-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathanalysis.py
437 lines (369 loc) · 17.5 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import utils
import lm_nets
import random
import numpy as np
import pickle
import chainer
from chainer import cuda
from chainer import optimizers
import chainer.functions as F
import logging
logger = logging.getLogger(__name__)
chainer.config.use_cudnn = 'always'
to_cpu = chainer.cuda.to_cpu
to_gpu = chainer.cuda.to_gpu
from chainer import serializers
import nets
import lm_nets
def main():
logging.basicConfig(
format='%(asctime)s : %(threadName)s : %(levelname)s : %(message)s',
level=logging.INFO)
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', '-g', default=-1, type=int,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--batchsize', dest='batchsize', type=int,
default=32, help='learning minibatch size')
parser.add_argument('--batchsize_semi', dest='batchsize_semi', type=int,
default=64, help='learning minibatch size')
parser.add_argument('--n_epoch', dest='n_epoch', type=int, default=30,
help='n_epoch')
parser.add_argument('--pretrained_model', dest='pretrained_model',
type=str, default='', help='pretrained_model')
parser.add_argument('--use_unlabled_to_vocab', dest='use_unlabled_to_vocab',
type=int, default=1, help='use_unlabled_to_vocab')
parser.add_argument('--use_rational', dest='use_rational',
type=int, default=0, help='use_rational')
parser.add_argument('--save_name', dest='save_name', type=str,
default='sentiment_model', help='save_name')
parser.add_argument('--n_layers', dest='n_layers', type=int,
default=1, help='n_layers')
parser.add_argument('--alpha', dest='alpha',
type=float, default=0.001, help='alpha')
parser.add_argument('--alpha_decay', dest='alpha_decay',
type=float, default=0.0, help='alpha_decay')
parser.add_argument('--clip', dest='clip',
type=float, default=5.0, help='clip')
parser.add_argument('--debug_mode', dest='debug_mode',
type=int, default=0, help='debug_mode')
parser.add_argument('--use_exp_decay', dest='use_exp_decay',
type=int, default=1, help='use_exp_decay')
parser.add_argument('--load_trained_lstm', dest='load_trained_lstm',
type=str, default='', help='load_trained_lstm')
parser.add_argument('--freeze_word_emb', dest='freeze_word_emb',
type=int, default=0, help='freeze_word_emb')
parser.add_argument('--dropout', dest='dropout',
type=float, default=0.50, help='dropout')
parser.add_argument('--use_adv', dest='use_adv',
type=int, default=0, help='use_adv')
parser.add_argument('--xi_var', dest='xi_var',
type=float, default=1.0, help='xi_var')
parser.add_argument('--xi_var_first', dest='xi_var_first',
type=float, default=1.0, help='xi_var_first')
parser.add_argument('--lower', dest='lower',
type=int, default=0, help='lower')
parser.add_argument('--nl_factor', dest='nl_factor', type=float,
default=1.0, help='nl_factor')
parser.add_argument('--min_count', dest='min_count', type=int,
default=1, help='min_count')
parser.add_argument('--ignore_unk', dest='ignore_unk', type=int,
default=0, help='ignore_unk')
parser.add_argument('--use_semi_data', dest='use_semi_data',
type=int, default=0, help='use_semi_data')
parser.add_argument('--add_labeld_to_unlabel', dest='add_labeld_to_unlabel',
type=int, default=1, help='add_labeld_to_unlabel')
parser.add_argument('--norm_sentence_level', dest='norm_sentence_level',
type=int, default=1, help='norm_sentence_level')
parser.add_argument('--dataset', default='imdb',
choices=['imdb', 'elec', 'rotten', 'dbpedia', 'rcv1'])
