-
Notifications
You must be signed in to change notification settings - Fork 101
/
loadstore1.vhdl
1038 lines (955 loc) · 37.8 KB
/
loadstore1.vhdl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.decode_types.all;
use work.common.all;
use work.insn_helpers.all;
use work.helpers.all;
-- 2 cycle LSU
-- We calculate the address in the first cycle
entity loadstore1 is
generic (
HAS_FPU : boolean := true;
-- Non-zero to enable log data collection
LOG_LENGTH : natural := 0
);
port (
clk : in std_ulogic;
rst : in std_ulogic;
l_in : in Execute1ToLoadstore1Type;
e_out : out Loadstore1ToExecute1Type;
l_out : out Loadstore1ToWritebackType;
d_out : out Loadstore1ToDcacheType;
d_in : in DcacheToLoadstore1Type;
m_out : out Loadstore1ToMmuType;
m_in : in MmuToLoadstore1Type;
dc_stall : in std_ulogic;
events : out Loadstore1EventType;
-- Access to SPRs from core_debug module
dbg_spr_req : in std_ulogic;
dbg_spr_ack : out std_ulogic;
dbg_spr_addr : in std_ulogic_vector(1 downto 0);
dbg_spr_data : out std_ulogic_vector(63 downto 0);
log_out : out std_ulogic_vector(9 downto 0)
);
end loadstore1;
architecture behave of loadstore1 is
-- State machine for unaligned loads/stores
type state_t is (IDLE, -- ready for instruction
MMU_WAIT -- waiting for MMU to finish doing something
);
type byte_index_t is array(0 to 7) of unsigned(2 downto 0);
subtype byte_trim_t is std_ulogic_vector(1 downto 0);
type trim_ctl_t is array(0 to 7) of byte_trim_t;
type request_t is record
valid : std_ulogic;
dc_req : std_ulogic;
load : std_ulogic;
store : std_ulogic;
tlbie : std_ulogic;
dcbz : std_ulogic;
read_spr : std_ulogic;
write_spr : std_ulogic;
mmu_op : std_ulogic;
instr_fault : std_ulogic;
do_update : std_ulogic;
mode_32bit : std_ulogic;
prefixed : std_ulogic;
addr : std_ulogic_vector(63 downto 0);
byte_sel : std_ulogic_vector(7 downto 0);
second_bytes : std_ulogic_vector(7 downto 0);
store_data : std_ulogic_vector(63 downto 0);
instr_tag : instr_tag_t;
write_reg : gspr_index_t;
length : std_ulogic_vector(3 downto 0);
elt_length : std_ulogic_vector(3 downto 0);
byte_reverse : std_ulogic;
brev_mask : unsigned(2 downto 0);
sign_extend : std_ulogic;
update : std_ulogic;
xerc : xer_common_t;
reserve : std_ulogic;
rc : std_ulogic;
nc : std_ulogic; -- non-cacheable access
virt_mode : std_ulogic;
priv_mode : std_ulogic;
load_sp : std_ulogic;
sprsel : std_ulogic_vector(1 downto 0);
ric : std_ulogic_vector(1 downto 0);
is_slbia : std_ulogic;
align_intr : std_ulogic;
dword_index : std_ulogic;
two_dwords : std_ulogic;
incomplete : std_ulogic;
end record;
constant request_init : request_t := (valid => '0', dc_req => '0', load => '0', store => '0', tlbie => '0',
dcbz => '0', read_spr => '0', write_spr => '0', mmu_op => '0',
instr_fault => '0', do_update => '0',
mode_32bit => '0', prefixed => '0',
addr => (others => '0'),
byte_sel => x"00", second_bytes => x"00",
store_data => (others => '0'), instr_tag => instr_tag_init,
write_reg => 6x"00", length => x"0",
elt_length => x"0", byte_reverse => '0', brev_mask => "000",
sign_extend => '0', update => '0',
xerc => xerc_init, reserve => '0',
rc => '0', nc => '0',
virt_mode => '0', priv_mode => '0', load_sp => '0',
sprsel => "00", ric => "00", is_slbia => '0', align_intr => '0',
dword_index => '0', two_dwords => '0', incomplete => '0');
type reg_stage1_t is record
req : request_t;
busy : std_ulogic;
issued : std_ulogic;
addr0 : std_ulogic_vector(63 downto 0);
end record;
type reg_stage2_t is record
req : request_t;
byte_index : byte_index_t;
use_second : std_ulogic_vector(7 downto 0);
busy : std_ulogic;
wait_dc : std_ulogic;
wait_mmu : std_ulogic;
one_cycle : std_ulogic;
