-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMergeKSortedLists.h
93 lines (76 loc) · 2.43 KB
/
MergeKSortedLists.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/*
Author: naiyong, aonaiyong@gmail.com
Date: Sep 21, 2014
Problem: Merge k Sorted Lists
Difficulty: 3
Source: https://oj.leetcode.com/problems/merge-k-sorted-lists/
Notes:
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Solution: 1. Min priority queue.
O(k*n*log(k)) time, O(log(k)) space.
2. Divide-and-Conquer.
O(k*n*log(k)) time, O(1) space.
*/
#ifndef MERGEKSORTEDLISTS_H_
#define MERGEKSORTEDLISTS_H_
#include <vector>
using std::vector;
#include <queue>
using std::priority_queue;
#include "ListNode.h"
class Compare {
public:
bool operator()(ListNode *x, ListNode *y) const {
return x->val > y->val;
}
};
class Solution {
public:
ListNode *mergeKLists(vector<ListNode *> &lists) {
return mergeKListsMPQ(lists);
}
// Min Priority Queue: O(n*k*log(k)) time, O(log(k)) space
ListNode *mergeKListsMPQ(vector<ListNode *> &lists) {
priority_queue<ListNode *, vector<ListNode *>, Compare> q;
// build a heap of size k
// O(k) time complexity, O(k) space complexity
for (int i = 0; i < lists.size(); ++i) {
if (lists[i])
q.push(lists[i]);
}
ListNode dummy(0), *tail = &dummy;
while (!q.empty()) { // n * k steps
tail = tail->next = q.top(); // O(1) time
q.pop(); // O(log(k)) time
if (tail->next)
q.push(tail->next); // O(log(k)) time
}
return dummy.next;
}
// Divide-and-Conquer: O(n*k*log(k)) time, O(1) space
ListNode *mergeKListsDAC(vector<ListNode *> &lists) {
if (lists.empty())
return nullptr;
int k = lists.size();
while (k > 1) {
int newk = k / 2;
for (int i = 0; i < newk; ++i)
lists[i] = mergeTwoLists(lists[2 * i], lists[2 * i + 1]);
if (k % 2)
lists[newk++] = lists[k-1];
k = newk;
}
return lists[0];
}
ListNode *mergeTwoLists(ListNode *l1, ListNode *l2) {
ListNode dummy(0), *tail = &dummy;
while (l1 && l2) {
ListNode *&min = l1->val <= l2->val ? l1 : l2;
tail = tail->next = min;
min = min->next;
}
tail->next = l1 ? l1 : l2;
return dummy.next;
}
};
#endif /* MERGEKSORTEDLISTS_H_ */