parser.add_argument('--eval', dest='eval', type=int, default=0, help='eval')
parser.add_argument('--emb_dim', dest='emb_dim', type=int,
default=256, help='emb_dim')
parser.add_argument('--hidden_dim', dest='hidden_dim', type=int,
default=1024, help='hidden_dim')
parser.add_argument('--hidden_cls_dim', dest='hidden_cls_dim', type=int,
default=30, help='hidden_cls_dim')
parser.add_argument('--adaptive_softmax', dest='adaptive_softmax',
type=int, default=1, help='adaptive_softmax')
parser.add_argument('--random_seed', dest='random_seed', type=int,
default=1234, help='random_seed')
parser.add_argument('--n_class', dest='n_class', type=int,
default=2, help='n_class')
parser.add_argument('--word_only', dest='word_only', type=int,
default=0, help='word_only')
# iVAT
parser.add_argument('--use_attn_d', dest='use_attn_d',
type=int, default=0, help='use_attn_d')
parser.add_argument('--nn_k', dest='nn_k', type=int, default=10, help='nn_k')
parser.add_argument('--nn_k_offset', dest='nn_k_offset',
type=int, default=1, help='nn_k_offset')
parser.add_argument('--online_nn', dest='online_nn',
type=int, default=0, help='online_nn')
parser.add_argument('--use_limit_vocab', dest='use_limit_vocab', type=int,
default=1, help='use_limit_vocab')
parser.add_argument('--batchsize_nn', dest='batchsize_nn',
type=int, default=10, help='batchsize_nn')
# Visualize
parser.add_argument('--analysis_mode', dest='analysis_mode', type=int,
default=0, help='analysis_mode')
parser.add_argument('--analysis_limit', dest='analysis_limit', type=int,
default=100, help='analysis_limit')
args = parser.parse_args()
batchsize = args.batchsize
batchsize_semi = args.batchsize_semi
print(args)
random.seed(args.random_seed)
np.random.seed(args.random_seed)
os.environ["CHAINER_SEED"] = str(args.random_seed)
os.makedirs("models", exist_ok=True)
if args.debug_mode:
chainer.set_debug(True)
use_unlabled_to_vocab = args.use_unlabled_to_vocab
lower = args.lower == 1
n_char_vocab = 1
n_class = 2
if args.dataset == 'imdb':
vocab_obj, dataset, lm_data, t_vocab = utils.load_dataset_imdb(
include_pretrain=use_unlabled_to_vocab, lower=lower,
min_count=args.min_count, ignore_unk=args.ignore_unk,
use_semi_data=args.use_semi_data,
add_labeld_to_unlabel=args.add_labeld_to_unlabel)
(train_x, train_x_len, train_y,
dev_x, dev_x_len, dev_y,
test_x, test_x_len, test_y) = dataset
vocab, vocab_count = vocab_obj
n_class = 2
# TODO: add other dataset code
if args.use_semi_data:
semi_train_x, semi_train_x_len = lm_data
print('train_vocab_size:', t_vocab)
vocab_inv = dict([(widx, w) for w, widx in vocab.items()])
print('vocab_inv:', len(vocab_inv))
xp = cuda.cupy if args.gpu >= 0 else np
if args.gpu >= 0:
cuda.get_device(args.gpu).use()
xp.random.seed(args.random_seed)
n_vocab = len(vocab)
model = nets.uniLSTM_iVAT(n_vocab=n_vocab, emb_dim=args.emb_dim,
hidden_dim=args.hidden_dim,
use_dropout=args.dropout, n_layers=args.n_layers,
hidden_classifier=args.hidden_cls_dim,
use_adv=args.use_adv, xi_var=args.xi_var,
n_class=n_class, args=args)
model.train_vocab_size = t_vocab
model.vocab_size = n_vocab
model.logging = logging
if args.pretrained_model != '':
# load pretrained LM model
pretrain_model = lm_nets.RNNForLM(n_vocab, 1024, args.n_layers, 0.50,
share_embedding=False,
adaptive_softmax=args.adaptive_softmax)
serializers.load_npz(args.pretrained_model, pretrain_model)
pretrain_model.lstm = pretrain_model.rnn
model.set_pretrained_lstm(pretrain_model, word_only=args.word_only)
all_nn_flag = args.use_attn_d
if all_nn_flag and args.online_nn == 0:
word_embs = model.word_embed.W.data