wr_sel : std_ulogic_vector(1 downto 0);
addr0 : std_ulogic_vector(63 downto 0);
sprsel : std_ulogic_vector(1 downto 0);
dbg_spr : std_ulogic_vector(63 downto 0);
dbg_spr_ack: std_ulogic;
end record;
type reg_stage3_t is record
state : state_t;
complete : std_ulogic;
instr_tag : instr_tag_t;
write_enable : std_ulogic;
write_reg : gspr_index_t;
write_data : std_ulogic_vector(63 downto 0);
rc : std_ulogic;
xerc : xer_common_t;
store_done : std_ulogic;
load_data : std_ulogic_vector(63 downto 0);
dar : std_ulogic_vector(63 downto 0);
dsisr : std_ulogic_vector(31 downto 0);
ld_sp_data : std_ulogic_vector(31 downto 0);
ld_sp_nz : std_ulogic;
ld_sp_lz : std_ulogic_vector(5 downto 0);
stage1_en : std_ulogic;
interrupt : std_ulogic;
intr_vec : integer range 0 to 16#fff#;
srr1 : std_ulogic_vector(15 downto 0);
events : Loadstore1EventType;
end record;
signal req_in : request_t;
signal r1, r1in : reg_stage1_t;
signal r2, r2in : reg_stage2_t;
signal r3, r3in : reg_stage3_t;
signal flush : std_ulogic;
signal busy : std_ulogic;
signal complete : std_ulogic;
signal flushing : std_ulogic;
signal store_sp_data : std_ulogic_vector(31 downto 0);
signal load_dp_data : std_ulogic_vector(63 downto 0);
signal store_data : std_ulogic_vector(63 downto 0);
signal stage1_req : request_t;
signal stage1_dcreq : std_ulogic;
signal stage1_dreq : std_ulogic;
-- Generate byte enables from sizes
function length_to_sel(length : in std_logic_vector(3 downto 0)) return std_ulogic_vector is
begin
case length is
when "0001" =>
return "00000001";
when "0010" =>
return "00000011";
when "0100" =>
return "00001111";
when "1000" =>
return "11111111";
when others =>
return "00000000";
end case;
end function length_to_sel;
-- Calculate byte enables
-- This returns 16 bits, giving the select signals for two transfers,
-- to account for unaligned loads or stores
function xfer_data_sel(size : in std_logic_vector(3 downto 0);
address : in std_logic_vector(2 downto 0))
return std_ulogic_vector is
variable longsel : std_ulogic_vector(15 downto 0);
begin
if is_X(address) then
longsel := (others => 'X');
return longsel;
else
longsel := "00000000" & length_to_sel(size);
return std_ulogic_vector(shift_left(unsigned(longsel),
to_integer(unsigned(address))));
end if;
end function xfer_data_sel;
-- 23-bit right shifter for DP -> SP float conversions
function shifter_23r(frac: std_ulogic_vector(22 downto 0); shift: unsigned(4 downto 0))
return std_ulogic_vector is
variable fs1 : std_ulogic_vector(22 downto 0);
variable fs2 : std_ulogic_vector(22 downto 0);
begin
case shift(1 downto 0) is
when "00" =>
fs1 := frac;
when "01" =>
fs1 := '0' & frac(22 downto 1);
when "10" =>
fs1 := "00" & frac(22 downto 2);
when others =>
fs1 := "000" & frac(22 downto 3);
end case;
case shift(4 downto 2) is
when "000" =>
fs2 := fs1;
when "001" =>
fs2 := x"0" & fs1(22 downto 4);
when "010" =>
fs2 := x"00" & fs1(22 downto 8);
when "011" =>
fs2 := x"000" & fs1(22 downto 12);
when "100" =>
fs2 := x"0000" & fs1(22 downto 16);
when others =>
fs2 := x"00000" & fs1(22 downto 20);
end case;
return fs2;
end;
-- 23-bit left shifter for SP -> DP float conversions
function shifter_23l(frac: std_ulogic_vector(22 downto 0); shift: unsigned(4 downto 0))
return std_ulogic_vector is
variable fs1 : std_ulogic_vector(22 downto 0);
variable fs2 : std_ulogic_vector(22 downto 0);
begin
case shift(1 downto 0) is
when "00" =>
fs1 := frac;
when "01" =>
fs1 := frac(21 downto 0) & '0';
when "10" =>
fs1 := frac(20 downto 0) & "00";
when others =>
fs1 := frac(19 downto 0) & "000";
end case;
case shift(4 downto 2) is
when "000" =>
fs2 := fs1;
when "001" =>
