-
Notifications
You must be signed in to change notification settings - Fork 73
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
10 changed files
with
224 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
# source : https://otexts.org/fpp2/counts.html | ||
|
||
import pandas as pd | ||
|
||
# %matplotlib inline | ||
|
||
lCounts = "0 2 0 1 0 11 0 0 0 0 2 0 6 3 0 0 0 0 0 7 0 0 0 0 0 0 0 3 1 0 0 1 0 1 0 0".split() | ||
lCounts = [float(c) for c in lCounts] | ||
N = len(lCounts) | ||
lDates = pd.date_range(start="2000-01-01", periods=N, freq='m') | ||
|
||
df = pd.DataFrame({"Date" : lDates, "Count" : lCounts}) | ||
|
||
# q is often called the “demand” and a the “inter-arrival time”. | ||
q = df[abs(df['Count']) > 0.0]['Count'] | ||
demand_times = pd.Series(list(q.index)) + 1 | ||
a = demand_times - demand_times.shift(1).fillna(0.0) | ||
df2 = pd.DataFrame({'demand_time' : list(demand_times), 'q' : list(q) , 'a' : list(a) }) | ||
df2 | ||
|
||
def get_coeff(alpha , croston_type): | ||
if(croston_type == "sba"): | ||
return 1.0-(alpha/2.0) | ||
elif(croston_type == "sbj"): | ||
return (1.0 - alpha/(2.0-alpha)) | ||
# default | ||
return 1.0 | ||
|
||
|
||
|
||
# q and a forecast | ||
alpha = 0.1 | ||
|
||
df2['q_est'] = None | ||
df2['a_est'] = None | ||
|
||
df2.loc[0 , 'q_est'] = df2['q'][0] | ||
df2.loc[0, 'a_est'] = df2['a'][0] | ||
for i in range(df2.shape[0] - 1): | ||
q1 = (1.0 - alpha) * df2['q_est'][ i ] + alpha * df2['q'][ i ] | ||
a1 = (1.0 - alpha) * df2['a_est'][ i ] + alpha * df2['a'][ i ] | ||
df2.loc[i + 1, 'q_est'] = q1 | ||
df2.loc[i + 1, 'a_est'] = a1 | ||
|
||
coeff = get_coeff(alpha , "default") | ||
df2['forecast'] = coeff * df2['q_est'] / df2['a_est'] | ||
df2 | ||
|
||
|
||
|
||
forecast_11 = df2['q_est'][10] / df2['a_est'][10] | ||
forecast_11 | ||
|
||
|
||
df2['index'] = df2['demand_time'] - 1 | ||
|
||
|
||
df1 = df.reset_index() | ||
df3 = df1.merge(df2 , how='left', on=('index' , 'index')) | ||
|
||
df4 = df3.fillna(method='ffill') | ||
|
||
print(df4) | ||
|
||
# df4.plot('Date', ['Count' , 'forecast']) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
# r example | ||
# y <- rpois(20,lambda=.3) | ||
# fcast <- croston(y) | ||
|
||
#> y | ||
# [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 | ||
|
||
|
||
# r result : | ||
# > fcast | ||
# Point Forecast | ||
# 21 0.180018 | ||
|
||
# > fcast$fitted | ||
# Time Series: | ||
# Start = 1 | ||
# End = 20 | ||
# Frequency = 1 | ||
# [1] NA 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.1666667 | ||
# [8] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 | ||
# [15] 0.1666667 0.1666667 0.1666667 0.1538462 0.1680672 0.1680672 | ||
|
||
|
||
import pandas as pd | ||
|
||
lCounts = "0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0".split() | ||
lCounts = [float(c) for c in lCounts] | ||
N = len(lCounts) | ||
lDates = pd.date_range(start="2000-01-01", periods=N, freq='m') | ||
|
||
df = pd.DataFrame({"Date" : lDates, "Count" : lCounts}) | ||
|
||
# q is often called the “demand” and a the “inter-arrival time”. | ||
q = df[abs(df['Count']) > 0.0]['Count'] | ||
demand_times = pd.Series(list(q.index)) + 1 | ||
a = demand_times - demand_times.shift(1).fillna(0.0) | ||
df2 = pd.DataFrame({'demand_time' : list(demand_times), 'q' : list(q) , 'a' : list(a) }) | ||
df2 | ||
|
||
def get_coeff(alpha , croston_type): | ||
if(croston_type == "sba"): | ||
return 1.0-(alpha/2.0) | ||
elif(croston_type == "sbj"): | ||
return (1.0 - alpha/(2.0-alpha)) | ||
# default | ||
return 1.0 | ||
|
||
# q and a forecast | ||
alpha = 0.1 | ||
|
||
df2['q_est'] = None | ||
df2['a_est'] = None | ||
|
||
df2.loc[0 , 'q_est'] = df2['q'][0] | ||
df2.loc[0, 'a_est'] = df2['a'][0] | ||
for i in range(df2.shape[0] - 1): | ||
q1 = (1.0 - alpha) * df2['q_est'][ i ] + alpha * df2['q'][ i ] | ||