model.norm_word_embs = word_embs / np.linalg.norm(word_embs, axis=1).reshape(-1, 1)
model.norm_word_embs = np.array(model.norm_word_embs, dtype=np.float32)
if args.load_trained_lstm != '':
serializers.load_hdf5(args.load_trained_lstm, model)
if args.gpu >= 0:
model.to_gpu()
# Visualize mode
if args.analysis_mode:
def sort_statics(_x_len, name=''):
sorted_len = sorted([(x_len, idx) for idx, x_len in enumerate(_x_len)], key=lambda x:x[0])
return [idx for _len, idx in sorted_len]
test_sorted = sort_statics(test_x_len, 'test')
if args.analysis_limit > 0:
test_sorted = test_sorted[:args.analysis_limit]
if all_nn_flag and args.online_nn == 0:
model.compute_all_nearest_words(top_k=args.nn_k)
# check nearest words
def most_sims(word):
if word not in vocab:
logging.info('[not found]:{}'.format(word))
return False
idx = vocab[word]
idx_gpu = xp.array([idx], dtype=xp.int32)
top_idx = model.get_nearest_words(idx_gpu)
sim_ids = top_idx[0]
words = [vocab_inv[int(i)] for i in sim_ids]
word_line = ','.join(words)
logging.info('{}\t\t{}'.format(word, word_line))
most_sims(u'good')
most_sims(u'this')
most_sims(u'that')
most_sims(u'awesome')
most_sims(u'bad')
most_sims(u'wrong')
def evaluate(x_set, x_length_set, y_set):
chainer.config.train = False
chainer.config.enable_backprop = False
iteration_list = range(0, len(x_set), batchsize)
correct_cnt = 0
total_cnt = 0.0
predicted_np = []
for i_index, index in enumerate(iteration_list):
x = [to_gpu(_x) for _x in x_set[index:index + batchsize]]
x_length = x_length_set[index:index + batchsize]
y = to_gpu(y_set[index:index + batchsize])
output = model(x, x_length)
predict = xp.argmax(output.data, axis=1)
correct_cnt += xp.sum(predict == y)
total_cnt += len(y)
accuracy = (correct_cnt / total_cnt) * 100.0
chainer.config.enable_backprop = True
return accuracy
def get_unlabled(perm_semi, i_index):
index = i_index * batchsize_semi
sample_idx = perm_semi[index:index + batchsize_semi]
x = [to_gpu(semi_train_x[_i]) for _i in sample_idx]
x_length = [semi_train_x_len[_i] for _i in sample_idx]
return x, x_length
base_alpha = args.alpha
opt = optimizers.Adam(alpha=base_alpha)
opt.setup(model)
opt.add_hook(chainer.optimizer.GradientClipping(args.clip))
if args.freeze_word_emb:
model.freeze_word_emb()
prev_dev_accuracy = 0.0
global_step = 0.0
adv_rep_num_statics = {}
adv_rep_pos_statics = {}
if args.eval:
dev_accuracy = evaluate(dev_x, dev_x_len, dev_y)
log_str = ' [dev] accuracy:{}, length:{}'.format(str(dev_accuracy))
logging.info(log_str)
# test
test_accuracy = evaluate(test_x, test_x_len, test_y)
log_str = ' [test] accuracy:{}, length:{}'.format(str(test_accuracy))
logging.info(log_str)
for epoch in range(args.n_epoch):
logging.info('epoch:' + str(epoch))
# train
model.cleargrads()
chainer.config.train = True
iteration_list = range(0, len(train_x), batchsize)
if args.analysis_mode:
# Visualize mode
iteration_list = range(0, len(test_sorted), batchsize)
chainer.config.train = False
chainer.config.enable_backprop = True
chainer.config.cudnn_deterministic = True
chainer.config.use_cudnn = 'never'
perm = np.random.permutation(len(train_x))
if args.use_semi_data:
perm_semi = [np.random.permutation(len(semi_train_x)) for _ in range(2)]
perm_semi = np.concatenate(perm_semi, axis=0)
# print 'perm_semi:', perm_semi.shape
def idx_func(shape):
return xp.arange(shape).astype(xp.int32)
sum_loss = 0.0
sum_loss_z = 0.0
sum_loss_z_sparse = 0.0
sum_loss_label = 0.0
avg_rate = 0.0
avg_rate_num = 0.0
correct_cnt = 0
total_cnt = 0.0
N = len(iteration_list)
is_adv_example_list = []