fs2 := fs1(18 downto 0) & x"0" ;
when "010" =>
fs2 := fs1(14 downto 0) & x"00";
when "011" =>
fs2 := fs1(10 downto 0) & x"000";
when "100" =>
fs2 := fs1(6 downto 0) & x"0000";
when others =>
fs2 := fs1(2 downto 0) & x"00000";
end case;
return fs2;
end;
begin
loadstore1_reg: process(clk)
begin
if rising_edge(clk) then
if rst = '1' then
r1.busy <= '0';
r1.issued <= '0';
r1.req.valid <= '0';
r1.req.dc_req <= '0';
r1.req.incomplete <= '0';
r1.req.tlbie <= '0';
r1.req.is_slbia <= '0';
r1.req.instr_fault <= '0';
r1.req.load <= '0';
r1.req.priv_mode <= '0';
r1.req.sprsel <= "00";
r1.req.ric <= "00";
r1.req.xerc <= xerc_init;
r2.req.valid <= '0';
r2.busy <= '0';
r2.req.tlbie <= '0';
r2.req.is_slbia <= '0';
r2.req.instr_fault <= '0';
r2.req.load <= '0';
r2.req.priv_mode <= '0';
r2.req.sprsel <= "00";
r2.req.ric <= "00";
r2.req.xerc <= xerc_init;
r2.wait_dc <= '0';
r2.wait_mmu <= '0';
r2.one_cycle <= '0';
r3.dar <= (others => '0');
r3.dsisr <= (others => '0');
r3.state <= IDLE;
r3.write_enable <= '0';
r3.interrupt <= '0';
r3.complete <= '0';
r3.stage1_en <= '1';
r3.events.load_complete <= '0';
r3.events.store_complete <= '0';
flushing <= '0';
else
r1 <= r1in;
r2 <= r2in;
r3 <= r3in;
flushing <= (flushing or (r1in.req.valid and r1in.req.align_intr)) and
not flush;
end if;
stage1_dreq <= stage1_dcreq;
if d_in.valid = '1' then
assert r2.req.valid = '1' and r2.req.dc_req = '1' and r3.state = IDLE severity failure;
end if;
if d_in.error = '1' then
assert r2.req.valid = '1' and r2.req.dc_req = '1' and r3.state = IDLE severity failure;
end if;
if m_in.done = '1' or m_in.err = '1' then
assert r2.req.valid = '1' and r3.state = MMU_WAIT severity failure;
end if;
end if;
end process;
ls_fp_conv: if HAS_FPU generate
-- Convert DP data to SP for stfs
dp_to_sp: process(all)
variable exp : unsigned(10 downto 0);
variable frac : std_ulogic_vector(22 downto 0);
variable shift : unsigned(4 downto 0);
begin
store_sp_data(31) <= l_in.data(63);
store_sp_data(30 downto 0) <= (others => '0');
exp := unsigned(l_in.data(62 downto 52));
if exp > 896 then
store_sp_data(30) <= l_in.data(62);
store_sp_data(29 downto 0) <= l_in.data(58 downto 29);
elsif exp >= 874 then
-- denormalization required
frac := '1' & l_in.data(51 downto 30);
shift := 0 - exp(4 downto 0);
store_sp_data(22 downto 0) <= shifter_23r(frac, shift);
end if;
end process;
-- Convert SP data to DP for lfs
sp_to_dp: process(all)
variable exp : unsigned(7 downto 0);
variable exp_dp : unsigned(10 downto 0);
variable exp_nz : std_ulogic;
variable exp_ao : std_ulogic;
variable frac : std_ulogic_vector(22 downto 0);
variable frac_shift : unsigned(4 downto 0);
begin
frac := r3.ld_sp_data(22 downto 0);
exp := unsigned(r3.ld_sp_data(30 downto 23));
exp_nz := or (r3.ld_sp_data(30 downto 23));
exp_ao := and (r3.ld_sp_data(30 downto 23));
frac_shift := (others => '0');
if exp_ao = '1' then
exp_dp := to_unsigned(2047, 11); -- infinity or NaN
elsif exp_nz = '1' then
exp_dp := 896 + resize(exp, 11); -- finite normalized value
elsif r3.ld_sp_nz = '0' then
exp_dp := to_unsigned(0, 11); -- zero
else
-- denormalized SP operand, need to normalize
exp_dp := 896 - resize(unsigned(r3.ld_sp_lz), 11);
frac_shift := unsigned(r3.ld_sp_lz(4 downto 0)) + 1;
end if;
load_dp_data(63) <= r3.ld_sp_data(31);
load_dp_data(62 downto 52) <= std_ulogic_vector(exp_dp);
load_dp_data(51 downto 29) <= shifter_23l(frac, frac_shift);
load_dp_data(28 downto 0) <= (others => '0');
end process;
end generate;
-- Translate a load/store instruction into the internal request format
-- XXX this should only depend on l_in, but actually depends on
-- r1.addr0 as well (in the l_in.second = 1 case).