a1 = (1.0 - alpha) * df2['a_est'][ i ] + alpha * df2['a'][ i ] | ||
df2.loc[i + 1, 'q_est'] = q1 | ||
df2.loc[i + 1, 'a_est'] = a1 | ||
|
||
|
||
df2['forecast'] = get_coeff(alpha , "default") * df2['q_est'] / df2['a_est'] | ||
df2 | ||
|
||
forecast_11 = df2['q_est'][df2.shape[0] - 1] / df2['a_est'][df2.shape[0] - 1] | ||
forecast_11 | ||
|
||
df2['index'] = df2['demand_time'] - 1 | ||
|
||
df1 = df.reset_index() | ||
df3 = df1.merge(df2 , how='left', on=('index' , 'index')) | ||
|
||
df4 = df3.fillna(method='ffill') | ||
|
||
print(df4) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
import pyaf.tests.croston.croston_tests as crost | ||
|
||
crost.create_model(N = 365 , croston_type = "SBJ") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
import pyaf.tests.croston.croston_tests as crost | ||
|
||
crost.create_model(N = 365 , croston_type = "SBA") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
import pyaf.tests.croston.croston_tests as crost | ||
|
||
crost.create_model(N = 365 , croston_type = "SBA", iTrend = True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
import pyaf.tests.croston.croston_tests as crost | ||
|
||
crost.create_model(N = 365 , croston_type = "SBJ") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
import pyaf.tests.croston.croston_tests as crost | ||
|
||
crost.create_model(N = 365 , croston_type = "SBJ", iTrend = True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
import pyaf.tests.croston.croston_tests as crost | ||
|
||
crost.create_model(N = 365 , croston_type = None, iTrend = True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
import numpy as np | ||
import pandas as pd | ||
|
||
def create_intermittent_signal(N): | ||
sig = np.zeros(N) | ||
for i in range(0, N // 30): | ||
if(np.random.random() < 0.5): | ||
sig[i * 30] = np.random.randint(100) | ||
return sig | ||
|
||
|
||
|
||
# create an intemittent signal with a linear trend | ||
def create_intermittent_signal_linear_trend(N): | ||
sig = [k/ N for k in range(N)] | ||
for i in range(0, N // 30): | ||
if(np.random.random() < 0.5): | ||
sig[i * 30] = sig[i * 30] + 0.5 * np.random.random() | ||
return sig | ||
|
||
def create_model(N = 365 , croston_type=None, iTrend = False): | ||
# N = 365 | ||
np.random.seed(seed=1960) | ||
signal = None | ||
if(iTrend): | ||
signal = create_intermittent_signal_linear_trend(N) | ||
else: | ||
signal = create_intermittent_signal(N) | ||
|
||
df_train = pd.DataFrame({"Date" : pd.date_range(start="2016-01-25", periods=N, freq='D'), | ||
"Signal" : signal}) | ||
# print(df_train.head(N)) | ||
|
||
import pyaf.ForecastEngine as autof | ||
lEngine = autof.cForecastEngine() | ||
|
||
lEngine.mOptions.set_active_trends(['None', 'LinearTrend']) | ||
lEngine.mOptions.set_active_periodics(['None']) | ||
lEngine.mOptions.set_active_transformations(['None']) | ||
lEngine.mOptions.set_active_autoregressions(['CROSTON']) | ||
lEngine.mOptions.mModelSelection_Criterion = "L2"; | ||
lEngine.mOptions.mCrostonOptions.mMethod = croston_type | ||
lEngine.mOptions.mCrostonOptions.mZeroRate = 0.0 | ||
|
||
# get the best time series model for predicting one week | ||
lEngine.train(iInputDS = df_train, iTime = 'Date', iSignal = 'Signal', iHorizon = 7); | ||
|
||
lEngine.getModelInfo() | ||
|
||
lName = "outputs/croston_" + str(croston_type) + "_" | ||
lName = lName + ("linear_trend" if iTrend else "no_trend" ) | ||
lEngine.standardPlots(lName); | ||
|
||
# predict one week | ||
df_forecast = lEngine.forecast(iInputDS = df_train, iHorizon = 7) | ||
# list the columns of the forecast dataset | ||
print(df_forecast.columns) # | ||
|
||
cols = ['Date', 'Signal', '_Signal', | ||
'_Signal_TransformedForecast', 'Signal_Forecast'] | ||
# print the real forecasts | ||
print(df_forecast[cols].tail(12)) | ||
|
||
print(df_forecast['Signal'].describe()) | ||
print(df_forecast['Signal_Forecast'].describe()) |