🏷️chap_notation
Throughout this book, we adhere
to the following notational conventions.
Note that some of these symbols are placeholders,
while others refer to specific objects.
As a general rule of thumb,
the indefinite article "a" often indicates
that the symbol is a placeholder
and that similarly formatted symbols
can denote other objects of the same type.
For example, "$x$: a scalar" means
that lowercased letters generally
represent scalar values,
but "$\mathbb{Z}$: the set of integers"
refers specifically to the symbol
-
$x$ : a scalar -
$\mathbf{x}$ : a vector -
$\mathbf{X}$ : a matrix -
$\mathsf{X}$ : a general tensor -
$\mathbf{I}$ : the identity matrix (of some given dimension), i.e., a square matrix with$1$ on all diagonal entries and$0$ on all off-diagonals -
$x_i$ ,$[\mathbf{x}]_i$ : the$i^\textrm{th}$ element of vector$\mathbf{x}$ -
$x_{ij}$ ,$x_{i,j}$ ,$[\mathbf{X}]{ij}$, $[\mathbf{X}]{i,j}$: the element of matrix$\mathbf{X}$ at row$i$ and column$j$ .
-
$\mathcal{X}$ : a set -
$\mathbb{Z}$ : the set of integers -
$\mathbb{Z}^+$ : the set of positive integers -
$\mathbb{R}$ : the set of real numbers -
$\mathbb{R}^n$ : the set of$n$ -dimensional vectors of real numbers -
$\mathbb{R}^{a\times b}$ : The set of matrices of real numbers with$a$ rows and$b$ columns -
$|\mathcal{X}|$ : cardinality (number of elements) of set$\mathcal{X}$ -
$\mathcal{A}\cup\mathcal{B}$ : union of sets$\mathcal{A}$ and$\mathcal{B}$ -
$\mathcal{A}\cap\mathcal{B}$ : intersection of sets$\mathcal{A}$ and$\mathcal{B}$ -
$\mathcal{A}\setminus\mathcal{B}$ : set subtraction of$\mathcal{B}$ from$\mathcal{A}$ (contains only those elements of$\mathcal{A}$ that do not belong to$\mathcal{B}$ )
-
$f(\cdot)$ : a function -
$\log(\cdot)$ : the natural logarithm (base$e$ ) -
$\log_2(\cdot)$ : logarithm to base$2$ -
$\exp(\cdot)$ : the exponential function -
$\mathbf{1}(\cdot)$ : the indicator function; evaluates to$1$ if the boolean argument is true, and$0$ otherwise -
$\mathbf{1}_{\mathcal{X}}(z)$ : the set-membership indicator function; evaluates to$1$ if the element$z$ belongs to the set$\mathcal{X}$ and$0$ otherwise -
$\mathbf{(\cdot)}^\top$ : transpose of a vector or a matrix -
$\mathbf{X}^{-1}$ : inverse of matrix$\mathbf{X}$ -
$\odot$ : Hadamard (elementwise) product -
$[\cdot, \cdot]$ : concatenation -
$|\cdot|_p$ :$\ell_p$ norm -
$|\cdot|$ :$\ell_2$ norm -
$\langle \mathbf{x}, \mathbf{y} \rangle$ : inner (dot) product of vectors$\mathbf{x}$ and$\mathbf{y}$ -
$\sum$ : summation over a collection of elements -
$\prod$ : product over a collection of elements -
$\stackrel{\textrm{def}}{=}$ : an equality asserted as a definition of the symbol on the left-hand side
-
$\frac{dy}{dx}$ : derivative of$y$ with respect to$x$ -
$\frac{\partial y}{\partial x}$ : partial derivative of$y$ with respect to$x$ -
$\nabla_{\mathbf{x}} y$ : gradient of$y$ with respect to$\mathbf{x}$ -
$\int_a^b f(x) ;dx$ : definite integral of$f$ from$a$ to$b$ with respect to$x$ -
$\int f(x) ;dx$ : indefinite integral of$f$ with respect to$x$
-
$X$ : a random variable -
$P$ : a probability distribution -
$X \sim P$ : the random variable$X$ follows distribution$P$ -
$P(X=x)$ : the probability assigned to the event where random variable$X$ takes value$x$ -
$P(X \mid Y)$ : the conditional probability distribution of$X$ given$Y$ -
$p(\cdot)$ : a probability density function (PDF) associated with distribution$P$ -
${E}[X]$ : expectation of a random variable$X$ -
$X \perp Y$ : random variables$X$ and$Y$ are independent -
$X \perp Y \mid Z$ : random variables$X$ and$Y$ are conditionally independent given$Z$ -
$\sigma_X$ : standard deviation of random variable$X$ -
$\textrm{Var}(X)$ : variance of random variable$X$ , equal to$\sigma^2_X$ -
$\textrm{Cov}(X, Y)$ : covariance of random variables$X$ and$Y$ -
$\rho(X, Y)$ : the Pearson correlation coefficient between$X$ and$Y$ , equals$\frac{\textrm{Cov}(X, Y)}{\sigma_X \sigma_Y}$ -
$H(X)$ : entropy of random variable$X$ -
$D_{\textrm{KL}}(P|Q)$ : the KL-divergence (or relative entropy) from distribution$Q$ to distribution$P$