loadstore1_in: process(all)
variable v : request_t;
variable lsu_sum : std_ulogic_vector(63 downto 0);
variable brev_lenm1 : unsigned(2 downto 0);
variable long_sel : std_ulogic_vector(15 downto 0);
variable addr : std_ulogic_vector(63 downto 0);
variable sprn : std_ulogic_vector(9 downto 0);
variable misaligned : std_ulogic;
variable addr_mask : std_ulogic_vector(2 downto 0);
begin
v := request_init;
sprn := l_in.insn(15 downto 11) & l_in.insn(20 downto 16);
v.valid := l_in.valid;
v.instr_tag := l_in.instr_tag;
v.mode_32bit := l_in.mode_32bit;
v.prefixed := l_in.prefixed;
v.write_reg := l_in.write_reg;
v.length := l_in.length;
v.elt_length := l_in.length;
v.byte_reverse := l_in.byte_reverse;
v.sign_extend := l_in.sign_extend;
v.update := l_in.update;
v.xerc := l_in.xerc;
v.reserve := l_in.reserve;
v.rc := l_in.rc;
v.nc := l_in.ci;
v.virt_mode := l_in.virt_mode;
v.priv_mode := l_in.priv_mode;
v.ric := l_in.insn(19 downto 18);
if sprn(1) = '1' then
-- DSISR and DAR
v.sprsel := '1' & sprn(0);
else
-- PID and PTCR
v.sprsel := '0' & sprn(8);
end if;
lsu_sum := std_ulogic_vector(unsigned(l_in.addr1) + unsigned(l_in.addr2));
if HAS_FPU and l_in.is_32bit = '1' then
v.store_data := x"00000000" & store_sp_data;
else
v.store_data := l_in.data;
end if;
addr := lsu_sum;
if l_in.second = '1' then
-- for an update-form load, use the previous address
-- as the value to write back to RA.
addr := r1.addr0;
end if;
if l_in.mode_32bit = '1' then
addr(63 downto 32) := (others => '0');
end if;
v.addr := addr;
-- XXX Temporary hack. Mark the op as non-cachable if the address
-- is the form 0xc------- for a real-mode access.