is_adv_example_disc_list = []
is_adv_example_disc_craft_list = []
y_np = []
predicted_np = []
save_items = []
vis_lists = []
for i_index, index in enumerate(iteration_list):
global_step += 1.0
model.set_train(True)
sample_idx = [test_sorted[i_index]]
x = [to_gpu(test_x[_i]) for _i in sample_idx]
x_length = [test_x_len[_i] for _i in sample_idx]
y = to_gpu(test_y[sample_idx])
d = None
d_hidden = None
# Classification loss
output = model(x, x_length)
output_original = output
loss = F.softmax_cross_entropy(output, y, normalize=True)
# Adversarial Training
output = model(x, x_length, first_step=True, d=None)
# Adversarial loss (First step)
loss_adv_first = F.softmax_cross_entropy(output, y, normalize=True)
model.cleargrads()
loss_adv_first.backward()
if args.use_attn_d:
# iAdv
attn_d_grad = model.attention_d_var.grad
attn_d_grad = F.normalize(attn_d_grad, axis=1)
# Get directional vector
dir_normed = model.dir_normed.data
attn_d = F.broadcast_to(attn_d_grad, dir_normed.shape).data
d = xp.sum(attn_d * dir_normed, axis=1)
else:
# Adv
d = model.d_var.grad
attn_d_grad = chainer.Variable(d)
d_data = d.data if isinstance(d, chainer.Variable) else d
# sentence-normalize
d_data = d_data / xp.linalg.norm(d_data)
# Analysis mode
predict_adv = xp.argmax(output.data, axis=1)
predict = xp.argmax(output_original.data, axis=1)
logging.info('predict:{}, gold:{}'.format(predict, y))
x_concat = xp.concatenate(x, axis=0)
is_wrong_predict = predict != y
if is_wrong_predict:
continue
is_adv_example = predict_adv != y
logging.info('is_adv_example:{}'.format(is_adv_example))
is_adv_example = to_cpu(is_adv_example)
idx = xp.arange(x_concat.shape[0]).astype(xp.int32)
# compute Nearest Neighbor
nearest_ids = model.get_nearest_words(x_concat)
nn_words = model.word_embed(nearest_ids)
nn_words = F.dropout(nn_words, ratio=args.dropout)
xs = model.word_embed(x_concat)
xs = F.dropout(xs, ratio=args.dropout)
xs_broad = F.reshape(xs, (xs.shape[0], 1, -1))
xs_broad = F.broadcast_to(xs_broad, nn_words.shape)
diff = nn_words - xs_broad
# compute similarity
dir_normed = nets.get_normalized_vector(diff, None, (2)).data
d_norm = nets.get_normalized_vector(d, xp)
d_norm = xp.reshape(d_norm, (d_norm.shape[0], 1, -1))
sims = F.matmul(dir_normed, d_norm, False, True)
sims = xp.reshape(sims.data, (sims.shape[0], -1))
most_sims_idx_top = xp.argsort(-sims, axis=1)[idx_func(sims.shape[0]), 0].reshape(-1)
vis_items = []
r_len = x[0].shape[0]
for r_i in range(r_len):
idx = r_i
# most similar words in nearest neighbors
max_sim_idx = most_sims_idx_top[idx]
replace_word_idx = nearest_ids[idx, max_sim_idx]
max_sim_scalar = xp.max(sims, axis=1)[idx].reshape(-1)
attn_d_value = d_data[idx].reshape(-1)
# grad_scale = xp.linalg.norm(d_data[idx]) / xp.max(xp.linalg.norm(d_data))
grad_scale = xp.linalg.norm(d_data[idx]) / xp.max(xp.linalg.norm(d_data, axis=1))
nn_words_list = [vocab_inv[int(n_i)] for n_i in nearest_ids[idx]]
nn_words = ','.join(nn_words_list)
sims_nn = sims[idx]
diff_norm_scala = xp.linalg.norm(diff.data[idx, max_sim_idx])
d_data_scala = xp.linalg.norm(d_data[idx])
vis_item = [r_i, vocab_inv[int(x_concat[idx])], vocab_inv[int(replace_word_idx)],
to_cpu(max_sim_scalar), to_cpu(attn_d_value), nn_words, to_cpu(grad_scale), is_adv_example, to_cpu(sims_nn), to_cpu(diff_norm_scala), to_cpu(d_data_scala)]
vis_items.append(vis_item)
save_items.append([vis_items, to_cpu(x[0]), to_cpu(y)])
with open(args.save_name, mode='wb') as f:
# Save as pickle file
pickle.dump(save_items, f, protocol=2)
if __name__ == '__main__':
main()