ||
|
||
lPredicted = self.croston(self.mARFrame); | ||
self.mARFrame[self.mOutName] = lPredicted['forecast'] | ||
self.mARFrame[self.mOutName + '_residue'] = self.mARFrame[series] - self.mARFrame[self.mOutName] | ||
|
||
# print("ESTIMATE_CROSTON_MODEL_END" , self.mOutName); | ||
|
||
|
||
def transformDataset(self, df): | ||
series = self.mCycleResidueName; | ||
pred = self.croston(df) | ||
df[self.mOutName] = pred['forecast']; | ||
target = df[series].values | ||
df[self.mOutName + '_residue'] = target - df[self.mOutName].values | ||
return df; | ||
|