if addr(31 downto 28) = "1100" and l_in.virt_mode = '0' then
v.nc := '1';
end if;
addr_mask := std_ulogic_vector(unsigned(l_in.length(2 downto 0)) - 1);
-- Do length_to_sel and work out if we are doing 2 dwords
long_sel := xfer_data_sel(v.length, addr(2 downto 0));
v.byte_sel := long_sel(7 downto 0);
v.second_bytes := long_sel(15 downto 8);
if long_sel(15 downto 8) /= "00000000" then
v.two_dwords := '1';
end if;
-- check alignment for larx/stcx
misaligned := or (addr_mask and addr(2 downto 0));
v.align_intr := l_in.reserve and misaligned;
case l_in.op is
when OP_STORE =>
v.store := '1';
when OP_LOAD =>
-- Note: only RA updates have l_in.second = 1
if l_in.second = '0' then
v.load := '1';
if HAS_FPU and l_in.is_32bit = '1' then
-- Allow an extra cycle for SP->DP precision conversion
v.load_sp := '1';
end if;
else
-- write back address to RA
v.do_update := '1';
end if;
when OP_DCBZ =>
v.dcbz := '1';
v.align_intr := v.nc;
when OP_TLBIE =>
v.tlbie := '1';
v.addr := l_in.addr2; -- address from RB for tlbie
v.is_slbia := l_in.insn(7);
v.mmu_op := '1';
when OP_MFSPR =>
v.read_spr := '1';
when OP_MTSPR =>
v.write_spr := '1';
v.mmu_op := not sprn(1);
when OP_FETCH_FAILED =>
-- send it to the MMU to do the radix walk
v.instr_fault := '1';
v.mmu_op := '1';
when others =>
end case;
v.dc_req := l_in.valid and (v.load or v.store or v.dcbz) and not v.align_intr;
v.incomplete := v.dc_req and v.two_dwords;
-- Work out controls for load and store formatting
brev_lenm1 := "000";
if v.byte_reverse = '1' then
brev_lenm1 := unsigned(v.length(2 downto 0)) - 1;
end if;
v.brev_mask := brev_lenm1;
req_in <= v;
end process;
busy <= dc_stall or d_in.error or r1.busy or r2.busy;
complete <= r2.one_cycle or (r2.wait_dc and d_in.valid) or r3.complete;
-- Processing done in the first cycle of a load/store instruction
loadstore1_1: process(all)
variable v : reg_stage1_t;
variable req : request_t;
variable dcreq : std_ulogic;
variable issue : std_ulogic;
begin
v := r1;
issue := '0';
dcreq := '0';
if r1.busy = '0' then
req := req_in;
req.valid := l_in.valid;
if flushing = '1' then
-- Make this a no-op request rather than simply invalid.
-- It will never get to stage 3 since there is a request ahead of
-- it with align_intr = 1.
req.dc_req := '0';
end if;
issue := l_in.valid and req.dc_req;
if l_in.valid = '1' then
v.addr0 := req.addr;
end if;
else
req := r1.req;
if r1.req.dc_req = '1' and r1.issued = '0' then
issue := '1';
elsif r1.req.incomplete = '1' then
-- construct the second request for a misaligned access
req.dword_index := '1';
req.incomplete := '0';
req.addr := std_ulogic_vector(unsigned(r1.req.addr(63 downto 3)) + 1) & "000";
if r1.req.mode_32bit = '1' then
req.addr(32) := '0';
end if;
req.byte_sel := r1.req.second_bytes;
issue := '1';
else
-- For the lfs conversion cycle, leave the request valid
-- for another cycle but with req.dc_req = 0.
-- For an MMU request last cycle, we have nothing
-- to do in this cycle, so make it invalid.
if r1.req.load_sp = '0' then
req.valid := '0';
end if;
req.dc_req := '0';
end if;
end if;
if flush = '1' then
v.req.valid := '0';
v.req.dc_req := '0';
v.req.incomplete := '0';
v.issued := '0';
v.busy := '0';
elsif (dc_stall or d_in.error or r2.busy) = '0' then
-- we can change what's in r1 next cycle because the current thing
-- in r1 will go into r2
v.req := req;
dcreq := issue;
v.issued := issue;
v.busy := (issue and (req.incomplete or req.load_sp)) or (req.valid and req.mmu_op);
else
-- pipeline is stalled
if r1.issued = '1' and d_in.error = '1' then
v.issued := '0';
v.busy := '1';
end if;
end if;
stage1_req <= req;
stage1_dcreq <= dcreq;
r1in <= v;
end process;
-- Processing done in the second cycle of a load/store instruction.
-- Store data is formatted here and sent to the dcache.
-- The request in r1 is sent to stage 3 if stage 3 will not be busy next cycle.
loadstore1_2: process(all)
variable v : reg_stage2_t;
variable j : integer;
variable k : unsigned(2 downto 0);
variable kk : unsigned(3 downto 0);
variable idx : unsigned(2 downto 0);
variable byte_offset : unsigned(2 downto 0);
variable interrupt : std_ulogic;
variable dbg_spr_rd : std_ulogic;
variable sprsel : std_ulogic_vector(1 downto 0);
variable sprval : std_ulogic_vector(63 downto 0);
begin
v := r2;
-- Byte reversing and rotating for stores.
-- Done in the second cycle (the cycle after l_in.valid = 1).
byte_offset := unsigned(r1.addr0(2 downto 0));
for i in 0 to 7 loop
k := (to_unsigned(i, 3) - byte_offset) xor r1.req.brev_mask;
if is_X(k) then
store_data(i * 8 + 7 downto i * 8) <= (others => 'X');
else
j := to_integer(k) * 8;
store_data(i * 8 + 7 downto i * 8) <= r1.req.store_data(j + 7 downto j);
end if;
end loop;
dbg_spr_rd := dbg_spr_req and not (r1.req.valid and r1.req.read_spr);
if dbg_spr_rd = '0' then
sprsel := r1.req.sprsel;
else
sprsel := dbg_spr_addr;
end if;
if sprsel(1) = '1' then
if sprsel(0) = '0' then
sprval := x"00000000" & r3.dsisr;
else
sprval := r3.dar;
end if;
else
sprval := m_in.sprval;
end if;
if dbg_spr_req = '0' then
v.dbg_spr_ack := '0';
elsif dbg_spr_rd = '1' and r2.dbg_spr_ack = '0' then
v.dbg_spr := sprval;
v.dbg_spr_ack := '1';
end if;
if (dc_stall or d_in.error or r2.busy or l_in.e2stall) = '0' then
if r1.req.valid = '0' or r1.issued = '1' or r1.req.dc_req = '0' then
v.req := r1.req;
v.addr0 := r1.addr0;
v.req.store_data := store_data;
v.wait_dc := r1.req.valid and r1.req.dc_req and not r1.req.load_sp and
not r1.req.incomplete;
v.wait_mmu := r1.req.valid and r1.req.mmu_op;
v.busy := r1.req.valid and r1.req.mmu_op;
v.one_cycle := r1.req.valid and not (r1.req.dc_req or r1.req.mmu_op);
if r1.req.do_update = '1' or r1.req.store = '1' or r1.req.read_spr = '1' then
v.wr_sel := "00";
elsif r1.req.load_sp = '1' then
v.wr_sel := "01";
else
v.wr_sel := "10";
end if;
if r1.req.read_spr = '1' then
v.addr0 := sprval;
end if;
-- Work out load formatter controls for next cycle
for i in 0 to 7 loop
idx := to_unsigned(i, 3) xor r1.req.brev_mask;
kk := ('0' & idx) + ('0' & byte_offset);
v.use_second(i) := kk(3);
v.byte_index(i) := kk(2 downto 0);
end loop;
else
v.req.valid := '0';
v.wait_dc := '0';
v.wait_mmu := '0';
v.one_cycle := '0';
end if;
end if;
if r2.wait_mmu = '1' and m_in.done = '1' then
if r2.req.mmu_op = '1' then
v.req.valid := '0';
v.busy := '0';
end if;
v.wait_mmu := '0';
end if;
if r2.busy = '1' and r2.wait_mmu = '0' then
v.busy := '0';
end if;
interrupt := (r2.req.valid and r2.req.align_intr) or
(d_in.error and d_in.cache_paradox) or m_in.err;
if interrupt = '1' then
v.req.valid := '0';
v.busy := '0';
v.wait_dc := '0';
v.wait_mmu := '0';
elsif d_in.error = '1' then
v.wait_mmu := '1';
v.busy := '1';
end if;
r2in <= v;
-- SPR values for core_debug
dbg_spr_data <= r2.dbg_spr;
dbg_spr_ack <= r2.dbg_spr_ack;
end process;
-- Processing done in the third cycle of a load/store instruction.
-- At this stage we can do things that have side effects without
-- fear of the instruction getting flushed. This is the point at
-- which requests get sent to the MMU.
loadstore1_3: process(all)
variable v : reg_stage3_t;
variable j : integer;
variable req : std_ulogic;
variable mmureq : std_ulogic;
variable mmu_mtspr : std_ulogic;
variable write_enable : std_ulogic;
variable write_data : std_ulogic_vector(63 downto 0);
variable do_update : std_ulogic;
variable done : std_ulogic;
variable exception : std_ulogic;
variable data_permuted : std_ulogic_vector(63 downto 0);
variable data_trimmed : std_ulogic_vector(63 downto 0);
variable sprval : std_ulogic_vector(63 downto 0);
variable negative : std_ulogic;
variable dsisr : std_ulogic_vector(31 downto 0);
variable itlb_fault : std_ulogic;
variable trim_ctl : trim_ctl_t;
begin
v := r3;
req := '0';
mmureq := '0';
mmu_mtspr := '0';
done := '0';
exception := '0';
dsisr := (others => '0');
write_enable := '0';
sprval := (others => '0');
do_update := '0';
v.complete := '0';
v.srr1 := (others => '0');
v.events := (others => '0');
-- load data formatting
-- shift and byte-reverse data bytes
for i in 0 to 7 loop
if is_X(r2.byte_index(i)) then
data_permuted(i * 8 + 7 downto i * 8) := (others => 'X');
else
j := to_integer(r2.byte_index(i)) * 8;
data_permuted(i * 8 + 7 downto i * 8) := d_in.data(j + 7 downto j);
end if;
end loop;
-- Work out the sign bit for sign extension.
-- For unaligned loads crossing two dwords, the sign bit is in the
-- first dword for big-endian (byte_reverse = 1), or the second dword
-- for little-endian.
if r2.req.dword_index = '1' and r2.req.byte_reverse = '1' then
negative := (r2.req.length(3) and r3.load_data(63)) or
(r2.req.length(2) and r3.load_data(31)) or
(r2.req.length(1) and r3.load_data(15)) or
(r2.req.length(0) and r3.load_data(7));
else
negative := (r2.req.length(3) and data_permuted(63)) or
(r2.req.length(2) and data_permuted(31)) or
(r2.req.length(1) and data_permuted(15)) or
(r2.req.length(0) and data_permuted(7));
end if;
-- trim and sign-extend
for i in 0 to 7 loop
if is_X(r2.req.length) then
trim_ctl(i) := "XX";
elsif i < to_integer(unsigned(r2.req.length)) then
if r2.req.dword_index = '1' then
trim_ctl(i) := '1' & not r2.use_second(i);
else
trim_ctl(i) := "10";
end if;
else
trim_ctl(i) := "00";
end if;
end loop;
for i in 0 to 7 loop
case trim_ctl(i) is
when "11" =>
data_trimmed(i * 8 + 7 downto i * 8) := r3.load_data(i * 8 + 7 downto i * 8);
when "10" =>
data_trimmed(i * 8 + 7 downto i * 8) := data_permuted(i * 8 + 7 downto i * 8);
when others =>
data_trimmed(i * 8 + 7 downto i * 8) := (others => negative and r2.req.sign_extend);
end case;
end loop;
if HAS_FPU then
-- Single-precision FP conversion for loads
v.ld_sp_data := data_trimmed(31 downto 0);
v.ld_sp_nz := or (data_trimmed(22 downto 0));
v.ld_sp_lz := count_left_zeroes(data_trimmed(22 downto 0));
end if;
if d_in.valid = '1' and r2.req.load = '1' then
v.load_data := data_permuted;
end if;
if r2.req.valid = '1' then
if r2.req.read_spr = '1' then
write_enable := '1';
end if;
if r2.req.align_intr = '1' then
-- generate alignment interrupt
exception := '1';
end if;
if r2.req.do_update = '1' then
do_update := '1';
end if;
if r2.req.load_sp = '1' and r2.req.dc_req = '0' then
write_enable := '1';
end if;
if r2.req.write_spr = '1' and r2.req.mmu_op = '0' then
if r2.req.sprsel(0) = '0' then
v.dsisr := r2.req.store_data(31 downto 0);
else
v.dar := r2.req.store_data;
end if;
end if;
end if;
if r3.state = IDLE and r2.req.valid = '1' and r2.req.mmu_op = '1' then
-- send request (tlbie, mtspr, itlb miss) to MMU
mmureq := not r2.req.write_spr;
mmu_mtspr := r2.req.write_spr;
if r2.req.instr_fault = '1' then
v.events.itlb_miss := '1';
end if;
v.state := MMU_WAIT;
end if;
if d_in.valid = '1' then
if r2.req.incomplete = '0' then
write_enable := r2.req.load and not r2.req.load_sp;
-- stores write back rA update
do_update := r2.req.update and r2.req.store;
end if;
end if;
if d_in.error = '1' then
if d_in.cache_paradox = '1' then
-- signal an interrupt straight away
exception := '1';
dsisr(63 - 38) := not r2.req.load;
-- XXX there is no architected bit for this
-- (probably should be a machine check in fact)
dsisr(63 - 35) := d_in.cache_paradox;
else
-- Look up the translation for TLB miss
-- and also for permission error and RC error
-- in case the PTE has been updated.
mmureq := '1';
v.state := MMU_WAIT;
v.stage1_en := '0';
end if;
end if;
if m_in.done = '1' then
if r2.req.dc_req = '1' then
-- retry the request now that the MMU has installed a TLB entry
req := '1';
else
v.complete := '1';
end if;
end if;
if m_in.err = '1' then
exception := '1';
dsisr(63 - 33) := m_in.invalid;
dsisr(63 - 36) := m_in.perm_error;
dsisr(63 - 38) := r2.req.store or r2.req.dcbz;
dsisr(63 - 44) := m_in.badtree;
dsisr(63 - 45) := m_in.rc_error;
end if;
if (m_in.done or m_in.err) = '1' then
v.stage1_en := '1';
v.state := IDLE;
end if;
v.events.load_complete := r2.req.load and complete;
v.events.store_complete := (r2.req.store or r2.req.dcbz) and complete;
-- generate DSI or DSegI for load/store exceptions
-- or ISI or ISegI for instruction fetch exceptions
v.interrupt := exception;
if exception = '1' then
if r2.req.align_intr = '1' then
v.intr_vec := 16#600#;
v.srr1(47 - 34) := r2.req.prefixed;
v.dar := r2.req.addr;
elsif r2.req.instr_fault = '0' then
v.srr1(47 - 34) := r2.req.prefixed;
v.dar := r2.req.addr;
if m_in.segerr = '0' then
v.intr_vec := 16#300#;
v.dsisr := dsisr;
else
v.intr_vec := 16#380#;
end if;
else
if m_in.segerr = '0' then
v.srr1(47 - 33) := m_in.invalid;
v.srr1(47 - 35) := m_in.perm_error; -- noexec fault
v.srr1(47 - 44) := m_in.badtree;
v.srr1(47 - 45) := m_in.rc_error;
v.intr_vec := 16#400#;
else
v.intr_vec := 16#480#;
end if;
end if;
end if;
case r2.wr_sel is
when "00" =>
-- update reg
write_data := r2.addr0;
when "01" =>
-- lfs result
write_data := load_dp_data;
when others =>
-- load data
write_data := data_trimmed;
end case;
-- Update outputs to dcache
if r3.stage1_en = '1' then
d_out.valid <= stage1_dcreq;
d_out.load <= stage1_req.load;
d_out.dcbz <= stage1_req.dcbz;
d_out.nc <= stage1_req.nc;
d_out.reserve <= stage1_req.reserve;
d_out.addr <= stage1_req.addr;
d_out.byte_sel <= stage1_req.byte_sel;
d_out.virt_mode <= stage1_req.virt_mode;
d_out.priv_mode <= stage1_req.priv_mode;
else
d_out.valid <= req;
d_out.load <= r2.req.load;
d_out.dcbz <= r2.req.dcbz;
d_out.nc <= r2.req.nc;
d_out.reserve <= r2.req.reserve;
d_out.addr <= r2.req.addr;
d_out.byte_sel <= r2.req.byte_sel;
d_out.virt_mode <= r2.req.virt_mode;
d_out.priv_mode <= r2.req.priv_mode;
end if;
if stage1_dreq = '1' then
d_out.data <= store_data;
else
d_out.data <= r2.req.store_data;
end if;
d_out.hold <= l_in.e2stall;
-- Update outputs to MMU
m_out.valid <= mmureq;
m_out.iside <= r2.req.instr_fault;
m_out.load <= r2.req.load;
m_out.priv <= r2.req.priv_mode;
m_out.tlbie <= r2.req.tlbie;
m_out.ric <= r2.req.ric;
m_out.mtspr <= mmu_mtspr;
m_out.sprnf <= r1.req.sprsel(0);
m_out.sprnt <= r2.req.sprsel(0);
m_out.addr <= r2.req.addr;
m_out.slbia <= r2.req.is_slbia;
m_out.rs <= r2.req.store_data;
-- Update outputs to writeback
l_out.valid <= complete;
l_out.instr_tag <= r2.req.instr_tag;
l_out.write_enable <= write_enable or do_update;
l_out.write_reg <= r2.req.write_reg;
l_out.write_data <= write_data;
l_out.xerc <= r2.req.xerc;
l_out.rc <= r2.req.rc and complete;
l_out.store_done <= d_in.store_done;
l_out.interrupt <= r3.interrupt;